The best constant in the Khintchine inequality for...

31
The best constant in the Khintchine inequality for slightly dependent random variables Orli Herscovici 1 Joint work with Susanna Spektor 2 1 Department of Mathematics University of Haifa 2 Department of Mathematics and Statistics Sciences Sheridan College Institute of Technology and Advanced Learning Online Asymptotic Geometric Analysis Seminar June 20, 2020

Transcript of The best constant in the Khintchine inequality for...

Page 1: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

The best constant in the Khintchine inequality for

slightly dependent random variables

Orli Herscovici 1

Joint work with Susanna Spektor 2

1Department of MathematicsUniversity of Haifa

2Department of Mathematics and Statistics SciencesSheridan College Institute of Technology and Advanced Learning

Online Asymptotic Geometric Analysis Seminar

June 20, 2020

Page 2: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Khintchine inequality (1923)

∀p ∈ (0,∞) ∃Ap,Bp s.t. for arbitrary N ∈ N

Ap

(N∑

i=1

a 2i

) 12

≤ E

(∣∣∣N∑

i=1

aiεi

∣∣∣p) 1

p

≤ Bp

(N∑

i=1

a 2i

) 12

,

where for i = 1, . . . ,N

ai ∈ R,

εi – mutually independent Rademacher r.v.s.,

P(εi = 1) = P(εi = −1) =1

2

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 2 / 31

Page 3: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Some related researches

1930 Littlewood; Paley and Zigmund – more systematic study of theinequality

1961 Steckin: B2n = ((2n − 1)!!)1

2n

1964 Kahane – generalization to normed spaces

1970s Young, Szarek, Haagerup – best constants

Maurey and Pisier – study of geometric properties ofBanach spaces

Tomczak-Jaegermann – geometric properties, convexity

1980s Ball, Milman, Garling

1990s – Kahane, Latała, Oleszkiewicz, Tomczak-Jaegermann, Litvak,

Milman, König, Peškir, Eskenazis, Nayar, Tkocz, Spektor

convex bodieslogconcave random variables

Kahane-Khintchine inequality

Steinhaus random variables...

and many many others...

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 3 / 31

Page 4: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Khintchine inequality

D.J.H. Garling “Inequalities. A journey into linear analysis” (2007)

Theorem 12.3.1

There exist positive constants Ap, Bp, for 0 < p < ∞, such that if

a1, . . . ,aN are real numbers and ε1, . . . , εN are Rademacher random

variables, then

Bp

(E

∣∣∣N∑

i=1

εiai

∣∣∣p) 1

p

≤(

N∑

i=1

a 2i

) 12

≤ Ap

(E

∣∣∣N∑

i=1

εiai

∣∣∣p) 1

p

.

If 0 < p < 2, we can take Bp = 1 and Ap ≤ 31p− 1

2 . If 2 ≤ p ≤ ∞ we can

take Bp ∼√

ep as p → ∞, and Ap = 1.

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 4 / 31

Page 5: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Khintchine inequality: proof

Consider the case 2 < p < ∞.

If 2k − 2 < p < 2k , then

(E

∣∣∣N∑

i=1

εiai

∣∣∣2k−2

) 12k−2

≤(E

∣∣∣N∑

i=1

εiai

∣∣∣p) 1

p

≤(E

∣∣∣N∑

i=1

εiai

∣∣∣2k) 1

2k

Thus it is sufficient to establish the existence and asymptotic

properties of B2k .(E

∣∣∣N∑

i=1

εiai

∣∣∣2k)

= E

( N∑

i=1

εiai

)2k

=∑

k1+···+kN=2k

(2k)!

k1! · · · kN !a

k1

1 · · · akN

N E(εk1

1 · · · εkN

N )

=∑

k1+···+kN=2k

(2k)!

k1! · · · kN !a

k1

1 · · · akN

N E(εk1

1 ) · · ·E(εkN

N )

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 5 / 31

Page 6: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Khintchine inequality: proof (cont.)

E(εki

i ) =

{1, if ki is even

0, if ki is odd

Many of therms in the sum are 0, and

E

∣∣∣N∑

i=1

εiai

∣∣∣2k

=∑

k1+···+kN=k

(2k)!

