The CMOS Inverter - Chalmers · 2016-09-08 · Important CMOS Inverter knowledge • First of all,...

46
The CMOS Inverter Lecture 3a Static properties (VTC and noise margins)

Transcript of The CMOS Inverter - Chalmers · 2016-09-08 · Important CMOS Inverter knowledge • First of all,...

The CMOS Inverter

Lecture 3a

Static properties

(VTC and noise margins)

Inputs

Why so much about inverters?

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 2

VDD

VSS

Y

nMOS pull-down network

pMOS pull-up

network IDSP

IDSN

The current that any CMOS logic gate can deliver or sink can be calculated from equivalent inverter!

Important CMOS Inverter knowledge

• First of all, of course the MOSFET schematic • But you will capture the inverter schematic in lab 1

MCC092 IC Design - Lecture 3: The Inverter 3

vdd!

gnd!

vdd!

2016-09-06

Don´t forget to tie the body to VDD and GND!

gnd!

The voltage characteristic (VTC) • VTC shows VOUT vs VIN in steady-state, i.e. quasi-static DC with

dVIN/dt=dVOUT /dt≈0!

MCC092 IC Design - Lecture 3: The Inverter 4

VIN

VOUT

PMOS

NMOS

• However, the PMOS has its ”origo” in (VDD, VDD) when connected to VDD as in the inverter

2016-09-06

VDD

VDD • NMOS works for positive gate and drain voltages

• PMOS works for negative gate and drain voltages

The voltage characteristic (VTC)

First task: to calculate the switching voltage VSW, i.e the input voltage that separates a ”one” and a ”zero”:

MCC092 IC Design - Lecture 3: The Inverter 5

VDD VSW VTN VDD+VTP 0 0

(VDD, VDD)

2016-09-06

Switching occurs in the green region where both MOSFETs are saturated!

1

NDD TP TN

P

sw

N

P

kV V V

kV

k

k

VDD

2 2

2 2

N PIN TN DD IN TP

k kV V V V V

Hence, let IDSN=ISDP

VOUT

VIN

VTC robustness

MCC092 IC Design - Lecture 3: The Inverter 5

It is good to have some feeling for what happens to the VTC . . . . . . for different √kN/kP

but how to interpret the Vsw equation?

P P

N N

k

k

Rewrite as

1

DD TP TNsw TN

N

P

V V VV V

k

k

1

NDD TP TN

P

sw

N

P

kV V V

kV

k

k

DD TP TNV V V

2016-09-06

The voltage characteristic (VTC)

MCC092 IC Design - Lecture 3: The Inverter

VDD VSW

What if we make n-channel MOSFET wider?

What happens to VTC? VDD

VTN VDD+VTP 0 0

2016-09-06 7

Decreases, see slide 5!

1

DD TP TN

N P

V V V

k k

DD TP TNV V V

VSW increases or decreases?

VOUT

VIN

The voltage characteristic (VTC)

MCC092 IC Design - Lecture 3: The Inverter

VDD

VOUT

VSW

Which VTC is NAND and which VTC is NOR?

VDD

VTN VDD+VTP 0 0

2016-09-06 8

VIN

NAND

NOR

The voltage characteristic (VTC)

MCC092 IC Design - Lecture 3: The Inverter

VDD VSW

Find VTC equations for blue regions where only one MOSFET is saturated!

VDD

VTN VDD+VTP 0 0

2 2N

OUT IN TP IN TN DD IN TP

P

kV V V V V V V V

k

2016-09-06 9

Only n-channel MOSFET saturated

p-channel MOSFET saturated

2 2P

OUT IN TN IN TN DD IN TP

N

kV V V V V V V V

k

OUT IN TPV V V

OUT IN TNV V V

Saturation conditions

VOUT

VIN

The voltage characteristic (VTC)

MCC092 IC Design - Lecture 3: The Inverter

VDD VSW

How about current flow?

No current flow in red regions!

