The asymptotic safety paradigm for quantum spacetime and ......The asymptotic safety paradigm for...

66
The asymptotic safety paradigm for quantum spacetime and matter Workshop on gravitational waves, black holes and spacetime singularities Vatican Observatory May 2017 Astrid Eichhorn University of Heidelberg

Transcript of The asymptotic safety paradigm for quantum spacetime and ......The asymptotic safety paradigm for...

  • The asymptotic safety paradigm for quantum spacetime and matter

    Workshop on gravitational waves, black holes and spacetime singularities Vatican Observatory

    May 2017

    Astrid Eichhorn University of Heidelberg

  • The asymptotic safety paradigm for quantum spacetime and matter

    Workshop on gravitational waves, black holes and spacetime singularities Vatican Observatory

    May 2017

    Astrid Eichhorn University of Heidelberg

    A. Platania: Cosmic censorship in QEG

    F. Saueressig: Cosmic perturbations from Asymptotic Safety

    !

    !

  • Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics

    k

    e2HkL

  • Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics

    Fundamental description of spacetime needs QFT and QFTs of matter need gravity

    !

    k

    e2HkL

  • Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics

    !Z

    Dgµ⌫ D�StandardModeleiS[gµ⌫ ,�]goal:

  • Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics

    !Z

    Dgµ⌫ D�StandardModeleiS[gµ⌫ ,�]goal:

    quantum fluctuations) scale dependent (running) couplings

    example: Quantum Electrodynamics quantum vacuum = screening medium

    k

    e2HkL

    { 1/ke+(k)

  • Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics

    !Z

    Dgµ⌫ D�StandardModeleiS[gµ⌫ ,�]goal:

    quantum fluctuations) scale dependent (running) couplings

    { 1/ke+(k)example: Quantum Electrodynamics quantum vacuum = screening medium

    k

    e2HkL

    ) qm fluc’s of metric: scale dependent grav. coupling

  • High-energy behavior in QFTs

    CMS ‘14

    running coupling in QCD: Asymptotic freedom

    asymptotically: scale-invariance without interactions

    [Gross, Wilczek; Politzer ’73]

  • High-energy behavior in QFTs

    CMS ‘14

    running coupling in QCD: Asymptotic freedom

    asymptotically: scale-invariance without interactions

    running coupling in QED: Landau pole/triviality

    { 1/ke+(k)[Gell-Mann, Low ’54; Gockeler et al. ’97;

    Gies, Jaeckel ‘04]

    [Gross, Wilczek; Politzer ’73]

    new physics!k

    e2HkL

  • High-energy behavior in QFTs

    CMS ‘14

    running coupling in QCD: Asymptotic freedom

    asymptotically: scale-invariance without interactions

    running coupling in QED: Landau pole/triviality

    { 1/ke+(k)[Gell-Mann, Low ’54; Gockeler et al. ’97;

    Gies, Jaeckel ‘04]

    [Gross, Wilczek; Politzer ’73]

    new physics!k

    e2HkL

    & Higgs quartic coupling affected

    U(1)hyperchargein Standard Model:

  • High-energy behavior in QFTs

    CMS ‘14

    running coupling in QCD: Asymptotic freedom

    asymptotically: scale-invariance without interactions

    running coupling in QED: Landau pole/triviality

    { 1/ke+(k)new physics!

    k

    e2HkL

    [Gross, Wilczek; Politzer ’73]

    Asymptotic safety

    asymptotically: scale-invariance with interactions

    [Weinberg ’76]

    [Gell-Mann, Low ’54; Gockeler et al. ’97; Gies, Jaeckel ‘04]

    Log[k]

    G[k]

  • High-energy behavior in QFTs

    CMS ‘14

    running coupling in QCD: Asymptotic freedom

    asymptotically: scale-invariance without interactions

    running coupling in QED: Landau pole/triviality

    { 1/ke+(k)new physics!

    k

    e2HkL

    Asymptotic safety

    asymptotically: scale-invariance with interactions

    [Gell-Mann, Low ’54; Gockeler et al. ’97; Gies, Jaeckel ‘04]

    running coupling in gravity?

