TEST REPORT #7 System Drop-In Tests of R134a Alternative ......Low GWP AREP R134a W/C Screw Chiller...

27
Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP) TEST REPORT #7 System Drop-In Tests of R134a Alternative Refrigerants (ARM-42a, N- 13a, N-13b, R-1234ze(E), and Opteon TM XP10) in a 230-RT Water-Cooled Water Chiller Ken Schultz Steve Kujak Trane / Ingersoll Rand 3600 Pammel Creek Rd La Crosse, WI 54601 January 25, 2013 This report has been made available to the public as part of the author company’s participation in the AHRI’s Low-GWP AREP.

Transcript of TEST REPORT #7 System Drop-In Tests of R134a Alternative ......Low GWP AREP R134a W/C Screw Chiller...

  • Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP) TEST REPORT #7 System Drop-In Tests of R134a Alternative Refrigerants (ARM-42a, N-13a, N-13b, R-1234ze(E), and OpteonTM XP10) in a 230-RT Water-Cooled Water Chiller Ken Schultz Steve Kujak Trane / Ingersoll Rand 3600 Pammel Creek Rd La Crosse, WI 54601 January 25, 2013 This report has been made available to the public as part of the author company’s participation in the AHRI’s Low-GWP AREP.

  • List of Tested Refrigerants’ Compositions (Mass%)

    ARM-42a R-134a/R-152a/R-1234yf (7/11/82) N-13a R-134a/R-1234yf/R-1234ze(E) (42/18/40) N-13b R-134a/R-1234ze(E) (42/58) R-1234ze(E) R-1234ze(E) (100) OpteonTM XP10 R-134a/R-1234yf (44/56)

  • LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

    lastedited:19November2012page2of16

    TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

    INTRODUCTION

    Thisreportdocumentstestsrunonanominal230‐tonwater‐cooledscrewcompressor‐basedwaterchillerinTrane’sLaCrosse,Wisconsin,laboratory.Therefrigerantstestedarelistedbelow:

    name  supplier  order  begin testing end 

    testing number of runs 

    R134a (#1)  (self)  1  16‐May‐2012  23‐May‐2012  38 

    XP10  DuPont  2  29‐May‐2012  11‐Jun‐2012  24 

    N‐13a  Honeywell  3  13‐Jun‐2012  20‐Jun‐2012  34 

    N‐13b  Honeywell  4  25‐Jun‐2012  29‐Jun‐2012  33 

    R1234ze(E)  Honeywell  5  06‐Jul‐2012  13‐Jul‐2012  40 

    ARM‐42a  Arkema  6  20‐Aug‐2012  11‐Oct‐2012  67 

    R134a (#2)  (self)  7  15‐Oct‐2012  16‐Oct‐2012  13 

    R1234yf  Honeywell  8  Dec‐2012 ?     

    D4Y  Daikin  Daikincouldnotsupplyenoughrefrigerantforthechiller.TestswithR134awererepeatedattheendasacheck;performanceverycloselyduplicatedtheoriginalbaselinedataset.TestswithR1234yfwillbeconductedif/whenHoneywellcansupplythevolumeofrefrigerantneeded.DaikinwasunabletoprovidesufficientvolumeofD4Yforthetestchillerusedhere.

    TESTSETUP

    Thechillertestedhereisanominal230‐ton“RTWD”dual‐circuitwater‐cooledscrewcompressor‐basedwaterchiller.Thespecificunittestedisapre‐productionprototypebuiltfordesignverificationtestinginthelaboratory.Thechillerunderwentseveralmodificationsduringprevioustesting,includingachangetohighliftcompressors,cupronickelcondensertubes,andalternativecopperevaporatortubes.PhotosofthechillerareshowninFigure1.Thechillerconsistsoftwoindependentrefrigerantcircuits.Tominimizetheamountofrefrigerantneeded,testsherewererunwithonlyonecircuit.Thecircuitadjacenttothechilledandcoolingwaterconnectionswasused.Thesecondcircuitwaschargedwithnitrogenat5psigtominimizeheattransferbetweenthewaterpasses.Theevaporatorusesfallingfilmtechnologyinconjunctionwithafloodedpool.Thecondenserincorporatesaliquidrefrigerantsubcooler.Thecompressorrunsatfixedspeed(noAFD).Primaryinstrumentationincluded:

    Chilledwaterloopo volumeflowrate(magneticflowmeter)o inletandoutlettemperatures(dualRTD’sateachlocation)o absolutepressurescollocatedwithtemperaturemeasurementso water‐sidepressuredrop

    Coolingwaterloopo volumeflowrate(magneticflowmeter)o inletandoutlettemperature(dualRTD’sateachlocation)o absolutepressurescollocatedwithtemperaturemeasurementso water‐sidepressuredrop

    CompressorpowerinputThecollocatedtemperatureandpressuremeasurementsareusedtocomputetheinletandoutletenthalpiesofthewater.Heattransferrateiscalculatedastheproductofthewatermassflowrateandthedifferencebetweentheinletandoutletenthalpies.Thecompressor‐basedEERiscalculatedastheratioofthechilledwaterheattransferratetothecompressorpowerinput.

  • LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

    lastedited:19November2012page3of16

    TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

    Secondaryinstrumentationincludesvarioustemperatureandpressuremeasurementsalongtherefrigerantflowpath.Keymeasurementsincludethetemperatureandpressureatthecompressorsuctionanddischargealongwiththecondenserliquidleavingtemperatureandpressure.AlistofinstrumentationisincludedasAppendixA.

