The Brain Prize 2011

3
FORUM:Science&Society Specia l Issue: Hi ppocampus and Me mory TheBr ai n Pri ze 2011 From Microcircuit Organizationto Constellations of BrainRhythms Ivan Soltesz Anatomy& Neurobi ology, Universityof California, Irvine, Irvine, CA, 9269 7-1280, USA TheGreteLundbeckEuropean Br ai n Resear ch Founda- ti on awa rde d th ein augu ral Br ai n Pr ize2011to Pe ´ ter Somogy i, Tama ´ sFreund and Gyo ¨ rgy Buzsa ´ ki ‘f or their wide -rang ing, technical lyand con cep tua lly brilliantre- search on thefunc ti onal or ga nizati on of neuronal circuitsin thecerebr al cor tex , especiallyin thehippo- ca mpus, are gi on that iscrucial forcertain formsof memory’. Thepresentarticlehighlights keyndings and majorconceptual contributions bythesethreescien- ti sts that wererecognized bytheaward. TheBr ain Pr iz e2011wasco nf er red toPe ´ terSomogyi (Oxf ord Univer sity, UK),Tama ´ s Freund (I nsti tute of Ex- perimental Medicine,Budapest, Hungary) and Gyo ¨ rgy Buzsa ´ ki(RutgersUniversity, NewJersey, USA) at acere- mon y onMa y 2,2011(Fig ure 1) in Copenhagen, Denmark, fol lowed by th ePrizeLecturesthenextday.TheGrete Lundbeck Fo undati on is acharitable,non-protorganiza- tio n tha tawardstheBrain Prize(s1million,orabout$1.4 mi ll io n) toscientistswhohavedisti nguish ed thems elves by an outstanding contri bution to Europe an neuros cience (forfurtherinformation, seewww.thebrainprize.org ). Somogyi, Fr eund and Buzs a ´ kiwereallbo rn and edu- cat ed in Hungar y, whi ch was ,espec ially under communist times,atruly ‘far -fro m-equ ilibr ium’ statethatdemanded a greatdealof ‘self-organi zati on(toborrowtermsfrom systemtheor y that great ly inuen ced Buzsa ´ ki’swork) from individualsforsuccess.But,of co urse,thesethreescien- tistsdi d notstarttheirscienticcareersin a vacuum. On thecontrary,theirres earch int othefunctionalorganiza- ti on of complex br ai n ci rcui ts hasbeen inspired by the remarkabletraditionsof Hun garian neur osc ience, repre- sent ed by th elikesof Ka ´rol y Sch aff er(of ‘Sc haf fer collat- erals’),Miha ´ ly Lenhosse ´ k (whointr oduc ed th eterm ‘astrocyte’), Ja ´ nos Sz enta ´ gothai(whosenumerouscontri- butionsincludetherec ognition of thebasisof lateral inhibi tio n in thecerebellarco rt ex ) and ot he rs .Indeed, Freun d started hisscienticendeavorsin Somog yi ’s laboratory, inv est iga ting the speci ci ty of interl aminar GABAergicconnectionsusi ng lay er- spe cicmicroinjec- tionsof [ 3 H]GABA in th e visualcortex [1] atthe Anatomy Institutein Budapest.  And it wasin thesamebui ldi ng at that venerableinstitutewhereSomogyi had prev iously wo rked wi th Szenta ´ gothai,who,in turn,had been astu- dentof Le nhosse ´ k.Buzsa ´ kistudied underEndreGrast- ya ´ n,who,wor king in the beautifulto wnof Pe ´ csin southern Hungary,ar gued that itisthebrai n outputs(such as mo ti on and co nsci ousnes s) that controlitsinputs, and nottheotherwa y around.Grastya ´ n’s experi men ts, in- spired by hisinside-out  viewof thebr ai n on chan ge sin hippocampal cir cui try during dynami cshiftsin behavi or, deeply resonated wi th hi sstudents, set ting Buz sa ´ kion a scientic j ourney dedicated to theunders ta nding of the characteristic, beh avi or- and reg ion -de pen dentconstella- ti ons of distinct neuronaloscillations,such as theta,gam- maand sharp wave s, in vari ouspartsof theentorhino- hippocampal circuitsand beyond [2]. Thr oug h the ir independent careers,punctuat ed by fre- quentpersonalcontactsand col lab ora tions, thethree scientistshavefo cused theirwork on structure-function questionsfunda menta lly impor tant tounderstan ding in- fo rmat ion pr oces si ng in neuronal circuits, par ticula rly in thehippocampus. Theirdiscoveries, madewith somet imes outright virtuosicmethodsthey developed thems elves , had whatonewould descri be- using contemporary NIH grant reviewparlance- as exceptio na lly ‘sus ta in ed and wi de impac t’ throug hout neurobiology. Thestill -expa nding com- pendiumof fundamentaldiscoveries(forreviews, with referencestotheoriginalpapers, see[27]) by thethree scientistsincludethereco gnitio n that thesynaptictargets of thecandlestick-likerowsof presynapticterminalsof chandeliercellsaretheaxon init ialsegments,and not, as pr eviously thought, theapicaldendritesof pr inci pal cells(Somogyi); theide nti ca tio n of int erneuronalsub- typesthatexc lus ive ly controlotherinhibi tor y neurons (Freund);thedemons tra tion thatinterneuronsexpress certa in neurop eptid esin ahighly subtyp e-dep enden t man- ner(Somogyi); then ding of tr ans ien tmodi cat ion of  hippocampal circuitsby neo cor tex -me dia ted inf ormation proc essi ng duri ng lear ni ng, fo llo wed by react ivation of  memor y trac esdur ing sharp wav es (Buzsa ´ ki);theidenti- ca ti on of thecelltyp e- and brain state-dependent ,phase- specicring of GABAer gi cinterneuronsdur ing net wor k oscillations(Somogyi, Buzsa ´ ki);thedis cov ery of interneu- ronalspeciesthatprojectacrosstraditionalhippocampal arealboundariesoverlong dis tances (Freund, Buzsa ´ ki); and thedet ermina tio n of the detailed,high-resolution, cell ty pe - an d pa thwa y- de pe ndentlocali zatio n of va rio us GABA,glutamateand cannabinoi d rece pt ors(Somogyi, Freund).  Al tho ugh the ir individual and col lec tiveres ear ch foc i hav e bee npri maril y on bas ic mec hanisms, theirwork, as emphasizedby the BrainPrize committee,alsohad major impacts on ho wwethi nk about the mechanist ic bases of  Update Corre spondi ng author :Soltesz,I.([email protected]). 501