(2k1)! · · · (2kN)!a

2k1

1 · · · a2kN

N

But (2k1)! · · · (2kN)! ≥ 2k1k1! · · · 2kN kN ! = 2kk1! · · · kN !, and so

E

∣∣∣N∑

i=1

εiai

∣∣∣2k

≤ (2k)!

2kk!

k1+···+kN=k

k!

k1! · · · kN !a

2k1

1 · · · a2kN

N

=(2k)!

2kk!||a||2k

2

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 6 / 31

Page 7: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Slightly dependent Rademacher r.v.s.

Based on the O. Herscovici, S. Spektor, “The best constant in the Khintchine

inequality for slightly dependent random variables”, arXiv:1806.03562v3.

Our assumption:N∑

i=1

εi = M

M = 0 → we’ll consider,

M > 0 generalizes the previous case,

M < 0 similar to the case M > 0.

Note

EM

∣∣∣N∑

i=1

εiai

∣∣∣2p

=∑

p1+...+pN=2ppi∈{0,...,2p}

(2p)!

p1! . . . pN !a

p1

1 . . . apN

N EM

( N∏

i=1

εpi

i

)

= EM

( N∏

i=1

εpi

i

)· (a1 + . . . + aN)

2p.

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 7 / 31

Page 8: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Slightly dependent Rademacher r.v.s.: case M = 0

Theorem (HS, 2020)

Let εi , 1 ≤ i ≤ N, be Rademacher random variables satisfying

condition∑N

i=1 εi = 0. Let a = (a1, . . . ,aN) ∈ RN . Then for any p ∈ N,

EM

∣∣∣N∑

i=1

εiai

∣∣∣2p

≤ C2p2p ||a||

2p2 ,

where

C2p2p =

(N

2

)p+1

·√π Γ(

N2

)

Γ(p + N2 + 1

2)· (2p)!

2pp!.

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 8 / 31

Page 9: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M = 0: proof

Note that∏N

i=1 εpi

i = ±1. In our case

M = 0 =⇒∣∣ {i | εi = 1}

∣∣ =∣∣ {i | εi = −1}

∣∣ = ℓ

Let

i1, . . . , iℓ be the indexes of εij = −1,

iℓ+1, . . . , i2ℓ be the indexes of εij = 1,

then

N∏

i=1

εpi

i =ℓ∏

j=1

εpij

ij·

2ℓ∏

j=ℓ+1

εpij

ij=

ℓ∏

j=1

(−1)pij ·

2ℓ∏

j=ℓ+1

1pij = (−1)pi1

+...+piℓ

From here on we re enumerate the indexes ij → j , s.t. we have

N∏

i=1

εpi

i =

{1, if p1 + . . .+ pℓ is even,

−1, if p1 + . . .+ pℓ is odd.

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 9 / 31

Page 10: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M = 0: proof

Lemma (HS, 2020)

Let εi , i ≤ N, be Rademacher random variables satisfying condition∑Ni=1 εi = 0 and let p1 + . . . + pN = 2p, pi ∈ {0, . . . ,2p}. Then,

PDif := P+ − P− =

(p+N

2−1

p

)(

2p+N−12p

) ,

where

P+ = P

({N∏

i=1

εpi

i = 1

}⋂{

N∑

i=1

εi = 0

}),

P− = P

({N∏

i=1

εpi

i = −1

}⋂{

N∑

i=1

εi = 0

}).

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 10 / 31

Page 11: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Proof of the Lemma about PDif

We have that

N∏

i=1

εpi

i =

{1, if p1 + . . .+ pℓ is even,

−1, if p1 + . . .+ pℓ is odd.

Notation

Teven the number of all solutions of p1 + . . .+ pN = 2p, where

p1 + . . .+ pℓ is even

Todd the number of all solutions of p1 + . . .+ pN = 2p, where

p1 + . . .+ pℓ is odd

T the number of all solutions of p1 + . . .+ pN = 2p

=⇒ PDif =Teven − Todd

T

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 11 / 31

Page 12: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Proof of the Lemma about PDif

T =(

2p+N−12p

)is the number of weak compositions of 2p into N parts.

To find Teven − Todd , we divide the sequences summing to 2p into

classes and sum over each class separately.