    Log[k]

    G[k]

    [Gross, Wilczek; Politzer ’73]

    [Weinberg ’76]

  • High-energy behavior in QFTs

    CMS ‘14

    running coupling in QCD: Asymptotic freedom

    asymptotically: scale-invariance without interactions

    running coupling in QED: Landau pole/triviality

    { 1/ke+(k)new physics!

    k

    e2HkL

    Asymptotic safety

    asymptotically: scale-invariance with interactions

    [Gell-Mann, Low ’54; Gockeler et al. ’97; Gies, Jaeckel ‘04]

    running coupling in gravity?

    Log[k]

    G[k]

    [Gross, Wilczek; Politzer ’73]

    [Weinberg ’76]

    Quantum-field theoretic description of fundamental microscopic structure

    of spacetime

    )

  • High-energy behavior in QFTs

    CMS ‘14

    running coupling in QCD: Asymptotic freedom

    asymptotically: scale-invariance without interactions

    running coupling in QED: Landau pole/triviality

    { 1/ke+(k)new physics!

    k

    e2HkL

    Asymptotic safety

    asymptotically: scale-invariance with interactions

    [Gell-Mann, Low ’54; Gockeler et al. ’97; Gies, Jaeckel ‘04]

    running coupling in gravity?

    Log[k]

    G[k]

    [Gross, Wilczek; Politzer ’73]

    [Weinberg ’76]

    qm fluc’s of gravity: sizeable for cannot probe running coupling directly (yet?)

    E ⇡ MPlanck)

  • Functional Renormalization Group - zooming in on quantum spacetime

  • Functional Renormalization Group - zooming in on quantum spacetime

    �k

    S

    contains effect of quantum fluctuations above k

    �k!0

    probe scale dependence of QFT

    UV scale-invariant regime

    classical regim

    eLog[k]

    G[k]

  • Functional Renormalization Group - zooming in on quantum spacetime

    Wetterich ’93; Morris, ‘94

    e��k[�] =

    ZD' e�S[']� 12

    R'(�p)Rk(p)'(p)

    scale- and momentum- dependent ``mass”:

    dials ``resolution scale”

    probe scale dependence of QFT

    �k

    S

    �k!0

    contains effect of quantum fluctuations above k

  • Functional Renormalization Group - zooming in on quantum spacetime

    Wetterich ’93; Morris, ‘94

    e��k[�] =

    ZD' e�S[']� 12

    R'(�p)Rk(p)'(p)

    scale- and momentum- dependent ``mass”:

    dials ``resolution scale”

    probe scale dependence of QFT

    �k

    S

    �k!0

    contains effect of quantum fluctuations above k @k�k =

    1

    2STr

    ⇣�(2)k +Rk

    ⌘�1@kRk

    Wetterich equation:

    =

  • Asymptotic safety for quantum gravity

    -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    �k = �1

    16⇡GN (k)

    Zd

    4x

    pg (R� 2�̄(k)) G(k) = GN (k)k2, �(k) = �̄(k)/k2

    Reuter, ’96; Reuter, Saueressig ‘01, Litim, ‘03

    towards IR

  • Asymptotic safety for quantum gravity

    -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    �k = �1

    16⇡GN (k)

    Zd

    4x

    pg (R� 2�̄(k)) G(k) = GN (k)k2, �(k) = �̄(k)/k2

    Log[k]

    G[k]

    Reuter, ’96; Reuter, Saueressig ‘01, Litim, ‘03

    towards IRUV scale-invariant regime

    k @kG(k) = 0

  • Asymptotic safety for quantum gravity

    -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    �k = �1

    16⇡GN (k)

    Zd

    4x

    pg (R� 2�̄(k)) G(k) = GN (k)k2, �(k) = �̄(k)/k2

    classical regime

    Log[k]

    G[k]

    GN (k) = constReuter, ’96; Reuter, Saueressig ‘01, Litim, ‘03

    towards IRUV scale-invariant regime

    k @kG(k) = 0

  • Asymptotic safety for quantum gravity

    -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    �k = �1

    16⇡GN (k)

    Zd

    4x

    pg (R� 2�̄(k)) G(k) = GN (k)k2, �(k) = �̄(k)/k2

    Reuter, ’96; Reuter, Saueressig ‘01, Litim, ‘03

    quantum fluctuations of metric generate additional terms in the microscopic dynamics

    �k = �EH

    +a

    Zd

    4x

    pgR

    2 + b

    Zd

    4x

    pgRµ⌫R

    µ⌫ + c

    Zd

    4x

    pgR⇤R+ ...

    finite number of free parameters (= predictivity) finite number of UV attractive directions A.S. predicts values of all other couplings!)