Transcript of The Brain Prize 2011

Page 1: The Brain Prize 2011

8/3/2019 The Brain Prize 2011

http://slidepdf.com/reader/full/the-brain-prize-2011 1/3

FORUM:   Science   &   Society

Special Issue: Hippocampus and Memory 

The  Brain Prize  2011From Microcircuit Organization  to Constellations of Brain  Rhythms

Ivan Soltesz

Anatomy   & Neurobiology,  University  of   California, Irvine, Irvine, CA, 92697-1280,  USA

The  Grete  Lundbeck  European Brain Research Founda-

tion awarded the  inaugural Brain Prize  2011   to Pe ter

Somogyi, Tama s  Freund and Gyorgy  Buzsa ki ‘for  their

wide-ranging, technically  and conceptually  brilliant  re-

search on the  functional organization of  neuronal

circuits  in the  cerebral cortex, especially  in the  hippo-

campus, a  region that  is  crucial for  certain forms  of

memory’. The  present  article  highlights  key  findings

andmajor  conceptual contributions  by  these  three  scien-tists that  were  recognized by  the  award.

The  Brain Prize  2011  was  conferred to  Peter  Somogyi(Oxford University,  UK),  Tamas Freund (Institute  of Ex-perimental  Medicine,  Budapest,  Hungary) and GyorgyBuzsaki  (Rutgers  University,  New  Jersey,  USA) at  a  cere-mony onMay 2,  2011   (Figure1) in Copenhagen,  Denmark,followed by the  Prize  Lectures  the  next  day.  The  GreteLundbeck   Foundation is a  charitable,  non-profit  organiza-tion that  awards  the  BrainPrize  (s1  million,  or  about  $1.4million) to  scientists  who  have  distinguished themselvesby an outstanding contribution to  European neuroscience

(for 

further 

information, 

see 

www.thebrainprize.org ).Somogyi,  Freund and Buzsaki  were  all  born and edu-

cated in Hungary,  which was,  especially under  communisttimes,  a  truly ‘far-from-equilibrium’ state  that  demanded agreat  deal  of ‘self-organization’ (to  borrow  terms  fromsystem  theory that  greatly influencedBuzsaki’s  work)fromindividuals  for  success.  But,  of course,  these  three  scien-tists  did not  start  their  scientific  careers  in a   vacuum.  Onthe  contrary,  their  research into  the  functional  organiza-tion of complex brain circuits  has  been inspired by theremarkable  traditions  of Hungarian neuroscience,  repre-sented by the  likes  of Karoly Schaffer  (of ‘Schaffer  collat-erals’),  Mihaly Lenhossek   (who  introduced the  term