    METHODOFTEST

    ThemethodoftestisconsistentwithAppendixCofAHRIStandard550/590‐2011withoperatingconditionsgenerallyheldwithintightertolerances.Performanceisreportedhereasmeasured;noadjustmentsaremadeforfoulingallowance.Thecoolingcapacitiesreportedarecalculatedfromthemeasuredchilledwaterflowrateandthedifferencebetweentheenteringandleavingchilledwaterenthalpies.Theenthalpiesarecomputedfromthemeasuredwatertemperaturesandpressures(collocated).Therefore,thecapacitiesreportedherecorrespondtothe“grossrefrigeratingcapacity”definedinAHRIStandard550/590‐2011.ThermodynamicpropertiesofwaterarecomputedusingTrane’sinternalcode,whichisconsistentwiththe550/590equationstowellwithinexperimentalaccuracies.Thetestmatrixconsistedofthefollowingsteps:

    1. Refrigerantchargesweepatbaselineoperating(boundary)conditionsof:–leavingchilledwatertemperature=44°F0.1°Fd(2s)–chilledwaterflowrate=550gpm2gpm–enteringcoolingwatertemperature=85°F0.1°Fd–coolingwaterflowrate=700gpm2gpmThechargeforfurthertestingwasselectedatmaximumEER(5lbmresolution)withconsiderationgiventotherefrigerantlevelinthecondenser/subcooler.

    2. Loadlineat100%,90%,80%,70%,60%,minwith“baseline”flowrates:–leavingchilledwatertemperature=44°F0.1°Fd(2s)–chilledwaterflowrate=550gpm2gpm–enteringcoolingwatertemperature=85°F0.1°Fd–coolingwaterflowrate=700gpm2gpm

    3. Loadlineat100%,90%,80%,70%,60%,minwith“standard”flowrates:–leavingchilledwatertemperature=44°F0.1°Fd(2s)–chilledwaterflowrate=2.4gpm/ton×tons@100%×2–enteringcoolingwatertemperature=85°F0.1°Fd–coolingwaterflowrate=3.0gpm/ton×tons@100%×2

    4. Variationincoolingwaterenteringtemperaturewith–leavingchilledwatertemperature=44°F0.1°Fd(2s)–chilledwaterflowrate=510gpm2gpm–enteringcoolingwatertemperature=85°F0.1°Fd–coolingwaterflowrate=635gpm2gpm

    Notethatthewaterflowrateswerebasedonfullchillercapacity(ie,asifbothcircuitswereactive).Runningthewaterflowratesbasedonthesinglecircuitcapacitywouldresultinverylowwatervelocitiesinthetubesandpoorwater‐sideheattransfercoefficients.Inhindsight,itmighthavebeenmoreappropriatetoelevatetheenteringcoolingwatertemperatureby5°FdorsotobemoreconsistentwithAHRI550‐590standardratingconditions.Intheend,consistentconditionswereusedthatprovideafaircomparisonamongthedifferentalternativerefrigerantstested.Figure2showstheenergybalanceclosureerrorsforallofthetestpointsrun.Energybalanceerrorsweregenerallylessthan1%.Thisdemonstratesthestabilityandaccuracyoftheprimarytestmeasurements.

  • LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

    lastedited:19November2012page5of16

    TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

    alternativerefrigerantsarealllowerthanforR134a,exceptforthethirdARM‐42adataset.2TheXP10HTC’sarejustslightlylowerthanforR134a.Theshell‐sideHTC’sforR1234ze(E)wereroughly30%lowerthanforR134a.Thisappearscontrarytorecentlypublishedsingle‐tubepoolboilingdata.3TheUoEforR1234ze(E)isalsonegativelyimpactedbythereducedtubein‐sideHTCduetothereductioninchilledwaterflowratewhenoperatingwithreducedcapacityatthestandardflowrates.N‐13aandN‐13bhadverypoorevaporatorperformance.Thiscouldpossiblybeattributabletothe~1°Fdglideassociatedwiththesetwoblends.Visualobservationsindicatedthatthebundlewettingappearedtobesimilarforallrefrigerants;therewerenoobviousindicationsofunusualdry‐outorcarryoverforanyoftherefrigerants.Thereweresomevariationsinoilfoamingbehaviorinthepoolsection(eg,thebubblesizeswerelargerforR1234ze(E),indicativeofthehighervaporspecificvolume),buttheywereminoranddidnotappeartoimpactevaporatorperformance.ThebundleaverageheattransfercoefficientsforthecondenserrelativetoR134aareshowninFigure10.Relativelymildtomoderatereductionsincondensershell‐sideheatcoefficientswereobservedforR1234ze(E),XP10,N‐13a,andN13b.Curiously,theN‐13blends(with~1°Fdglide)appearedtohavesufferedagreaterdegradationinevaporatorperformancethancondenserperformance.AfterseeingverypoorcondenserheattransferperformanceduringtheinitialtestsetwithARM‐42a(#1),arefrigerantsamplewascollectedfromthechillercondenservaporspace,appearingtoindicateanon‐condensablesconcentrationof1.5%vol.4Therefrigerantchargewasreclaimedbackintotheoriginaltwocylindersandthecylindervaporspaceventeduntilthenon‐condensablesconcentrationswere0.96%voland0.78%vol.5ThechillerwasthenrechargedwithARM‐42aandthetestsetrepeated(#2).Condenserperformanceimprovedmarginally,butwasstillquitepoor.Thecondenservaporspacewasagainsampled,thistimewithanon‐condensablesconcentrationof0.9%vol.Therefrigerantwasagainreclaimedintothecylinders.Samplestakenfromcylindersshowedanon‐condensablesconcentrationof~1.5%vol.Thecylinderswereagainventeduntilthenon‐condensablesconcentrationswere0.5%voland0.7%vol.ThechillerwasthenrechargedwithARM‐42aandthetestsetrepeatedathirdtime(#3).Condenserperformanceagaindidnotchange.Arefrigerantsampleextractedfromthecondenservaporspaceshowedanon‐condensablesconcentrationofonly0.3%vol.Whenreclaimedbackintothecylinders,thenon‐condensablesconcentrationwasmeasuredtobeonly0.6%vol.Asnotedabove,curiouslyduringthethirdARM‐42atestset,theevaporatorheattransferperformanceincreasedsignificantly.Thereasonforthisisunknown.ArepeatofthebaselinewithR134a(Oct)followingtheARM‐42atestsproducedresultsveryconsistentwiththeinitialbaselinetestset(May).ThecomparisonsshownherearebasedontheoverallbetterperformanceofthethirdARM‐42adataset.Thesourceofthenon‐condensablesfoundintheARM‐42atestsisunknown.Weareconfidentinourlaboratoryprocedureswithrespecttochillerevacuationandcharging.AdditionalprecautionsweretakenduringpreparationandchargingforthethirdtestofARM‐42atoensurenointroductionofairduringtheprocess.Theisentropicefficiencyofthecompressorcanbedeterminedfromthemeasuredtemperaturesandpressuresatthecompressorsuctionanddischargealongwiththerefrigerantthermodynamicpropertiesdescriptionprovidedbytherefrigerantsuppliers.Theresultsobtainedhereforthefull‐loadcapacitypointsrunwithstandardwaterflowratesareshowninFigure11.Thecompressorperformedsimilarlyforallrefrigerants,mostrunningslightlybelowR134a(∆η~0..0.02).TheN‐13bpointinFigure11issomewhatofanoutlier;thepart‐loadpointsallfellatorbelowtherespectiveR134apoints.2Morebelow.ThefirsttwoARM‐42adatasetsproducedevaporatorHTC’sthatfellbetweenXP10andR1234ze.3EvanRooyenandJRThome,“POOLBOILINGONENHANCEDBOILINGTUBESWITHR‐134a,R‐236faANDR‐1234ze”,ECI8thInternationalConferenceonBoilingandCondensationHeatTransfer,EcolePolytechniqueFédéraledeLausanne,3‐7June2012,Lausanne,Switzerland.4Thenon‐condensablegaseselutedfromtheGCcolumnatthetimeindicativeofbeingair.5Theconcentrationsarebelowthe1.5%volupperlimittypicalofmostrefrigerantslistedinAHRIStandard700.

  • LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

    lastedited:19November2012page7of16

    TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

    considerationwillneedtobegiventodesignofthecondensercoilforair‐cooledchillerproductsusingR1234ze(E).AllofthealternatefluidssufferedtosomeextentwithregardtoheattransferperformancerelativetoR134a.ThepoorperformanceofARM‐42ainthecondenserremainspuzzlingatthispoint.Furtherstudyofbothevaporation/boilingandcondensingbehavioroftheserefrigerantsonenhancedtubesiswarranted.Theconsistencybetweencalculatedsaturationandmeasuredtemperatures,alongwithgeneralagreementamongthecompressoradiabaticefficienciesandsuctionvolumeflowrates,indicatesthattherefrigerantpropertiesdescriptionsprovidedarereasonablyaccurate.

    NOMENCLATURE

    BL “baseline”operatingconditionsasdescribedinMethodofTestsection

    CAP CapacityChrg refrigerantchargeCOP CoefficientofPerformance;seeEEREB EnergybalanceclosureerrorEER EnergyEfficiencyRatio=cooling

    capacitydividedbyelectricalpowerinputtothecompressor[Btu/W·hr]

    °Fd temperaturedifferenceinFahrenheitFC,FC’s “foulingchecks”;essentiallyrepeat

    pointstakenataspecificoperatingcondition

    HTC heattransfercoefficienthoC’, , shell‐sideheattransfercoefficientin

    thecondenserbundlehoE, , shell‐sideheattransfercoefficientin

    theevaporatorbundlePmsrd measuredpressureq"C averageheatfluxinthecondenserq"E averageheatfluxintheevaporatorQChW, heattransferratecomputedfrom

    measurementsofthechilledwaterQClW, heattransferratecomputedfrom

    measurementsofthecoolingwater

    Std “standard”operatingconditionsasdescribedinMethodofTestsection(inparticular,standardevaporatorchilledwaterflowis2.4gpm/maxtonandstandardcondensercoolingwaterflowis3.0gpm/maxton)

    ∆TappC,dTappCapproachtemperatureinthecondenser(condensersaturationleavingcoolingwatertemperature)

    ∆TappE,dTappEapproachtemperatureintheevaporator(leavingchilledwaterevaporatorsaturationtemperature)

    ∆Tsc refrigerantsubcoolingleavingthecondenser/subcooler(refrigerantsaturationtemperatureactualtemperature)

    Tmsrd measuredtemperatureTsat saturationtemperatureUoC, , overallheattransfercoefficientinthe

    condenserbundleUoE, , overallheattransfercoefficientinthe

    evaporatorbundleWcmpr, compressorpowerconsumptionx refrigerantqualityinthetwo‐phase

    regionηCmpr adiabaticefficiencyofthecompressor

  • T&Pmeasurementstationsforcoolingandchilledwaterloops.