  • Asymptotic safety for quantum gravity

    -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    �k = �1

    16⇡GN (k)

    Zd

    4x

    pg (R� 2�̄(k))

    Reuter, ’96; Reuter, Saueressig ‘01, Litim, ‘03

    G(k) = GN (k)k2, �(k) = �̄(k)/k2

    R2, Rµ⌫Rµ⌫ Benedetti, Machado, Saueressig, ‘09

    C �µ⌫ C⇢�

    � Cµ⌫

    ⇢� Gies, Knorr, Lippoldt, Saueressig ‘16

    perturbative counterterms: asymptotic safety

    Christiansen, ’16, Oda, Yamada ‘17

    Reuter, Lauscher, ’02; Codello, Percacci, Rahmede, ’09; Benedetti, Caravelli, ’12; Dietz, Morris, ’12;

    Falls, Litim, Nikolakopoulos, Rahmede, ’13, ‘14 Demmel, Saueressig, Zanusso, ’15; Eichhorn ‘15

    f(R) =NX

    n=0

    anRn

    extended tests:

    ’t Hooft, Veltman ’74; Deser, Niewenhuizen ’74; Christensen, Duff ’80;

    Goroff, Sagnotti ’85, ’86; Van de Ven ‘92

  • Asymptotic safety for quantum gravity

    -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    �k = �1

    16⇡GN (k)

    Zd

    4x

    pg (R� 2�̄(k))

    Reuter, ’96; Reuter, Saueressig ‘01, Litim, ‘03

    G(k) = GN (k)k2, �(k) = �̄(k)/k2

    R2, Rµ⌫Rµ⌫ Benedetti, Machado, Saueressig, ‘09

    C �µ⌫ C⇢�

    � Cµ⌫

    ⇢� Gies, Knorr, Lippoldt, Saueressig ‘16

    perturbative counterterms: asymptotic safety

    Christiansen, ’16, Oda, Yamada ‘17

    Reuter, Lauscher, ’02; Codello, Percacci, Rahmede, ’09; Benedetti, Caravelli, ’12; Dietz, Morris, ’12;

    Falls, Litim, Nikolakopoulos, Rahmede, ’13, ‘14 Demmel, Saueressig, Zanusso, ’15; Eichhorn ‘15

    f(R) =NX

    n=0

    anRn

    extended tests:

    ’t Hooft, Veltman ’74; Deser, Niewenhuizen ’74; Christensen, Duff ’80;

    Goroff, Sagnotti ’85, ’86; Van de Ven ‘92

    compelling hints for existence of

    UV scale invariance in quantum gravity

  • Asymptotic safety for quantum gravity

    -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    �k = �1

    16⇡GN (k)

    Zd

    4x

    pg (R� 2�̄(k)) G(k) = GN (k)k2, �(k) = �̄(k)/k2

    Reuter, ’96; Reuter, Saueressig ‘01, Litim, ‘03

    quantum fluctuations of metric generate additional terms in the microscopic dynamics

    �k = �EH

    +a

    Zd

    4x

    pgR

    2 + b

    Zd

    4x

    pgRµ⌫R

    µ⌫ + c

    Zd

    4x

    pgR⇤R+ ...