‘astrocyte’), 

Janos Szentagothai 

(whose 

numerous 

contri-butions  include  the  recognition of the  basis  of lateralinhibition in the  cerebellar  cortex) and others.  Indeed,Freund started his  scientific  endeavors  in Somogyi’slaboratory,  investigating the  specificity of interlaminarGABAergic  connections  using layer-specific  microinjec-tions  of [3H]GABA   in the  visual  cortex [1] at  the   AnatomyInstitute  in Budapest.   And it  was  in the  same  building atthat   venerable  institute  where  Somogyi  had previouslyworked with Szentagothai,  who,  in turn,  had been a  stu-dent  of Lenhossek.  Buzsaki  studied under  Endre  Grast-yan,  who,  working in the  beautiful  townof Pecs  in southern

Hungary,  argued that  it  is  the  brain outputs  (such asmotion and consciousness) that  control  its  inputs,  andnot  the  other  way around.  Grastyan’s experiments,  in-spired by his  inside-out   view  of the  brain on changes  inhippocampal  circuitry during dynamic  shifts  in behavior,deeply resonated with his  students,  setting Buzsaki  on ascientific   journey dedicated to  the  understanding of thecharacteristic,  behavior- and region-dependent  constella-

tions of distinct  neuronal  oscillations,  such as  theta,  gam-ma  and sharp waves,  in various  parts  of the  entorhino-hippocampal  circuits  and beyond [2].

Through their  independent  careers,  punctuated by fre-quent  personal  contacts  and collaborations,  the  threescientists  have  focused their  work   on structure-functionquestions  fundamentally important  to  understanding in-formation processing in neuronal  circuits,  particularly inthe  hippocampus.  Their  discoveries,  made  with sometimesoutright  virtuosic  methods  theydeveloped themselves,  hadwhat  one  would describe  - using contemporary NIH grantreview  parlance  - as exceptionally ‘sustained and wideimpact’ throughout  neurobiology.  The  still-expanding com-

pendium 

of fundamental 

discoveries 

(for 

reviews, 

withreferences  to  the  original  papers,  see  [2–7]) by the  threescientists  include  the  recognition that  the  synaptic  targetsof the  candlestick-like  rows  of presynaptic  terminals  of chandelier  cells  are  the  axon initial  segments,  and not,as previously thought,  the  apical  dendrites  of principalcells  (Somogyi);  the  identification of interneuronal  sub-types  that  exclusively control  other  inhibitory neurons(Freund);  the  demonstration that  interneurons  expresscertain neuropeptides  in a  highlysubtype-dependent  man-ner  (Somogyi);  the  finding of transient  modification of hippocampal  circuits  by neocortex-mediated informationprocessing during learning,  followed by reactivation of memory traces  during sharp waves  (Buzsaki);  the  identifi-cation of the  cell  type- and brain state-dependent,  phase-specific  firing of GABAergic  interneurons  during network oscillations  (Somogyi,  Buzsaki);  the  discovery of interneu-ronal  species  that  project  across  traditional  hippocampalareal  boundaries  over  long distances  (Freund,  Buzsaki);and the  determination of the  detailed,  high-resolution,  celltype- and pathway-dependent  localization of variousGABA,  glutamate  and cannabinoid receptors  (Somogyi,Freund). Although their  individual and collective  research foci

have been  primarily on basic mechanisms,  their  work, asemphasized   by the Brain   Prize committee,  also  had majorimpacts on how  we  think about the mechanistic  bases of 

Update

Corresponding author:  Soltesz,  I.   ([email protected]).

501

Page 2: The Brain Prize 2011

8/3/2019 The Brain Prize 2011

http://slidepdf.com/reader/full/the-brain-prize-2011 2/3

neurological and psychiatric  diseases.  For  example,   with-

out 

knowing the unique target 

selectivity of axo-axoniccells (themodern term introduced  by Somogyi  for  chande-lier   cells), it  would be impossible  to  understand howpathological   alterations  in these  neurons contribute  tothe diseased  state  in schizophrenia and epilepsy [8].Freund’spioneeringworkon the functional neuroanatomyof thevarious,  distinctly localizedsynthesizing   andbreak-down enzymes involved in endocannabinoid signaling is key to  deciphering how  breakdown in the control  of neurotransmitter  release contributes  to  neurological dis-orders such as  epilepsy  [9].  Similarly,   Buzsaki’s insightsinto brain rhythms  are inherently relevant for  researchaimed at  understanding   why virtually  every psychiatricdisorder  is associated with altered neuronal oscillations[10].