”short-circuit” current ISC flows in blue/green regions

VDD

VTN VDD+VTP 0 0

2016-09-06 10

2

2

NSC IN TN

kI V V

2

2

PSC DD IN TP

kI V V V

n-channel MOSFET saturated

p-channel MOSFET saturated

VOUT

VIN

Valid ”0”

Valid ”1”

Noise Margins

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 11

VDD

VDD

0 0

VOH,min

VOL,max

VIH,min VIL,max

Even large variations in input signal . . . make only small variations in output signal

VIN

VOUT

Define noise margins NMH=VOH,min-VIH,min

NML=VIL,max-VOL,max

NOISE MARGIN

Valid ”0”

Valid ”1”

Noise Margins: how to define valid output regions?

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 12

VIN VDD

VOUT

VDD

0 0

Find points where slope AV = -1!

VIL,max VIH,min

Yields numbers for (VOH,min, VIL,max) and (VOL,max, VIH,min) so that values for NMH and NMH can be calculated!

VOH,min

VOL,max

Valid ”0”

Valid ”1”

Noise Margins – an example

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 13

VIN

VOUT

0 0

Find points where slope AV = -1!

1.2 V

1.06 V

0.12 V

1.2 V

0.7 V 0.5 V

Yields numbers for (VOH,min, VIL,max)=(1.06, 0.5) (VOL,max, VIH,min)=(0.12, 0.7) Hence NMH=1.06 – 0.7 = 0.36 V NML= 0.5 – 0.12 = 0.38 V

Noise margins – textbook illustration

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 14

NOISE MARGIN

Valid ”0”

Valid ”1”

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 15

Butterfly diagram

VIN VDD

VOUT

VDD

0 0

Find points where slope AV = -1!

VOH,min

VOL,max

Define noise margins NMH=VOH,min-VIH,min

NML=VIL,max-VOL,max

NMH

NML

VIH,min VIL,max

VIL,max

VIH,min

VIN VOUT

Noise Margins – skewed inverters

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 16

NMH

NML

NML NMH

Matching MOSFET current characteristics

• Match the corresponding p-channel and n-channel MOSFET curves to each other!

MCC092 IC Design - Lecture 3: The Inverter 17 2016-09-06

VOUT

IDS

Fig. 2.26. Graphical derivation of CMOS inverter DC characteristics

Matching MOSFET current characteristics

MCC092 IC Design - Lecture 3: The Inverter 18 2016-09-06

Fig. 2.26. Graphical derivation of CMOS inverter DC characteristics

IDS

VOUT

IDS

VOUT

IDS

VOUT

IDS

VOUT

IDS

VOUT

Match the corresponding p-channel and n-channel MOSFET curves to each other!

VIN

VOUT

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 19

Summary

• CMOS inverter – schematic

• Voltage transfer characteristics (VTC)

• How to calculate swiching voltage VSW

• Understand VSW dependence on kN/kP

• Understand switching current (ISC) flow

• Noise margins NMH and NMH

• Butterfly diagram

• Match current curves

Valid ”0”

Valid ”1”

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 20

Butterfly diagram - example

VIN VDD

VOUT

VDD

0

Calculate the noise margins from given values!

1.04 V

VOL,max

NMH

NML

VIH,min 0.48 V

VIL,max

0.72 V

VIN VOUT

0.18 V

Valid ”0”

Valid ”1”

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 21

Prelab 1

VIN VDD

VOUT

VDD

0

Prelab task: To calculate the noise margins from given equations assuming VTN=0.29 V and VTP=-0.27 V, and assuming kN=kP!

VOH,min

VOL,max

2. Please note noise margin formulas given in prelab 1: VOH,min=VDD-DV/8 VOL,max=DV/8 VIH,min=VSW-DV/8 VIL,max=VSW+DV/8

NMH

NML

VIH,min VIL,max

VIL,max

VIH,min

DV=VDD-VTN+VTP=1.2-0.27-0.29=0.64 V 1. kN=kP yields switching voltage VIN=Vsw=VTN+DV/2

Vsw

3. All values needed for our calculations involves

DV=VDD-VTN+VTP

0.29 V 0.27 V

No

t va

lid V

IN

Lecture 3b The CMOS Inverter

Dynamic properties

Definitions of rise and fall delays

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 23

• fall delay tpdf • rise delay tpdr

Delays are defined at the 50% level!