    ! observational constraints ? (e.g. grav. waveforms)

    microscopic values = fixed-point values

  • Microscopic structure of spacetime: Hints for dimensional reduction to 2

  • Microscopic structure of spacetime: Hints for dimensional reduction to 2

    Probe (Eucl.) spacetime by a fictitious diffusing particle:

  • Microscopic structure of spacetime: Hints for dimensional reduction to 2

    Probe (Eucl.) spacetime by a fictitious diffusing particle:

    classically: spectral dimension from return probability�@� �r2

    �P (x, x0,�) = 0

  • Microscopic structure of spacetime: Hints for dimensional reduction to 2

    Probe (Eucl.) spacetime by a fictitious diffusing particle:

    classically: spectral dimension from return probability�@� �r2

    �P (x, x0,�) = 0

    ds = �2@lnP (x, x,�)

    @ln�= 4

  • Microscopic structure of spacetime: Hints for dimensional reduction to 2

    Probe (Eucl.) spacetime by a fictitious diffusing particle:

    classically: spectral dimension from return probability

    quantum-gravity regime: scale-invariance encoded in diffusion equation

    �@� �r2

    �P (x, x0,�) = 0

    ds = �2@lnP (x, x,�)

    @ln�= 4

    Lauscher, Reuter ’05

  • Microscopic structure of spacetime: Hints for dimensional reduction to 2

    Probe (Eucl.) spacetime by a fictitious diffusing particle:

    classically: spectral dimension from return probability

    quantum-gravity regime: scale-invariance encoded in diffusion equation

    �@� �r2

    �P (x, x0,�) = 0

    ds = �2@lnP (x, x,�)

    @ln�= 4

    �@

    p� �r2

    �P (x, x0,�) = 0

    Lauscher, Reuter ’05

    Calcagni, A.E., Saueressig, ‘13ds = 2

  • Microscopic structure of spacetime: Hints for dimensional reduction to 2

    Probe (Eucl.) spacetime by a fictitious diffusing particle:

    classically: spectral dimension from return probability

    quantum-gravity regime: scale-invariance encoded in diffusion equation

    �@� �r2

    �P (x, x0,�) = 0

    ds = �2@lnP (x, x,�)

    @ln�= 4

    �@

    p� �r2

    �P (x, x0,�) = 0

    Lauscher, Reuter ’05

    Calcagni, A.E., Saueressig, ‘13ds = 2

    dimensional reduction: common theme in quantum gravityAmbjorn, Jurkiewicz, Loll ’05; Carlip ’09; Horava ’09….

  • Microscopic structure of spacetime: Hints for dimensional reduction to 2

    Cosmic censorship in QEG

    ! talk by A. Platania

    Cosmic perturbations from Asymptotic Safety

    ! talk by F. Saueressig

  • Asymptotic safety for quantum gravity and matter

    quantum gravity dynamics matter dynamics

  • -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    Asymptotic safety for quantum gravity and matter

    quantum gravity dynamics matter dynamics

    Can quantum fluctuations of matter destroy

    consistent quantum gravity model?

  • Matter matters�G = 2G+

    G2

    6⇡(�46 +NS + 2ND � 4NV ) + ...k @kG(k) =

    quantum fluctuationscanonical scaling [G]=-2

  • Matter matters�G = 2G+

    G2

    6⇡(�46 +NS + 2ND � 4NV ) + ...k @kG(k) =

    UV#a%rac(ve+fixed+point+

    UV#repulsive+fixed+point+

    -0.4 0.4 G

    -3

    -2

    -1

    1

    2

    3bG

    canonical scaling [G]=-2

    quantum fluctuations

    asymptotic safety

  • Matter matters

    10 20 30 40 50 60 70NS

    10

    20

    30

    40

    ND

    approximation: Einstein-Hilbert & minimally coupled matter

    [Dona, AE, Percacci ’13, ‘14]

    (@ 12 NV)

    �G = 2G+G2

    6⇡(�46 +NS + 2ND � 4NV ) + ...k @kG(k) =

    scalars (Higgs)

    fermions (quarks & leptons)

    vectors (gauge bosons)

  • Matter matters

    10 20 30 40 50 60 70NS

    10

    20

    30

    40

    ND

    �G = 2G+G2

    6⇡(�46 +NS + 2ND � 4NV ) + ...k @kG(k) =

    scalars (Higgs)

    fermions (quarks & leptons)

    vectors (gauge bosons)

    approximation: Einstein-Hilbert & minimally coupled matter

    [Dona, AE, Percacci ’13, ‘14]

    Standard Model matter content compatible with asymptotically safe quantum gravity

    (@ 12 NV)

  • -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    Asymptotic safety for quantum gravity and matter

    quantum gravity dynamics matter dynamics

    Can quantum fluctuations of matter destroy

    consistent quantum gravity model?