Beyond discovering important,  novel  facts  about  thebrain,  the  work   of Somogyi,  Freund and Buzsaki  wasselected for  the  award for  having fundamentally contrib-uted to  the  creation of the  conceptual  framework   inspiredby ‘Cajal’s  rational  psychology’ (see  [5]).  In the  words  of ColinBlakemore,  Chairmanof the  SelectionCommittee  forThe  Brain Prize,

‘In order  to  know  how  the  brain processes  informa-tion we  need a  complete  description of the  structureof nerve  cells  and the  dynamic  characteristics  of theconnections  between them.  The  work   of Peter  Somo-gyi,  Tamas Freundand GyorgyBuzsaki  has  providedmuch of this  essential  knowledge  for  the  cerebralcortex.  Without  such painstaking research there  willnever  be  full  understanding of the  brain.’

Somogyi’s  work   in the  last  decade  led to  the  recognitionof the  fundamental  unity of time  and space  in the  brain,highlighted with the  new  term  ‘chronocircuitry’ [7].Freund’s  work   was  fundamental  in recognizing the  novelfunctional  roles  that  GABA   to  GABA   connections  play inthe  regulation of rhythmic  network   activity,  as is  the  casefor  the  septo-hippocampal  GABAergic  projections  in thegeneration of the  hippocampal  theta  rhythm  [3].  Buzsaki’sresearch has  been instrumental  in defining the  ‘neural

syntax’ [11],  representing a  conceptually new  approachaimed at  understanding the  neuronal  communicationand the  role  of network   oscillations  in the  brain,  and healso greatly contributed to  the  implementation of graphtheory-based approaches  to  understanding neuronalcircuits  [2,5].  The  overarching,  key notion that  threadsthrough all  of their  work   is the  centrality of the  preciselyidentified cellular  subtype,  i.e.,  the  deeply held conviction

that  a  major,  key pathway to  understanding the  functionalorganization of the  brain is  through the  determination of the  cell  type-dependent,  highly characteristic,  distinct  ax-onal  anddendritic  morphology,  input-output  relationships,expression of neurotransmitter  and neuromodulatoryreceptors,  and functional  behavior  of eachof the  individualneuronal  subtypes  that  comprise  a  given neuronal  circuit-ry.  Their  work   has  helped us  appreciate  the  fact  that  itmatters  greatlywhether,  for  example,  a  givenbasket  cell  isexpressing parvalbumin or  cholecystokinin (as  these  twotypes  playdistinct  roles  in the  circuit;  [6]),  or  whether  a  cellidentified as  ‘fast-spiking’ based on firing properties  aloneis a  perisomatically projecting axo-axonic  cell  or  a  basket

cell 

or 

dendritically projecting bistratified cell. 

Indeed,fast-spiking,  parvalbumin-positive  basket- and bistratifiedcells  possess  significant  functional  differences  in theirplasticity processes  and responses  to  neuromodulators(see  [12],  and the  references  therein),  and it  is  currentlydebated whether  axo-axonic  cells  and basket  cells  exertdifferential  depolarizing versus  hyperpolarizing effects  ontheir  postsynaptic  targets  (for  a  review  and original  refer-ences,  see  [13]).  The  power  of cell  type- and microcircuit-based functional  anatomical  thinking is especially nicelydemonstrated by the  initial  prediction,  then subsequentidentification,  of the  existence  of a  dendritically targeting cholecystokinin-expressing cell  type  in the  hippocampus(the Schaffer-collateral  associated interneurons),  whichproved to  be  a  homologue  of the  isocortical  double  bouquetcell  [5,14].

 As  the  French molecular  biologist  Francois  Jacob  put  it,

‘One of the  deepest,  one  of the  most  general  functionsof livingorganisms  is  to  look   ahead,  to  produce  future’(for  reference,  see  [2]).