2p = p1 + p2 + . . .+ pℓ + pℓ+1 + pℓ+2 + . . .+ p2ℓ

Now we consider the difference Teven − Todd for each class

c = (c1, c2, . . . , cℓ) := (p1 + pℓ+1,p2 + pℓ+2, . . . ,pℓ + p2ℓ).

if p1 + . . .+ pℓ = even =⇒ (−1)p1+...+pℓ = 1

if p1 + . . .+ pℓ = odd =⇒ (−1)p1+...+pℓ = −1

(Teven − Todd)c =∑

c

(−1)p1+...+pℓ

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 12 / 31

Page 13: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Proof of the Lemma about PDif

(Teven − Todd)c =∑

c

(−1)p1+...+pℓ

= ((−1)p1,1 + (−1)p1,2 + . . .) · · · ((−1)pℓ,1 + (−1)pℓ,2 + . . .)

(Teven − Todd)c =ℓ∏

j=1

pj+pj+ℓ=cj

(−1)pj

For fixed class c and any cj in this class, we have

pj 0 1 2 · · · cj

pj+ℓ cj cj−1 cj−2 · · · 0

=⇒∑

pj+pj+ℓ=cj

(−1)pj =

{0, if cj is odd,1, if cj is even.

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 13 / 31

Page 14: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Proof of the Lemma about PDif

Thus for any class c = (c1, . . . , cℓ) we have

=⇒ (Teven − Todd)c =

{0, if at least one of cj is odd,1, if all cj is even,

which means any cj = 2zj and

2p = c1 + . . .+ cℓ =⇒ p = z1 + . . .+ zℓ

Teven − Todd = # weak compositions of p into ℓ parts,

=

(p + ℓ− 1

p

),

and

PDif =Teven − Todd

T=

(p+ℓ−1

p

)(

2p+N−12p

)

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 14 / 31

Page 15: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M = 0: proof (cont.)

Lemma (HS, 2020)

Let εi , i ≤ N, be Rademacher random variables satisfying condition

N∑

i=1

εi = 0, (1)

and let p1 + . . .+ pN = 2p, pi ∈ {0, . . . ,2p}. Denote by EM an

expectation with condition (1). Then,

EM

(N∏

i=1

εpi

i

)=

2N

(NN2

)(

p+N2−1

p

)(

2p+N−12p

)

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 15 / 31

Page 16: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Proof of the Lemma about EM

EM

(N∏

i=1

εpi

i

)= 1 × PM

(N∏

i=1

εpi

i = 1

)− 1 × PM

(N∏

i=1

εpi

i = −1

)

=PDif

P

(∑Ni=1 εi = 0

) .

PDif – calculated

Let us find P

(∑Ni=1 εi = 0

). Denote D = {i : εi = 1} and

Dc = {i : εi = −1}. Note, the cardinalities card(D) = card(Dc) = N2 .

The event{N∑

i=1

εi = 0

}= {εi = 1 | ∀i ∈ D}

⊎{εi = −1 | ∀i ∈ Dc}.

=⇒ P

(N∑

i=1

εi = 0

)=

1

2N

(NN2

).

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 16 / 31

Page 17: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M = 0: proof (cont.)

EM

∣∣∣N∑

i=1

εiai

∣∣∣2p

= EM

(N∏

i=1

ε pi

i

)· (a1 + . . . + aN)

2p

For any a = (a1, . . . ,aN)

a1 + . . . + aN ≤ |a1|+ . . .+ |aN | ≡ ||a||1||a||2 ≤ ||a||1 ≤

√N||a||2

(a1 + . . .+ aN)2p ≤ Np||a||2p

2

EM

∣∣∣N∑

i=1

εiai

∣∣∣2p

≤2N(

p+N2−1

p

)(

NN2

)(2p+N−1

2p

)Np||a||2p2

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 17 / 31

Page 18: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M = 0: proof (cont.)

The constant

C2p2p =

2N(

p+N2−1

p

)(

NN2

)(2p+N−1

2p

) · Np

=2N−1

(N2

)!(p + N

2− 1)!

(2p + N − 1)!· Np · (2p)!

p!.