    Can quantum fluctuations of gravity generate

    a viable UV completion for matter?

  • -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    Asymptotic safety for quantum gravity and matter

    quantum gravity dynamics matter dynamics

    Can quantum fluctuations of matter destroy

    consistent quantum gravity model?

    Can quantum fluctuations of gravity generate

    a viable UV completion for matter?

    triviality in Higgs & U(1)

    MPlanckk

    g

  • -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    Asymptotic safety for quantum gravity and matter

    quantum gravity dynamics matter dynamics

    Can quantum fluctuations of matter destroy

    consistent quantum gravity model?

    Can quantum fluctuations of gravity generate

    a viable UV completion for matter?

    MPlanckk

    g

    QG-induced asymptotic safety

    ?QG generated fixed point

    triviality in Higgs & U(1)

  • -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    Asymptotic safety for quantum gravity and matter

    quantum gravity dynamics matter dynamics

    Can quantum fluctuations of matter destroy

    consistent quantum gravity model?

    Can quantum fluctuations of gravity generate

    a viable UV completion for matter?

    MPlanckk

    g

    QG-induced asymptotic freedom

    QG-induced asymptotic safety

    QG generated fixed point

    ?

    triviality in Higgs & U(1)

  • -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    Asymptotic safety for quantum gravity and matter

    quantum gravity dynamics matter dynamics

    Can quantum fluctuations of matter destroy

    consistent quantum gravity model?

    Can quantum fluctuations of gravity generate

    a viable UV completion for matter?

    Vacuum stability and the Higgs Boson

    1. Extrapolating the SM to Very High Scales and the Higgs Potential Instability

    The main result of the first run of the LHC was the discovery of the Higgs boson, with massMH ' 126 GeV [1], which further study has shown to be compatible with the properties expectedfor a Standard Model (SM) Higgs, although there is still room for some deviation in its properties[2]. Besides this great success, no trace of physics beyond the SM (BSM) has been found, and thistypically translates into bounds on the mass scale of different BSM scenarios, supersymmetric orotherwise, of order the TeV [3]. If one is willing to hold on to the paradigm of naturalness, thehierarchy problem that afflicts the breaking of the electroweak (EW) symmetry would imply thatBSM physics should be around the corner, probably on the reach of the LHC. In this talk I take adifferent attitude: I disregard naturalness as a requisite for the physics associated to the breaking ofthe EW symmetry and I explore the possibility that the scale of new physics, L, could be as largeas the Planck scale, MPl .

    From that perspective, we have now in our hands a quantum field theory, the SM, that shouldthen describe physics in the huge range from MW to MPl . All the model parameters have beendetermined experimentally, the last of them being the Higgs quartic coupling, fixed in this modelby our knowledge of the Higgs mass. Fig. 1, left plot, shows the running of the most important SMcouplings extrapolated to very high energy scales using renormalization group (RG) techniques. Itshows the three SU(3)C ⇥ SU(2)L ⇥U(1)Y gauge couplings getting closer in the ultraviolet (UV)but failing to unify precisely. It also shows how the top Yukawa coupling gets weaker in the UV(due to as effects, see below). The Higgs quartic coupling is also shown: it starts small at the EW

    102 104 106 108 1010 1012 1014 1016 1018 1020

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    RGE scale m in GeV

    SMcouplings

    g1

    g2

    g3yt

    lyb

    102 104 106 108 1010 1012 1014 1016 1018 1020-0.04

    -0.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    RGE scale m in GeV

    Hig

    gsqu

    artic

    coup

    lingl

    3s bands inMt = 173.1 ± 0.6 GeV HgrayLa3HMZL = 0.1184 ± 0.0007HredLMh = 125.7 ± 0.3 GeV HblueL

    Mt = 171.3 GeV

    asHMZL = 0.1163asHMZL = 0.1205

    Mt = 174.9 GeV

    Figure 1: Left: Evolution of SM couplings from the EW scale to MPl. Right: Zoom on the evolution of theHiggs quartic, l (µ), for Mh = 125.7 GeV, with uncertainties in the top mass, as and Mh as indicated. (Plotstaken from [9]).

