The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

22
The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006

Transcript of The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Page 1: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

The Binomial Theorem

Lecture 29

Section 6.7

Mon, Apr 3, 2006

Page 2: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

The Binomial Theorem

Theorem: Given any numbers a and b and any nonnegative integer n,

(a + b)n = k = 0..n C(n, k)an – kbk. Proof: Use induction on n. Basic step: Let n = 0. Then

(a + b)0 = 1. k=0..0 C(0, k)a0 – kbk = C(0, 0)a0b0 = 1.Therefore, the statement is true when n = 0.

Page 3: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Proof, continued

Inductive stepSuppose the statement is true for some n

0.Then

n

k

kknn

k

kkn

n

k

kkn

nn

bak

nba

k

n

bak

nba

bababa

0

1

0

1

0

1

Page 4: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Proof, continued

n

k

nkknn

n

k

n

k

nkknkknn

n

k

n

k

nkknkknn

bbak

n

k

na

bbak

nba

k

na

bbak

nba

k

na

1

111

1 1

1111

1

1

0

1111

1

1

Page 5: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Proof, continued

Therefore, the statement is true for n + 1. Thus, the statement is true for all n 0.

.1

1

1

0

1

1

111

n

k

kkn

n

k

nkknn

bak

n

bbak

na

Page 6: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Example: Binomial Theorem

Expand (a + b)8.C(8, 0) = C(8, 8) = 1.C(8, 1) = C(8, 7) = 8.C(8, 2) = C(8, 6) = 28.C(8, 3) = C(8, 5) = 56.C(8, 4) = 70.

Page 7: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Example: Binomial Theorem

Therefore,

(a + b)8 = a8 + 8a7b + 28a6b2 + 56a5b3

+ 70a4b4 + 56a3b5 + 28a2b6 + 8ab7 + b8.

Page 8: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Example: Calculating 1.016

Compute 1.018 on a calculator. What do you see?

Page 9: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Example: Calculating 1.016

1.018 = (1 + 0.01)8

= 1 + 8(0.01) + 28(0.01)2 + 56(0.01)3

+ 70(0.01)4 + 56(0.01)5 + + 28(0.01)6 + 8(0.01)7 + (0.01)8

= 1 + .08 + .0028 + .000056 + .00000070

+ .0000000056 + .000000000028 + + .00000000000008

+ .0000000000000001

= 1.0828567056280801.

Page 10: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Example: Approximating (1+x)n

Theorem: For small values of x,

and so on.

.6

)2)(1(

2

)1(11

.2

)1(11

.11

32

2

xnnn

xnn

nxx

xnn

nxx

nxx

n

n

n

Page 11: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Example

For example,

(1 + x)8 1 + 8x + 28x2

when x is small. Compute the value of (1 + x)8 and the

approximation when x = .03.

Page 12: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Newton’s Generalization of the Binomial Theorem

Theorem: Given any numbers a, b, and n,

(a + b)n = k=0.. C(n, k)an – kbk.

where

C(n, k) = [n(n – 1)…(n – k + 1)]/k! Note that n need not be an integer nor

positive.

Page 13: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Newton’s Generalization

Expand (a + b)-1 in a series, showing the first 5 terms.

Compute the first 5 coefficientsC(-1, 0) = 1.C(-1, 1) = -1.C(-1, 2) = (-1)(-2)/2! = 1.C(-1, 3) = (-1)(-2)(-3)/3! = -1.C(-1, 4) = (-1)(-2)(-3)(-4)/4! = 1.

Page 14: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Newton’s Generalization

Therefore,

...1

...1

...

4321

44332211

453423211

a

b

a

b

a

b

a

ba

babababaa

babababaaba

Page 15: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Newton’s Generalization

Expand (a + b)5/2 in a series, showing the first 5 terms.

.8

15

!223

25

2,2

5

.2

51,

2

5

.10,2

5

C

C

C

.128

5

384

15

!421

21

23

25

4,2

5

.16

5

48

15

!321

23

25

3,2

5

C

C

Page 16: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Newton’s Generalization

Therefore,

...128

5

16

5

8

15

2

51

...128

5

16

5

8

15

2

51

...128

5

16

5

8

15

2

5

4322/5

44332212/5

42/332/122/12/32/52/5

a

b

a

b

a

b

a

ba

babababaa

babababaaba

Page 17: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Newton’s Generalization

If 0 < b < a, then this series will converge rapidly.

Page 18: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Newton’s Generalization

Approximate (1.2)5/2. Let a = 1 and b = 0.2 = 1/5. Then b/a = 1/5.

.5774375.116000

2523916000

1

400

1

40

3

2

11

...5

1

128

5

5

1

16

5

5

1

8

15

5

1

2

512.1

4322/5

Page 19: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

The Multinomial Theorem

Theorem: In the expansion of

(a1 + … + ak)n,

the coefficient of a1n1a2

n2…aknk is

n!/(n1!n2!…nk!)

where n = n1 + n2 + … + nk.

Page 20: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Example: The Multinomial Theorem

Expand (a + b + c + d)3. The terms are

a3, b3, c3, d3, with coefficient 3!/3! = 1.a2b, a2c, a2d, ab2, b2c, b2d, ac2, bc2, c2d,

ad2, bd2, cd2, with coefficient 3!/(1!2!) = 3.abc, abd, acd, bcd, with coefficient 3!/(1!1!

1!) = 6.

Page 21: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Example: The Multinomial Theorem

Therefore,

(a + b + c + d)3 = a3 + b3 + c3 + d3 + 3a2b

+ 3a2c + 3a2d + 3ab2 + 3b2c + 3b2d

+ 3ac2 + 3bc2 + 3c2d + 3ad2 + 3bd2

+ 3cd2 + 6abc + 6abd + 6acd + 6bcd. Find (a + b + c)4.

Page 22: The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.

Actuary Exam Problem

If we expand the expression

(a + 2b + 3c)4,

what will be the sum of the coefficients?