Definitions of rise and fall times

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 24

• fall time tf • rise time tr

Rise and fall times are defined between the 20% and 80% levels! Sometimes between 10% and 90% levels

Step-respons model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 25

VDD

VSS

CL

VIN VOUT

Square wave approximation

ON

OFF

1. VIN=LOW

OFF

ON

2. VIN=HIGH

Step-response model: rise delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 26

VOUT

VDD

IDSAT,P

Equivalent circuit

Load capacitance is charged through

p-MOSFET

1. VIN=LOW Square wave approximation

CL

, ,

L OUTpdr

DSAT P DSAT P

C VQt

I I

DD

DVOUT=VDD/2

VDD VDD/2

IDS,P

VOUT

IDSAT,P

pMOS current flow

Step-response model: fall delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 27

VOUT

CL

VSS

IDSAT,N

Equivalent circuit

Load capacitance is discharged through

n-MOSFET

2. VIN=HIGH

VDD VDD/2

IDS,N

VOUT

nMOS current flow

IDSAT,N

Square wave approximation

, ,

L OUTpdr

DSAT N DSAT N

C VQt

I I

DD

DVOUT=VDD/2

The Inverter – an electrical model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 28

Replace MOSFETs with their equivalent electrical circuits!

NMOS

2

2

NDSN IN TN

kI V V

VIN VOUT

VSS

CGN

CDN

VSS

IDSN

VDD

CGP

CDP

VDD

IDSP

2

2

NDSP IN DD TP

kI V V V

Inverter input capacitance: CG=CGN+CGP; MOSFET gate capacitances add! Inverter parasitic output capacitance: CD=CDN+CDP. Drain caps also add!

VIN VOUT

VSS

VDD

PMOS

2

2

NDSN IN TN

kI V V

2

2

NDSP IN DD TP

kI V V V

The Inverter – an electrical model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 29

VIN VOUT

VSS

VDD

VIN VOUT

VSS

CG=CGN+CGP

VSS

VDD VDD

CD=CDN+CDP

Inverter input capacitance: CG=CGN+CGP; MOSFET gate capacitances add! Inverter parasitic output capacitance: CD=CDN+CDP. Drain caps also add!

Since VIN is either VDD or VSS (GND) we can modify schematic accordingly

2

,max2

NDSP DD TP

kI V V

2

,max2

NDSN DD TN

kI V V

IDSN

IDSP

IDSN,max

IDSP,max

IDSP,max= 300 uA/um

IDSN,max= 600 uA/um

Problem

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 30

2

,max2

NDSP DD TP

kI V V

If IDSN,max is 600 mA/um in the 65 nm CMOS process from STMicroelectronics, what would be the effective kprime (kN´=mCox)?

In this process VDD= 1.2 V, VTN= 0.29 V, Cox= 20 fF/mm2, and Leff= 60 nm.

2

,max2

NDSN DD TN

kI V V

Answer: kN´=87 mA/V2, kN´=42 mA/V2

Similarly, if IDSP,max is 300 mA/um in the 65 nm CMOS process from STMicroelectronics, what would be the effective kprime (kN´=mCox)?

In this process VDD= 1.2 V, VTN= -0.27 V, Cox= 20 fF/mm2, and Leff= 60 nm.

Ramp response

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 31

VIN

It is obvious that a ramp approximation would give a better model –

However, this is too complicated for simple analytical analysis

Spice simulations show – that for about equal input and output edge rates –

the ramp response delay is about 40% longer than the step response delay!

Ramp response

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 32

It is obvious that a ramp approximation would give a better model –

However, this is too complicated for simple analytical analysis

For a balanced design with approximately equal input and output edge rates – (i.e. equal rise and fall times)

Spice simulations show that the ramp response delay is about 40% longer than the step response delay!

/ 20.7 0.7L DD L DD DD

pd pd L

DSAT DSAT DSAT

C V C V Vt t C

I I I

Add 40% to step response delay and prefactor 0.5 becomes 0.7

DDeff

DSAT

VR

IDefining the effective resistance during charge/discharge as

our ramp response delay model becomes tpd=0.7ReffCL!