  • notte

    sted

    notte

    sted

  • notte

    sted

    notte

    sted

    notte

    sted

    notte

    sted

  • notte

    sted

    notte

    sted

    notte

    sted

    notte

    sted

  • notte

    sted

    notte

    sted

  • Appendix A – Instrumentation List

    ID # ** Description Units Type Measurement Accuracy1 EVAP WATER FLOW GPM  SI: m³/h Rosemount Magnetic ± 0.5% of Rdg2 EVAP Unit water delta Press psid  SI: kPa∙diff Rosemount 1151 ± 0.054 PSID3 Evap unit water press ‐ ent psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA4 Evap unit water press ‐ lvg psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA5 COND WATER FLOW GPM  SI: m³/h Rosemount Magnetic ± 0.5% of Rdg6 Cond Unit Water Delta Press psid  SI: kPa∙diff Rosemount 1151 ± 0.054 PSID7 Cond Unit Water Press ‐ ent psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA8 Cond Unit Water Press ‐ lvg psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA

    100 Evap Shell Press (1) ‐ Ckt #1 psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA105 Evap Shell Press (2) ‐ Ckt #1 psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA110 Comp Suct Refrig Press ‐ Ckt #1 psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.125 PSIA115 Comp Disch Refrig Press ‐ Ckt #1 psia  SI: kPa∙abs Sensotec DS – 500 psia ± 0.25 PSIA125 Cond Top Shell Press Loc 1 ‐  Ckt # 1 psia  SI: kPa∙abs Sensotec DS – 500 psia ± 0.25 PSIA126 Cond Top Shell Press Loc 2 ‐  Ckt # 1 psia  SI: kPa∙abs Sensotec DS – 500 psia ± 0.25 PSIA130 Lvg Subcooler Refrig Press ‐ Ckt 1 psia  SI: kPa∙abs Sensotec DS – 500 psia ± 0.25 PSIA137 Ent Evap Refrig Press Ckt #1 psia  SI: kPa∙abs Sensotec DS – 250 psia ± 0.25 PSIA215 Comp Disch Temp ‐ Ckt #1 °F  SI: °C Type T TC ± 1.0 F240 Ent Evap Refrig Temp Ckt #1 °F  SI: °C Type T TC ± 1.0 F250 Comp Suct Refrig Temp Ckt #1 °F  SI: °C Type T TC ± 1.0 F251 Line Lvg Oil Separator T Ckt #1 °F  SI: °C Type T TC ± 1.0 F330 Evap RI probe Temp ‐ Loc 1 ‐ Ckt 1 °F  SI: °C Type T TC ± 1.0 F331 Evap RI probe Temp ‐ Loc 2 ‐ Ckt 1 °F  SI: °C Type T TC ± 1.0 F332 Evap RI probe Temp ‐ Loc 3 ‐ Ckt 1 °F  SI: °C Type T TC ± 1.0 F400 ENT EVAP WATER TEMP  LOC 1 °F  SI: °C 100 Ω RTD ± 0.1 F401 ENT EVAP WATER TEMP  LOC 2 °F  SI: °C 100 Ω RTD ± 0.1 F402 LVG EVAP WATER TEMP  LOC 1 °F  SI: °C 100 Ω RTD ± 0.1 F403 LVG EVAP WATER TEMP  LOC 2 °F  SI: °C 100 Ω RTD ± 0.1 F405 ENT COND WATER TEMP  LOC 1 °F  SI: °C 100 Ω RTD ± 0.1 F406 ENT COND WATER TEMP  LOC 2 °F  SI: °C 100 Ω RTD ± 0.1 F407 LVG COND WATER TEMP  LOC 1 °F  SI: °C 100 Ω RTD ± 0.1 F408 LVG COND WATER TEMP  LOC 2 °F  SI: °C 100 Ω RTD ± 0.1 F410 Evap Sat RTD ‐ Ckt #1 °F  SI: °C 100 Ω RTD ± 0.1 F417 Lvg subcooler refrigerant RTD ‐ Ckt #1 °F  SI: °C 100 Ω RTD ± 0.1 F420 Compressor VOLTAGE AB ‐ Ckt # 1 V  SI: V421 Compressor VOLTAGE AC ‐ Ckt # 1 V  SI: V422 Compressor VOLTAGE CB ‐ Ckt # 1 V  SI: V423 Compressor CURRENT A ‐ Ckt # 1 A  SI: A ~0.5% of Rdg w/ CTs424 Compressor CURRENT B ‐ Ckt # 1 A  SI: A ~0.5% of Rdg w/ CTs425 Compressor CURRENT C ‐ Ckt # 1 A  SI: A ~0.5% of Rdg w/ CTs426 Compressor Power ‐ Ckt # 1 W  SI: W ~0.5% of Rdg w/ CTs427 Compressor Power ‐ Frequency ‐ Ckt # 1 Hz  SI: Hz428 Compressor Power ‐ Power Factor ‐ Ckt # 1 None  SI: NONE480 Evap RI probe ‐ loc 1 ‐ ckt 1 %  SI: %481 Evap RI probe ‐ loc 2 ‐ ckt 1 %  SI: %482 Evap RI probe ‐ loc 3 ‐ ckt 1 %  SI: %496 Leaving Oil Separator RI Probe ‐ ckt 1 %  SI: %500 BAROMETRIC PRESS FROM METROLOGY psia  SI: kPa∙abs ± 0.0157 PSIA600 Chiller : Liquid Level Setpoint in  SI: mm N/A601 Circuit 1 : Refrigerant Liquid Level in  SI: mm N/A602 Circuit 2 : Refrigerant Liquid Level in  SI: mm N/A

  • LowGWPAREPR134aW/CScrewChillerTestSummary – FinalReportcreated:19November2012

    lastedited:19November2012page16of16

    TraneMP_Report#1_external_121119.docx Ken Schultz•ThermalSystemsGroup

    AppendixB

    DataPointsCollectedatFull‐LoadCapacityWhenRunningattheStandardOperatingConditions

    (InsertthepagesfromTraneMP_Report#1_DataForms.pdffollowingthispageinthePDF.)