    2

    MPlanckk

    g

    Buttazzo et al. ‘13

    QG-induced asymptotic freedom

    QG-induced asymptotic safety

    match onto SM at Planck scale

    QG generated fixed point

    ?

    triviality in Higgs & U(1)

  • Asymptotically safe gravity & the Standard Model *

    * (truncated RG flow)

  • fixed point at vanishing potential[Narain, Percacci ’09; A.E. ’13; Percacci, Vacca ‘15]

    ! Higgs mass [Shaposhnikov, Wetterich ‘09 ]

    & 126GeV

    Asymptotically safe gravity & the Standard Model *

    * (truncated RG flow)

  • fixed point at vanishing potential[Narain, Percacci ’09; A.E. ’13; Percacci, Vacca ‘15]

    ! Higgs mass [Shaposhnikov, Wetterich ‘09 ]

    & 126GeV

    y⇤ = 0 only admits for restricted UV-values of grav. couplings

    !``pheno” constraint on QG[A.E., Held, Pawlowski ’16; A.E., Held ‘17]

    mtop

    = 176GeV

    Asymptotically safe gravity & the Standard Model *

    * (truncated RG flow)

  • fixed point at vanishing potential[Narain, Percacci ’09; A.E. ’13; Percacci, Vacca ‘15]

    ! Higgs mass [Shaposhnikov, Wetterich ‘09 ]

    & 126GeV

    chiral structure (light fermions) preserved[A.E., Gies ’11; Meibohm, Pawlowski ’16; A.E., Lippoldt ‘16]

    y⇤ = 0 only admits for restricted UV-values of grav. couplings

    !``pheno” constraint on QG[A.E., Held, Pawlowski ’16; A.E., Held ‘17]

    mtop

    = 176GeV

    Asymptotically safe gravity & the Standard Model *

    * (truncated RG flow)

  • fixed point at vanishing potential[Narain, Percacci ’09; A.E. ’13; Percacci, Vacca ‘15]

    ! Higgs mass [Shaposhnikov, Wetterich ‘09 ]

    & 126GeV

    asymptotically safe solution to the Landau pole/ triviality problem in U(1)?

    [Daum, Harst, Reuter ’09; Harst, Reuter ’11; Folkerts, Litim, Pawlowski ’11; Christiansen, A.E. ‘17]

    chiral structure (light fermions) preserved

    y⇤ = 0 only admits for restricted UV-values of grav. couplings

    ``pheno” constraint on QG[A.E., Held, Pawlowski ’16; A.E., Held ‘17]

    mtop

    = 176GeV

    Asymptotically safe gravity & the Standard Model *

    [A.E., Gies ’11; Meibohm, Pawlowski ’16; A.E., Lippoldt ‘16]

    * (truncated RG flow)

  • Asymptotically safe solution to the U(1) triviality problemQuantum- Gravity effects on U(1) gauge theory *:

    * (truncated RG flow)

  • Asymptotically safe solution to the U(1) triviality problemQuantum- Gravity effects on U(1) gauge theory *:

    • asymptotic freedom for the running charge [Harst, Reuter ’11; Christiansen, A.E. ‘17][Robinson, Wilczek 06; Pietrykowski ’07;

    Toms ’07, ’08, ’09, ’10,’11]

    �e = �e

    4⇡G+

    e3

    12⇡2+ ...

    -40 -20 0 20 40 60 80 1000.000

    0.002

    0.004

    0.006

    0.008

    ln[k/MPlanck]

    e[k]

    -40 -20 0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    ln[k/MPlanck]

    G[k]

    * (truncated RG flow)

  • Asymptotically safe solution to the U(1) triviality problemQuantum- Gravity effects on U(1) gauge theory *:

    • asymptotic freedom for the running charge

    • asymptotic safety for induced photon-photon interactions

    [Harst, Reuter ’11; Christiansen, A.E. ‘17]

    [Christiansen, A.E. ‘17]

    [Robinson, Wilczek 06; Pietrykowski ’07; Toms ’07, ’08, ’09, ’10,’11]

    �e = �e

    4⇡G+

    e3

    12⇡2+ ...