Indeed,  in a  fundamental sense,  predicting andproducing the future is what  neuronal oscillations  and chronocir-cuits  are all  about.  In addition,  Somogyi, Freund  andBuzsaki  significantly contributed to  the ‘production’ of the future in a  different way.  Namely,   through their

rigorous  training of new  generations of neuroscientistsin their  laboratories   over   the   years,   they ensured thattheir particular, intricately interwoven branches  of theNeuroTree  (http://neurotree.org ) continue to  grow  andflourish.   As a  testament  to  the comprehensive  influenceof their  work in educating the aspiring F1  generation  andbeyond,  graduate students  all  over  theworld still  can andoften do  start  their  introduction  to  microcircuitry re-search by browsing what is commonly referred  to  asthe interneuronal  ‘bible’ [3],  more than a  decade  and ahalf after  its publication.  The bar  is certainly set  implau-sibly high by the awarded  trio,  so   let   new   generations  of neuroscientists find encouragement  and inspiration in

TRENDS in Neurosciences 

Figure  1. The  award ceremony   for  The  Brain Prize  2011. From left: Tamas Freund,

Gyo ¨ rgy  Buzsaki and Peter  Somogyi. Reproduced with permission from the  Grete

Lundbeck Foundation.

Update Trends   in   Neurosciences   October   2011, Vol. 34, No. 10

502

Page 3: The Brain Prize 2011

8/3/2019 The Brain Prize 2011

http://slidepdf.com/reader/full/the-brain-prize-2011 3/3

the classical,  beautifully crafted words of the clairvoyantHungarian poet   Attila  Jozsef   [15]:

‘You know  this  well:  the  poet  never  lies,The  real  is not  enough;  through its  disguiseTell  us  the  truth which fills  the  mind with light’

AcknowledgementsThe work in the author’s lab  is supported byNational  Institutes of Healthgrants NS35915,  NS74702  and NS74432.

References1  Somogyi,  P.   et  al.  (1981) Vertical  organization of neuronesaccumulating 3H-GABA   in visual  cortex of rhesus monkey.   Nature

294,   761–7632  Buzsaki,  G.  (2006)  Rhythms  of the  brain,  Oxford University Press,(New   York)

3  Freund,  T.F.  andBuzsaki,  G.  (1996) Interneurons of the hippocampus. Hippocampus  6,  347–470

4  Somogyi,  P.  et  al.  (1998) Salient  features of synaptic  organisation in thecerebral  cortex.   Brain Res.   Rev.  26,  113–135

5  Soltesz,  I.  (2005) Diversity in the  neuronal machine,  Oxford UniversityPress,  (New   York)

6  Freund,  T.F.  and Katona,  I.  (2007) Perisomatic  inhibition.   Neuron 56,33–42

7  Klausberger,  T.  and Somogyi,  P.  (2008) Neuronal  diversity andtemporal  dynamics:  the unity of hippocampal  circuit   operations. Science  321,   53–57

8  Howard,   A.   et  al.  (2005) Lighting the chandelier:  new   vistas for  axo-axonic  cells.  Trends    Neurosci.  28,  310–316

9  Katona,  I.  and Freund,  T.F.  (2008) Endocannabinoid signaling as asynaptic  circuit  breaker  in neurological  disease.  Nat.  Med.  14,  923–930

10  Lisman,  J.  and Buzsaki,  G.  (2008) A   neural   coding scheme formed bythe combined function of gamma  and theta  oscillations.   Schizophr.

 Bull.  34,  974–980

11  Buzsaki,  G.  (2010) Neural  syntax:  cell  assemblies,  synapsembles,  andreaders.   Neuron 68,  362–385

12  Lee,  S.Y.   et  al.  (2011) Cell-Type-Specific  CCK2  Receptor  Signaling Underlies the Cholecystokinin-Mediated Selective Excitation of Hippocampal  Parvalbumin-Positive Fast-Spiking Basket  Cells.   J.

 Neurosci.  31,  10993–1100213  Woodruff,  A.R.   et  al.  (2010) The enigmatic  function of chandelier  cells.

 Front.   Neurosci.  4,  20114  Cope,  D.W.   et  al.  (2002) Cholecystokinin-immunopositive basket  and

Schaffer  collateral-associated interneurones target  different  domainsof pyramidal  cells in the CA1  area  of the rat  hippocampus. Neuroscience   109,   63–80

15  Jozsef,   A.  (1937) Welcome to Thomas Mann [In  Attila Jo  zsef:   Poems

(1966) Kabdebo,  T.,  ed,  Watkins,   V.,  trans.] The Danubia  Book Co.,(London)

0166-2236/$  –see  front matter  ß 2011   Elsevier   Ltd. All rights reserved.

doi:10.1016/j.tins.2011.08.006 Trends in Neurosciences, October  2011, Vol. 34, No. 10

Update Trends   in   Neurosciences   October   2011, Vol. 34, No. 10

503