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

    Manufacturer: Trane

    Basic Information

    Alternative Refrigerant XP10 DuPontAlternative Lubricant Type and ISO Viscosity POE – 68Baseline Refrigerant R134aBaseline Lubricant Type and ISO Viscosity POE – 68Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuitsNominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

    Comparison Data Base Alt. SI Units Base Alt. IP Units RatioMode (heating/cooling) coolingCompressor Type screw compressor (high lift version)Compressor Displacement m³/hr cfmNominal Motor Size kW hpMotor Speed (60 Hz) HzExpansion Device Type electronic expansion valveLubricant Charge L galRefrigerant Charge 81.6 81.6 kg 180 180 lbm 1.000Composition (at Cmpr Suct)

    6.7 6.7 °C 43.98 44.00 °F 0.021928 1927 L/min 509.3 509.2 gpm 1.000

    Flow rate (tons × 2) 5.2 5.2 L/min∙kW 2.41 2.41 gpm/ton 1.00229.5 29.5 °C 85.0 85.1 °F 0.02409 2409 L/min 636 636 gpm 1.000

    Flow rate (tons × 2) 6.5 6.5 L/min∙kW 3.01 3.01 gpm/ton 1.002Capacity 371.9 371.2 kW 105.7 105.5 tons 0.998Power to Compressor 86.0 89.6 kW 86.0 89.6 kW 1.043COP or EER (compressor only) 4.33 4.14 [] 14.76 14.13 Btu/W∙hr 0.957Refrigerant Mass Flow Rate 8,596 9,961 kg/hr 18,950 21,960 lbm/hr 1.159Refrig Flow @ Cmpr Suction 518.2 514.3 m³/hr 305.0 302.7 cfm 0.992

    Other System ChangesThe unit tested has non‐standard evaporator tubes (alternate high performance design).The unit tested has non‐standard condenser tubes (90/10 cupronickel).Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

    System Data Base Alt. RatioDegradation CoefficientSeasonal Energy Efficiency Ration – SEERHeating Seasonal Performance Factor – HSPF

    12 3.1

    Chilled Water

    Leaving TempFlow rate

    Cooling Water

    Entering TempFlow rate

    08‐Nov‐2012

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

    Type of System: RTWD wc Water Chiller Alternate Refrigerant:   XP10

    Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

    Evaporator (shell & tube)fluidflow rate 1928.0 1927.4 L/hr 509 509 gpm 1.000T entering 9.4 9.4 °C 48.9 48.9 °F 0.0°FT leaving 6.7 6.7 °C 44.0 44.0 °F 0.0°Fpressure drop 121 114 kPa 17.5 16.5 psid 0.945

    Condenser (shell & tube)fluidflow rate 2408.9 2408.5 L/hr 636 636 gpm 1.000T entering 29.5 29.5 °C 85.0 85.1 °F 0.0°FT leaving 32.2 32.3 °C 90.0 90.1 °F 0.1°Fpressure drop 140 136 kPa 20.3 19.7 psid 0.969

    Refrigerant Side T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

    Compressor (screw)suction 3.9 338 3.7 367 39.0 49.0 38.7 53.2discharge 51.2 943 47.5 1007 124.2 136.8 117.4 146.0dchrg SH | Pratio 14.0 9.5 25.2 2.79 17.15 2.75

    Condenser (shell & tube w/integral subcooler)inlet/shell 51.2 943 47.5 1,007 124.2 136.8 117.4 146.0shell dewpoint 36.4 37.0 97.6 98.6shell bubblept 36.4 37.0 97.6 98.6subcooler outlet 32.5 911 32.5 964 90.5 132.1 90.5 139.8subcooling (local) 3.5 3.8 6.2 6.8

    Expansion Device (EXV)inlet 32.5 911 32.5 964 90.5 132.1 90.5 139.8

    Evaporator (shell & tube)inlet/shell 4.3 341 4.2 370 39.7 49.5 39.5 53.7outlet/shell 4.3 341 4.2 370 39.7 49.5 39.5 53.7

    Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratiosuction line pressure drop 3.2 3.7 kPa 0.46 0.53 psid 1.16discharge line pressure drop 20 25 kPa 2.90 3.59 psid 1.24

    08‐Nov‐2012

    water

    water

    Base Alt. Base Alt.

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

    Manufacturer: Trane

    Basic Information

    Alternative Refrigerant N‐13a HoneywellAlternative Lubricant Type and ISO Viscosity POE – 68Baseline Refrigerant R134aBaseline Lubricant Type and ISO Viscosity POE – 68Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuitsNominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

    Comparison Data Base Alt. SI Units Base Alt. IP Units RatioMode (heating/cooling) coolingCompressor Type screw compressor (high lift version)Compressor Displacement m³/hr cfmNominal Motor Size kW hpMotor Speed (60 Hz) HzExpansion Device Type electronic expansion valveLubricant Charge L galRefrigerant Charge 81.6 79.4 kg 180 175 lbm 0.972Composition (at Cmpr Suct)

    6.7 6.6 °C 43.98 43.93 °F ‐0.061928 1708 L/min 509.3 451.3 gpm 0.886

    Flow rate (tons × 2) 5.2 5.2 L/min∙kW 2.41 2.41 gpm/ton 1.00129.5 29.5 °C 85.0 85.0 °F 0.02409 2138 L/min 636 565 gpm 0.887