Since x! = Γ(x + 1) = xΓ(x), we have

(p + N2− 1)! = Γ(p + N

2),

(2p + N − 1)! = Γ(2p + N).

Applying duplication formula Γ(2x) = π− 12 22x−1Γ(x)Γ(x + 1

2) to

Γ(2p + N), we obtain

C2p2p =

(N

2

)p+1

·√π Γ(

N2

)

Γ(p + N2 + 1

2)· (2p)!

2pp!

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 18 / 31

Page 19: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M = 0: asymptotic approximation

Proposition (HS, 2020)

The constant C2p2p has the following upper bound.

C2p2p ≤ 2NNp

(N + 1)p·(

N2 !)2

N!· (2p)!

2pp!∼ e− p

N

√πN

2· (2p)!

2pp!,

as N → ∞.

PROOF.

C2p2p =

(N

2

)p+1

·√π Γ(

N2

)

Γ(p + N2+ 1

2)· (2p)!

2pp!

From Γ(x + 1) = xΓ(x) we obtain

Γ

(N

2+ p +

1

2

)=

p−1∏

i=0

(N + 1

2+ i

(N

2+

1

2

)

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 19 / 31

Page 20: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M = 0: asymptotic approximation

It is easy to see that

p−1∏

i=0

(N + 1

2+ i

)≥(

N + 1

2

)p

.

Duplication formula with integer n gives Γ(

n + 12

)=

(2n)!√π

22nn!.

Therefore

C2p2p ≤

(N

2

)p+1· 2N(N

2 )!Γ(

N2

)(

N+12

)pN!

· (2p)!

2pp!

=Np

(N + 1)p· 2N

(N2 !)2

N!· (2p)!

2pp!.

Let us consider now an asymptotic behaviour of the constant C2p2p as

N → ∞.Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 20 / 31

Page 21: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M = 0: asymptotic approximation

We have to considerNp

(N+1)p

(N2!)

2

N!

For the first term we have

Np

(N + 1)p=

(1 +

1

N

)−p

=

(1 +

1

N

)N·(− pN )

∼ e− pN ,

while the second term can be approximated by applying(

2nn

)∼ 22n√

πn

(see Elezovic, “Asymptotic expansions of central binomial coefficients

and Catalan numbers” (2014)).

Finally,

C2p2p ∼ e− p

N

√πN

2· (2p)!

2pp!

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 21 / 31

Page 22: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M > 0

Theorem (HS, 2020)

Let εi , i ≤ N, be Rademacher random variables satisfying condition∑ni=1 εi = M ≥ 0. Let a = (a1, . . . ,aN) ∈ R

N . Then for any p ∈ N,

EM

∣∣∣∣∣

N∑

i=1

εiai

∣∣∣∣∣

2p ≤ C

2p2p ||a||

2p2 ,

where

C2p2p =

2NNp

(N

N+M2

)(2p+N−1

2p

)p∑

m=0

(p − m + N−M

2 − 1

p − m

)(2m + M − 1

2m

).

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 22 / 31

Page 23: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M > 0: sketch of the proof

∑Ni=1 εi = M =⇒ |{i | εi = −1}| = ℓ, and |{i | εi = 1}| = M + ℓ,

where ℓ = N−M2

a renumeration of variables:

N∏

i=1

εpi

i =ℓ∏

i=1

(−1)pi

2ℓ+M∏

j=ℓ+1

1pj =

{1, p1 + . . .+ pℓ is even,

−1, p1 + . . .+ pℓ is odd.

a construction of classes c:

2p = p1 + . . .+ pℓ + . . . + p2ℓ + . . .+ p2ℓ+M

c = (c1, . . . , cℓ,p2ℓ+1, . . . ,p2ℓ+M),

where cj = pj + pℓ+j , and cj ,pi ∈ {0, . . . ,2p}.

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 23 / 31

Page 24: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Case M > 0: sketch of the proof

for each such class c consider the difference (Teven − Todd)c

2p = 2z1 + . . . + 2zℓ + p2ℓ+1 + . . .+ p2ℓ+M

{p2ℓ+1 + . . .+ p2ℓ+M = 2m,2z1 + . . .+ 2zℓ = 2p − 2m

for some m.

(Teven − Todd)c =

(p − m + ℓ− 1

p − m

)(2m + M − 1

2m

).