Effective resistances: 60 nm MOSFETs

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 33

RN,eff=VDD/IDSAT,max

RP,eff=VDD/IDSAT,max

RN,eff=2 kW.mm RP,eff=4 kW.mm

IDSAT,max =

600 mA/mm

VDD=1.2 V

N-channel device P-channel device

IDSAT,max =

300 mA/mm

VDD=1.2 V

IDS

VDS

IDS

VDS VDD VDD

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 34

Replace constant-current sources with effective resistances

VIN VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

RN,eff

VDD VDD

RP,eff

RP,eff= 4 kW .mm

RN,eff= 2 kW .mm

CD

Ramp input – output response

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 35

Ramp input – output trace

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 36

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 37

Complicated to keep track of different rise and fall delays! Replace with average effective resistance!

VIN VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

VDD VDD RP,eff= 4 kW .mm

RN,eff= 2 kW .mm

CD

RN,eff

RP,eff

Rave

VDD

, ,3 k

2

N eff P eff

ave

R RR mm

W

Redraw schematic!

2W´

VIN

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 38

Even better to resize p-channel device, i.e. to make it wider, so that RP,eff=RN,eff

VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

CD

Rave

VDD

, ,2 k

2

N eff P eff

ave

R RR mm

W

Task: Calculate CG and CD!

Answer: Assuming L=60 nm and Cox=20 fF/mm2 we obtain CGN=1.2 fF and CGP=2.4 fF. Hence CG=3.6 fF. Concerning CD we assume CD=pCG=3.6 fF with p=1.

VDD

VSS

W=1 mm

W=2 mm

VOUT VIN

VIN

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 39

VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

CD

Reff

VDD

, ,2 k

2

N eff P eff

eff

R RR mm

W

2W´

3.6 /GC fF mm

0.7 0.7 2 3.6 / 5eff GR C k m fF m ps m m W

In an ideal inverter the time constant tao is really a constant, and that is independent of W´

VIN

Electrical ramp response model

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 40

VOUT

VSS

VDD

VIN VOUT

VSS

CG

VSS

CD

Reff

VDD

, ,2 k

2

N eff P eff

eff

R RR mm

W

2W´

3.6 /GC fF mm

0.7 0.7 2 3.6 / 5eff GR C k m fF m ps m m W

In an ideal inverter the time constant tao is really a constant, and that is independent of W´

Inverter pair delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 41

CG

Reff

VDD

Left-hand inverter sees a capacitive load CG!

Inverter pair delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 42

CG

Reff

CD

VDD

Right-hand inverter sees a driver with internal source resistance Reff and a parasitic capacitance CD!

Inverter pair delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 43

CG

Reff

CD

VDD

The propagation delay becomes effective resistance times load cap!

0.7 0.7 1 5 ps 2 10 pseff D G eff GR C C R C p

RC-circuit with delay RCxln2=0.7RC

X1

X1

Inverter FO4 delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 44

CG

Reff

CD

VDD

X1 X1

The FO4 propagation delay becomes 0.7 4 0.7 4 5 ps 5 25 pseff D G eff GR C C R C p

X1

CG

CG

CG

X1

X1

Inverter FO4 delay

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 45

4CG

X1

The FO4 propagation delay becomes 0.7 4 0.7 4 5 ps 5 25 pseff D G eff GR C C R C p

X1

Reff

CD

VDD

Summary

• We defined rise and fall delays at the 50% level (VDD/2) • We defined rise and fall times between 20% and 80% levels • We calculated propagation delay in response to a square-wave input signal assuming

MOSFETs being saturated during delay • We improved the delay model by adding 40%

– assuming a ramp input signal and – assuming equal input and output edge rates

• We ”heard a bell ring” and replaced saturation current sources by effective resistances

• We made the p-channel MOSFET twice as wide to compensate for lower hole mobility (i.e. to compensate for kP´=kN´/2). – Both MOSFETs now have the same effective resistance of 2 kW.mm – However, p-channel device now has twice the input capacitance of the n-channel MOSFET

• We have obtained an electrical two-port model of the inverter for delay calculations – we know what this model looks like seen from the input port, and seen from the output port

• Finally, we calculated the FO4 delay, and we found the ReffCG product being independent of the inverter size (as long as we keep same ratio between WP and WN)

2016-09-06 MCC092 IC Design - Lecture 3: The Inverter 46