    Flow rate (tons × 2) 6.5 6.5 L/min∙kW 3.01 3.02 gpm/ton 1.003Capacity 371.9 329.1 kW 105.7 93.6 tons 0.885Power to Compressor 86.0 79.0 kW 86.0 79.0 kW 0.919COP or EER (compressor only) 4.33 4.17 [] 14.76 14.21 Btu/W∙hr 0.963Refrigerant Mass Flow Rate 8,596 8,405 kg/hr 18,950 18,530 lbm/hr 0.978Refrig Flow @ Cmpr Suction 518.2 518.2 m³/hr 305.0 305.0 cfm 1.000

    Other System ChangesThe unit tested has non‐standard evaporator tubes (alternate high performance design).The unit tested has non‐standard condenser tubes (90/10 cupronickel).Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

    System Data Base Alt. RatioDegradation CoefficientSeasonal Energy Efficiency Ration – SEERHeating Seasonal Performance Factor – HSPF

    12 3.1

    Chilled Water

    Leaving TempFlow rate

    Cooling Water

    Entering TempFlow rate

    08‐Nov‐2012

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

    Type of System: RTWD wc Water Chiller Alternate Refrigerant:   N‐13a

    Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

    Evaporator (shell & tube)fluidflow rate 1928.0 1708.3 L/hr 509 451 gpm 0.886T entering 9.4 9.4 °C 48.9 48.8 °F ‐0.1°FT leaving 6.7 6.6 °C 44.0 43.9 °F ‐0.1°Fpressure drop 121 96 kPa 17.5 14.0 psid 0.799

    Condenser (shell & tube)fluidflow rate 2408.9 2137.7 L/hr 636 565 gpm 0.887T entering 29.5 29.5 °C 85.0 85.0 °F 0.0°FT leaving 32.2 32.2 °C 90.0 90.0 °F 0.0°Fpressure drop 140 112 kPa 20.3 16.3 psid 0.802

    Refrigerant Side T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

    Compressor (screw)suction 3.9 338 3.3 311 39.0 49.0 38.0 45.1discharge 51.2 943 48.2 893 124.2 136.8 118.7 129.5dchrg SH | Pratio 14.0 10.7 25.2 2.79 19.18 2.87

    Condenser (shell & tube w/integral subcooler)inlet/shell 51.2 943 48.2 893 124.2 136.8 118.7 129.5shell dewpoint 36.4 36.7 97.6 98.1shell bubblept 36.4 36.1 97.6 97.0subcooler outlet 32.5 911 32.6 861 90.5 132.1 90.8 124.9subcooling (local) 3.5 2.9 6.2 5.3

    Expansion Device (EXV)inlet 32.5 911 32.6 861 90.5 132.1 90.8 124.9

    Evaporator (shell & tube)inlet/shell 4.3 341 2.9 314 39.7 49.5 37.2 45.5outlet/shell 4.3 341 3.5 314 39.7 49.5 38.2 45.5

    Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratiosuction line pressure drop 3.2 3.0 kPa 0.46 0.44 psid 0.96discharge line pressure drop 20 19 kPa 2.90 2.82 psid 0.97

    08‐Nov‐2012

    water

    water

    Base Alt. Base Alt.

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

    Manufacturer: Trane

    Basic Information

    Alternative Refrigerant N‐13b HoneywellAlternative Lubricant Type and ISO Viscosity POE – 68Baseline Refrigerant R134aBaseline Lubricant Type and ISO Viscosity POE – 68Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuitsNominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

    Comparison Data Base Alt. SI Units Base Alt. IP Units RatioMode (heating/cooling) coolingCompressor Type screw compressor (high lift version)Compressor Displacement m³/hr cfmNominal Motor Size kW hpMotor Speed (60 Hz) HzExpansion Device Type electronic expansion valveLubricant Charge L galRefrigerant Charge 81.6 79.4 kg 180 175 lbm 0.972Composition (at Cmpr Suct)

    6.7 6.7 °C 43.98 43.98 °F 0.001928 1636 L/min 509.3 432.3 gpm 0.849

    Flow rate (tons × 2) 5.2 5.2 L/min∙kW 2.41 2.40 gpm/ton 0.99529.5 29.5 °C 85.0 85.1 °F 0.12409 2047 L/min 636 541 gpm 0.850

    Flow rate (tons × 2) 6.5 6.5 L/min∙kW 3.01 3.00 gpm/ton 0.996Capacity 371.9 317.2 kW 105.7 90.2 tons 0.853Power to Compressor 86.0 74.4 kW 86.0 74.4 kW 0.865COP or EER (compressor only) 4.33 4.26 [] 14.76 14.55 Btu/W∙hr 0.986Refrigerant Mass Flow Rate 8,596 7,784 kg/hr 18,950 17,160 lbm/hr 0.906Refrig Flow @ Cmpr Suction 518.2 519.0 m³/hr 305.0 305.5 cfm 1.002

    Other System ChangesThe unit tested has non‐standard evaporator tubes (alternate high performance design).The unit tested has non‐standard condenser tubes (90/10 cupronickel).Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

    System Data Base Alt. RatioDegradation CoefficientSeasonal Energy Efficiency Ration – SEERHeating Seasonal Performance Factor – HSPF