    -40 -20 0 20 40 60 80 1000.000

    0.002

    0.004

    0.006

    0.008

    ln[k/MPlanck]

    e[k]

    -40 -20 0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    ln[k/MPlanck]

    G[k]

    ! w2 (F 2)2

    * (truncated RG flow)

    Quantum gravity fluctuations induce

    new interactions beyond MPlanck

  • -80 -60 -40 -20 20w2

    -50

    50

    100βw2

    Asymptotically safe solution to the U(1) triviality problemQuantum- Gravity effects on U(1) gauge theory *:

    • asymptotic freedom for the running charge

    • asymptotic safety for induced photon-photon interactions

    [Harst, Reuter ’11; Christiansen, A.E. ‘17]

    [Christiansen, A.E. ‘17]

    [Robinson, Wilczek 06; Pietrykowski ’07; Toms ’07, ’08, ’09, ’10,’11]

    �e = �e

    4⇡G+

    e3

    12⇡2+ ...

    -40 -20 0 20 40 60 80 1000.000

    0.002

    0.004

    0.006

    0.008

    ln[k/MPlanck]

    e[k]

    -40 -20 0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    ln[k/MPlanck]

    G[k]

    ! w2 (F 2)2 G=0

    * (truncated RG flow)

    no photon self- interactions in the UV w/o qm gravity

  • -80 -60 -40 -20 20w2

    -50

    50

    100βw2

    Asymptotically safe solution to the U(1) triviality problemQuantum- Gravity effects on U(1) gauge theory *:

    • asymptotic freedom for the running charge

    • asymptotic safety for induced photon-photon interactions

    [Harst, Reuter ’11; Christiansen, A.E. ‘17]

    [Christiansen, A.E. ‘17]

    [Robinson, Wilczek 06; Pietrykowski ’07; Toms ’07, ’08, ’09, ’10,’11]

    �e = �e

    4⇡G+

    e3

    12⇡2+ ...

    -40 -20 0 20 40 60 80 1000.000

    0.002

    0.004

    0.006

    0.008

    ln[k/MPlanck]

    e[k]

    -40 -20 0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    ln[k/MPlanck]

    G[k]

    ! w2 (F 2)2 G=0G=1.6

    QG generates finite photon

    self-interactions (beyond MPlanck)

    * (truncated RG flow)

  • Asymptotically safe solution to the U(1) triviality problem

    • asymptotic freedom for the running charge

    • asymptotic safety for induced photon-photon interactions

    [Harst, Reuter ’11; Christiansen, A.E. ‘17]

    [Christiansen, A.E. ‘17]

    [Robinson, Wilczek 06; Pietrykowski ’07; Toms ’07, ’08, ’09, ’10,’11]

    �e = �e

    4⇡G+

    e3

    12⇡2+ ...

    -40 -20 0 20 40 60 80 1000.000

    0.002

    0.004

    0.006

    0.008

    ln[k/MPlanck]

    e[k]

    -40 -20 0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    ln[k/MPlanck]

    G[k]

    ! w2 (F 2)2-80 -60 -40 -20 20

    w2

    -50

    50

    100βw2

    G=0G=1.6

    G=2.4

    Quantum- Gravity effects on U(1) gauge theory *:* (truncated RG flow)

    QG too strong: destruction of UV completion

    for matter: divergence in

    photon interactions

  • Asymptotically safe solution to the U(1) triviality problem

    • asymptotic freedom for the running charge

    • asymptotic safety for induced photon-photon interactions

    [Harst, Reuter ’11; Christiansen, A.E. ‘17]

    [Christiansen, A.E. ‘17]

    [Robinson, Wilczek 06; Pietrykowski ’07; Toms ’07, ’08, ’09, ’10,’11]

    �e = �e

    4⇡G+

    e3

    12⇡2+ ...