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 24 / 31

Page 25: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Asymptotics of growing sample with given M

Theorem (HS, 2020)

Let ε1, . . . , εN be Rademacher random variables, i.e. such that

P(εi = 1) = P(εi = −1) = 1/2, with condition that∑N

i=1 εi = M, where

0 < M < N is fixed. Then, for any integer p ≥ 2

C2p2p ∼

√π(N2 − M2)

2N

e−MpN

(M − 1)!

(2p)!

2p·

p∑

m=0

(2m + M − 1)!

(p − m)!(2m)!

(2

N − M

)m

,

when N → ∞.

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 25 / 31

Page 26: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Asymptotics of proportionally growing samples

Theorem (HS, 2020)

Let ε1, . . . , εN be Rademacher random variables, i.e. such that

P(εi = 1) = P(εi = −1) = 1/2, with condition that∑N

i=1 εi = M. Let a

number of negative εi is n and a number of positive εi is αn, for some

fixed real α > 1. Then, for any integer p ≥ 2

C2p2p ∼

√2πnα

α+ 1

ααn 2(α+1)n

(α+ 1)(α+1)n

(2p)!

(α+ 1)p·

p∑

m=0

(α− 1)2mnm

(p − m)!(2m)!,

when n → ∞.

If α → 1, then

C2p2p ∼

√πn

(2p)!

2pp!C

2p2p ∼ e− p

N

√πN

2· (2p)!

2pp!

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 26 / 31

Page 27: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Asymptotics of proportionally growing samples

Proposition (HS, 2020)

Let ε1, . . . , εN be Rademacher random variables, i.e. such that

P(εi = 1) = P(εi = −1) = 1/2, with condition that∑N

i=1 εi = M. Let a

number of negative εi is n and a number of positive εi is αn, for some

fixed real α > 1. Then for any p ≥ 2, the coefficient C2p2p has the

following upper bound.

C2p2p ≤

√2πnα

α+ 1

ααn 2(α+1)n

(α+ 1)(α+1)n

(α− 1)2pnp

(p + 1)p

(2p)!

(α+ 1)pp!,

where n → ∞.

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 27 / 31

Page 28: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Asymptotics of proportionally growing samples

Proposition (HS, 2020)

Let ε1, . . . , εN be Rademacher random variables, i.e. such that

P(εi = 1) = P(εi = −1) = 1/2, with condition that∑N

i=1 εi = M, withM = βN, 0 < β < 1. Then, for any integer p ≥ 2,

C2p2p ∼

√πN

2(1 − β2)

N+12

(1 + β

1 − β

) βN2 (1 − β)p(2p)!

2p

p∑

m=0

2mβ2mNm

(1 − β)m(p − m)!(2m)!

when N → ∞.

If β → 0, then

C2p2p ∼

√πN

2

(2p)!

2pp!

C2p2p ∼ e− p

N

√πN

2· (2p)!

2pp!

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 28 / 31

Page 29: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Applications

Moments =⇒ information about the tail of random variable

Possible applications:

Risk and portfolio management

Epidemiological studies

The next example is based on the article by A.B. Kashlak, S.

Myroshnychenko, S. Spektor, “Analytic permutation testing via

Kahane-Khintchine inequalities”, arXiv:2001.01130

Automatic Speech Recognition

One of the methods is a permutation test. It maps a sample of size n

onto the symmetric group with n! elements.

Disadvantages of the method:

long computation time

a conservative test – more likely to get a false negative and miss a

significant result

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 29 / 31

Page 30: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Applications

Proposed solution:

Applying Kahane-Khintchine’s type inequality, which effectively

consider the entire discrete distribution at once without the need to

simulate

Main idea:

the moment bounds from the

Kahane-Khintchine’s type

inequality directly imply bounds

on the tail probability of the test

statistic, which means

bounding the p-value for testing

for significance

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 30 / 31

Page 31: The best constant in the Khintchine inequality for ...people.math.gatech.edu/~glivshyts6/Herscovici_slides.pdf · D.J.H. Garling “Inequalities. A journey into linear analysis”

Thank you for your attention

Orli Herscovici (University of Haifa) Khintchine inequality Online AGA Seminar 31 / 31