    12 3.1

    Chilled Water

    Leaving TempFlow rate

    Cooling Water

    Entering TempFlow rate

    08‐Nov‐2012

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

    Type of System: RTWD wc Water Chiller Alternate Refrigerant:   N‐13b

    Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

    Evaporator (shell & tube)fluidflow rate 1928.0 1636.2 L/hr 509 432 gpm 0.849T entering 9.4 9.4 °C 48.9 48.9 °F 0.0°FT leaving 6.7 6.7 °C 44.0 44.0 °F 0.0°Fpressure drop 121 92 kPa 17.5 13.4 psid 0.766

    Condenser (shell & tube)fluidflow rate 2408.9 2046.9 L/hr 636 541 gpm 0.850T entering 29.5 29.5 °C 85.0 85.1 °F 0.1°FT leaving 32.2 32.3 °C 90.0 90.1 °F 0.1°Fpressure drop 140 108 kPa 20.3 15.7 psid 0.774

    Refrigerant Side T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

    Compressor (screw)suction 3.9 338 3.6 290 39.0 49.0 38.5 42.0discharge 51.2 943 48.0 836 124.2 136.8 118.4 121.2dchrg SH | Pratio 14.0 10.4 25.2 2.79 18.75 2.89

    Condenser (shell & tube w/integral subcooler)inlet/shell 51.2 943 48.0 836 124.2 136.8 118.4 121.2shell dewpoint 36.4 36.7 97.6 98.1shell bubblept 36.4 36.1 97.6 96.9subcooler outlet 32.5 911 32.1 806 90.5 132.1 89.7 116.9subcooling (local) 3.5 3.5 6.2 6.3

    Expansion Device (EXV)inlet 32.5 911 32.1 806 90.5 132.1 89.7 116.9

    Evaporator (shell & tube)inlet/shell 4.3 341 3.3 292 39.7 49.5 37.9 42.4outlet/shell 4.3 341 3.8 292 39.7 49.5 38.8 42.4

    Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratiosuction line pressure drop 3.2 2.9 kPa 0.46 0.42 psid 0.92discharge line pressure drop 20 20 kPa 2.90 2.84 psid 0.98

    08‐Nov‐2012

    water

    water

    Base Alt. Base Alt.

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

    Manufacturer: Trane

    Basic Information

    Alternative Refrigerant R1234ze HoneywellAlternative Lubricant Type and ISO Viscosity POE – 68Baseline Refrigerant R134aBaseline Lubricant Type and ISO Viscosity POE – 68Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuitsNominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

    Comparison Data Base Alt. SI Units Base Alt. IP Units RatioMode (heating/cooling) coolingCompressor Type screw compressor (high lift version)Compressor Displacement m³/hr cfmNominal Motor Size kW hpMotor Speed (60 Hz) HzExpansion Device Type electronic expansion valveLubricant Charge L galRefrigerant Charge 81.6 79.4 kg 180 175 lbm 0.972Composition (at Cmpr Suct)

    6.7 6.6 °C 43.98 43.96 °F ‐0.021928 1417 L/min 509.3 374.2 gpm 0.735

    Flow rate (tons × 2) 5.2 5.1 L/min∙kW 2.41 2.37 gpm/ton 0.98529.5 29.5 °C 85.0 85.0 °F 0.02409 1774 L/min 636 469 gpm 0.736

    Flow rate (tons × 2) 6.5 6.4 L/min∙kW 3.01 2.97 gpm/ton 0.987Capacity 371.9 277.4 kW 105.7 78.9 tons 0.746Power to Compressor 86.0 63.0 kW 86.0 63.0 kW 0.733COP or EER (compressor only) 4.33 4.40 [] 14.76 15.02 Btu/W∙hr 1.017Refrigerant Mass Flow Rate 8,596 6,981 kg/hr 18,950 15,390 lbm/hr 0.812Refrig Flow @ Cmpr Suction 518.2 517.7 m³/hr 305.0 304.7 cfm 0.999

    Other System ChangesThe unit tested has non‐standard evaporator tubes (alternate high performance design).The unit tested has non‐standard condenser tubes (90/10 cupronickel).Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

    System Data Base Alt. RatioDegradation CoefficientSeasonal Energy Efficiency Ration – SEERHeating Seasonal Performance Factor – HSPF

    12 3.1

    Chilled Water

    Leaving TempFlow rate

    Cooling Water

    Entering TempFlow rate

    08‐Nov‐2012

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

    Type of System: RTWD wc Water Chiller Alternate Refrigerant:   R1234ze

    Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

    Evaporator (shell & tube)fluidflow rate 1928.0 1416.6 L/hr 509 374 gpm 0.735T entering 9.4 9.4 °C 48.9 49.0 °F 0.1°FT leaving 6.7 6.6 °C 44.0 44.0 °F 0.0°Fpressure drop 121 71 kPa 17.5 10.2 psid 0.585

    Condenser (shell & tube)fluidflow rate 2408.9 1773.7 L/hr 636 469 gpm 0.736T entering 29.5 29.5 °C 85.0 85.0 °F 0.0°FT leaving 32.2 32.3 °C 90.0 90.1 °F 0.0°Fpressure drop 140 81 kPa 20.3 11.7 psid 0.578

    Refrigerant Side T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

    Compressor (screw)suction 3.9 338 4.4 251 39.0 49.0 39.9 36.4discharge 51.2 943 44.8 694 124.2 136.8 112.7 100.6dchrg SH | Pratio 14.0 8.5 25.2 2.79 15.24 2.77

    Condenser (shell & tube w/integral subcooler)inlet/shell 51.2 943 44.8 694 124.2 136.8 112.7 100.6shell dewpoint 36.4 35.6 97.6 96.1shell bubblept 36.4 35.6 97.6 96.1subcooler outlet 32.5 911 32.4 671 90.5 132.1 90.3 97.3subcooling (local) 3.5 2.8 6.2 5.0

    Expansion Device (EXV)inlet 32.5 911 32.4 671 90.5 132.1 90.3 97.3

    Evaporator (shell & tube)inlet/shell 4.3 341 4.4 254 39.7 49.5 39.9 36.8outlet/shell 4.3 341 4.4 254 39.7 49.5 39.9 36.8

    Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratiosuction line pressure drop 3.2 2.6 kPa 0.46 0.38 psid 0.83discharge line pressure drop 20 15 kPa 2.90 2.14 psid 0.74

    08‐Nov‐2012

    water

    water

    Base Alt. Base Alt.