    -40 -20 0 20 40 60 80 1000.000

    0.002

    0.004

    0.006

    0.008

    ln[k/MPlanck]

    e[k]

    -40 -20 0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    ln[k/MPlanck]

    G[k]

    ! w2 (F 2)2-80 -60 -40 -20 20

    w2

    -50

    50

    100βw2

    G=0G=1.6

    G=2.4

    weak-gravity bound: viable UV completion for matter only for weak QG

    [A.E. ’13; A.E., Held, Pawlowski ’16; A.E., Held ‘17]

    Quantum- Gravity effects on U(1) gauge theory *:* (truncated RG flow)

    bound satisfied in all approximations

    tested so far

  • SummaryAsymptotic safety paradigm: UV complete Quantum Field Theory of gravity and matter

    -0.1 0.0 0.1 0.2 0.3 0.4 0.5-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    l

    G

    UV scale-invariant regime

    classical regime

    Log[k]

    G[k]

    GN (k) = constReuter, ’96; Reuter, Saueressig ‘01, Litim, ‘03

  • SummaryAsymptotic safety paradigm: UV complete Quantum Field Theory of gravity and matter

    Hints for dynamical dimensional reduction in the UV ( scale invariance)$

  • SummaryAsymptotic safety paradigm: UV complete Quantum Field Theory of gravity and matter

    Matter matters for the microscopic dynamics of spacetime

    Hints for dynamical dimensional reduction in the UV ( scale invariance)$

    10 20 30 40 50 60 70NS

    10

    20

    30

    40

    ND

    [Dona, AE, Percacci ’13, ‘14]

    Standard Model matter content compatible with asymptotically safe quantum gravity

  • SummaryAsymptotic safety paradigm: UV complete Quantum Field Theory of gravity and matter

    Matter matters for the microscopic dynamics of spacetime

    Hints for dynamical dimensional reduction in the UV ( scale invariance)$

    Hints for quantum-gravity induced UV completion for the Standard Model of particle physics

  • Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics! Where should we expect new physics?

    Possible interpretation of LHC data: New physics at the Planck scale

  • Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics! Where should we expect new physics?

    Possible interpretation of LHC data: New physics at the Planck scale

    [ATLAS, CMS]

    mh ⇡ 126GeV

  • Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics! Where should we expect new physics?

    Possible interpretation of LHC data: New physics at the Planck scale

    [ATLAS, CMS]

    mh ⇡ 126GeV

    How does the Higgs mass tell us about

    the scale of new physics?

  • mh

    kRG scale 1019 GeV

    strong coupling/triviality bound175GeV

    Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics! Where should we expect new physics?

    Possible interpretation of LHC data: New physics at the Planck scale

    [ATLAS, CMS]

    mh ⇡ 126GeV

    How does the Higgs mass tell us about

    the scale of new physics?

    [Maiani, Parisi, Petronzio ’78; Cabibo, Maiani, Parisi, Petronzio ’79;

    Dashed, Neuberger ’83; Callaway ’84, Lindner ’86…]

  • mh

    kRG scale

    vacuum stability bound

    1019 GeV

    strong coupling/triviality bound175GeV⇡ 125GeV

    measured Higgs mass

    Starting point: Singularities• Incompleteness of General Relativity

    • Incompleteness of the Standard Model of particle physics! Where should we expect new physics?

    Possible interpretation of LHC data: New physics at the Planck scale

    [ATLAS, CMS]

    mh ⇡ 126GeV

    How does the Higgs mass tell us about

    the scale of new physics?

    [Maiani, Parisi, Petronzio ’78; Cabibo, Maiani, Parisi, Petronzio ’79;

    Dashed, Neuberger ’83; Callaway ’84, Lindner ’86…]

    [Krive, Linde ’76; Krasnikov ’78; Hung ’79; Politzer, Wolfram ’79;

    Linde ’80; Lindner, Sher, Zaglauer ’89;

    Ford, Jones, Stephenson, Einhorn ’93…]

    [Espinosa, Quiros ’95; Ellis, Espinosa, Giudice, Hoecker, Riotto ’09; Elias-Miro, Espinosa, Giudice, Isidori, Riotto, Strumia ’12;

    Bezrukov, Kalmykov, Kniehl, Shaposhnikov ’12…]

  • Matter matters

    �↵s = �✓11� 2

    3Nf

    ◆↵2s2⇡

    + ...

    analogy: destruction of asymptotic freedom by matter

    gluons anti-screen

    fermions screen

    ) antiscreening vacuum (asymptotic freedom) only for Nf . 16.5