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 1

    Manufacturer: Trane

    Basic Information

    Alternative Refrigerant ARM‐42a ArkemaAlternative Lubricant Type and ISO Viscosity POE – 68Baseline Refrigerant R134aBaseline Lubricant Type and ISO Viscosity POE – 68Make and Model of System RTWD water‐cooled chiller (running first of two refrigerant circuitsNominal Capacity and Type of System 230 nominal tons (preproduction prototype for lab verification)

    Comparison Data Base Alt. SI Units Base Alt. IP Units RatioMode (heating/cooling) coolingCompressor Type screw compressor (high lift version)Compressor Displacement m³/hr cfmNominal Motor Size kW hpMotor Speed (60 Hz) HzExpansion Device Type electronic expansion valveLubricant Charge L galRefrigerant Charge 81.6 79.4 kg 180 175 lbm 0.972Composition (at Cmpr Suct)

    6.7 6.7 °C 43.98 43.99 °F 0.011928 1856 L/min 509.3 490.4 gpm 0.963

    Flow rate (tons × 2) 5.2 5.0 L/min∙kW 2.41 2.34 gpm/ton 0.97329.5 29.5 °C 85.0 85.0 °F 0.02409 2319 L/min 636 613 gpm 0.963

    Flow rate (tons × 2) 6.5 6.3 L/min∙kW 3.01 2.93 gpm/ton 0.973Capacity 371.9 367.9 kW 105.7 104.6 tons 0.989Power to Compressor 86.0 88.1 kW 86.0 88.1 kW 1.024COP or EER (compressor only) 4.33 4.18 [] 14.76 14.25 Btu/W∙hr 0.966Refrigerant Mass Flow Rate 8,596 9,825 kg/hr 18,950 21,660 lbm/hr 1.143Refrig Flow @ Cmpr Suction 518.2 526.1 m³/hr 305.0 309.7 cfm 1.015

    Other System ChangesThe unit tested has non‐standard evaporator tubes (alternate high performance design).The unit tested has non‐standard condenser tubes (90/10 cupronickel).Only one of two refrigerant circuits was run due to limited availability of some refrigerants.

    System Data Base Alt. RatioDegradation CoefficientSeasonal Energy Efficiency Ration – SEERHeating Seasonal Performance Factor – HSPF

    12 3.1

    Chilled Water

    Leaving TempFlow rate

    Cooling Water

    Entering TempFlow rate

    08‐Nov‐2012

  • Appendix BData Points Collected at Standard Operating Conditions

    Low GWP AREP SYSTEM DROP‐IN TEST DATA FORM page 2

    Type of System: RTWD wc Water Chiller Alternate Refrigerant:   ARM‐42a

    Water Side Data Base Alt. SI Units Base Alt. IP Units Ratio | Diff

    Evaporator (shell & tube)fluidflow rate 1928.0 1856.3 L/hr 509 490 gpm 0.963T entering 9.4 9.5 °C 48.9 49.0 °F 0.1°FT leaving 6.7 6.7 °C 44.0 44.0 °F 0.0°Fpressure drop 121 111 kPa 17.5 16.1 psid 0.919

    Condenser (shell & tube)fluidflow rate 2408.9 2318.9 L/hr 636 613 gpm 0.963T entering 29.5 29.5 °C 85.0 85.0 °F 0.0°FT leaving 32.2 32.3 °C 90.0 90.2 °F 0.2°Fpressure drop 140 130 kPa 20.3 18.9 psid 0.932

    Refrigerant Side T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

    Compressor (screw)suction 3.9 338 4.1 368 39.0 49.0 39.4 53.4discharge 51.2 943 46.5 989 124.2 136.8 115.7 143.4dchrg SH | Pratio 14.0 7.7 25.2 2.79 13.92 2.69

    Condenser (shell & tube w/integral subcooler)inlet/shell 51.2 943 46.5 989 124.2 136.8 115.7 143.4shell dewpoint 36.4 37.9 97.6 100.2shell bubblept 36.4 37.8 97.6 100.1subcooler outlet 32.5 911 32.5 948 90.5 132.1 90.4 137.5subcooling (local) 3.5 4.6 6.2 8.3

    Expansion Device (EXV)inlet 32.5 911 32.5 948 90.5 132.1 90.4 137.5

    Evaporator (shell & tube)inlet/shell 4.3 341 4.5 372 39.7 49.5 40.1 53.9outlet/shell 4.3 341 4.5 372 39.7 49.5 40.2 53.9

    Refrigerant Side Base Alt. SI Units Base Alt. IP Units Ratiosuction line pressure drop 3.2 3.6 kPa 0.46 0.53 psid 1.16discharge line pressure drop 20 22 kPa 2.90 3.24 psid 1.12

    08‐Nov‐2012

    water

    water

    Base Alt. Base Alt.

    test report coversheet-Rpt-007Low-GWP AREP-Rpt-007test report coversheet-Rpt-007Low-GWP AREP-Rpt-007_Trane