Terrestrial, Airborne and Satellite Gravimetryissge.ir/uploads/files/Taft/Hatam.pdf · - GPS...

49
Terrestrial, Airborne and Satellite Gravimetry Y. Hatam Y. Hatam

Transcript of Terrestrial, Airborne and Satellite Gravimetryissge.ir/uploads/files/Taft/Hatam.pdf · - GPS...

  • Terrestrial, Airborne and Satellite

    GravimetryY. HatamY. Hatam

  • - Terrestrial Gravimetry:

    Absolute Gravimetry: FG-5, A10

    National Absolute Gravity Network of Iran (NAGNI09)

    Relative Gravimetry: CG-3/M, CG-5,

    Multi-purpose Network (MPGGNI10),

    National Gravity Calibration line (NGCLI10)

    Damavand Gravimetry Profile

    Digital Zenith Camera (DIADEM)

    - Airborne (shipborne) Gravimetry: S124b L&R

    - Satellite Gravimetry: CHAMP, GRACE, GOCE

    New Gravimetric Geoid of Iran (IRGeoid10)

  • Spatial Resolution: Different G. Systems

    Micro-g FG-5

  • Developping Gravimeters

    (precision modification)

  • National Absolute Gravity Network of Iran

    NAGNI09

    Objectives:

    Reference four other more densed gravity networks

    (1st, 2nd , 3rd orders)

    Opportunity of studying the variations inter-annuals at two sites

    (Tehran et Alborz)

    Specifications: Station distribution 300 km

    Precision better than 5 µGal

  • Astara

    Birjand

    Chalous

    Cheshmeh-shur

    Esfahan

    Kalaleh

    Kandovan

    Kermanshah

    Lahijan

    Low shan

    Mashhad

    Tabas

    Tabriz

    Teheran Abali

    Yazd

    35° N

    40° N

    2000

    2500

    3000

    3500

    m

    Distribution of Absolute Gravity stations (NAGNI09)

    Topogrphical Map

    of Iran

    Ahvaz

    Bandar Abbas

    Bushehr

    Chabahar

    Kerman

    Laar

    Shiraz

    Yazd

    Zahedan

    45 ° E 50° E 55° E 60

    ° E

    25° N

    30° N

    0

    500

    1000

    1500To transfer FG-5

    24 Measuring Stations

    Approximately 40 Measurements

  • Measuring Absolute Gravity by FG-5

    Measuring the couples ’’position - time’’ of an object in free-fall

    Calculating the acceleration of the object =>

    Gravity

    FG5 228

    2 23 40 0 0

    0 0 0 0

    ( )1 1, .

    2 2 6 24

    i i ii i i i i

    g t x t x xx x v t v t g t t t

    c

    γγ γ

    −= + + + + + = −

    % %% % % %

  • Measurement procedure

    One fall

    -5

    0

    5

    10

    15

    20Cumulative Mean: 979095237.12 µGal +/- 0.71 µGal

    µG

    al

    One hourly Measurement:

    120 Falling of the object

    Dispersion: 5.56 µGal

    -20

    -15

    -10

    15:00Sat 7 Oct 2006

    18:00 21:00 Sun 8 3:00Time

    16 hours of measurements

    ⇒16 * 120 fallings

    Final Dispersion: 0.71 µGal

  • 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 250

    1

    2

    3

    4

    5

    Station Number of Absolute Gravity points

    Set

    Scatt

    er(

    µG

    al)

    a)

    Precision of the Absolute G. Network NAGNI09

    Uncertainty of the

    measurement

    Noise of

    the wavesSite in

    altitude

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 254.25

    4.3

    4.35

    4.4

    4.45

    4.5

    Station Number of Absolute Gravity points

    Tota

    l U

    ncert

    ain

    ty(µ

    Gal)

    b)

    Total Uncertainty

    Systematical

    Error

    Set up ErrorMeasurement and Total

    Uncertainties of the

    NAGNI09 network

  • Interannual variation of the Gravity in Iran: at

    Tehran (NCC)

    NCC

    Significant Inter-annual

    Decreasing of absolute gravity

    Regional Hydrological Component (GLDAS et ECMWF, cf. J. P. Boy)

    Inter-annual Decreasing : -0.4 µGal/anGPS height variation

    Decreasing not explained by GPS or

    Regional hydrological Models

  • Inter-annual Variations of the gravity in Iran

    Tehran (NCC)

    Estimated Porosity by the gravity measurements: between 2 and

    12 %

    Estimated Porosity by the pomping: App. 10 % (Engalenc, 1968)

    Good Correlation with the height of water

    level of the wellsPlate Effect / porosity

  • Inter-annual Variations of the gravity in Iran

    Abali (Alborz Chain)

    Decreasing -0.76 ±±±±0.30 µGal/an

    ABALI

    Regional Hydrological Variations

    0.28 à -0.35 µGal/an (GLDAS et ECMWF)

    Decreasing not

    explained by Regional

    hydrological Models

  • Residual Slopes:

    -0.99 ±31 µGal/an (GLDAS)-0.30 ±38 µGal/an (ECMWF)� Vertical Movement

    � With tectonic origin

    Inter-annual Variations of the gravity in Iran

    Abali (Alborz Chain)

    Vertical Speed:

    The continental lithosphere

    ���� Elastic Plate

    ECMWF: between 1 ±1.26 mm/an and 1.6 ±2.00 mm/an

    GLDAS: between 3.3 ±1.03 mm/an and 5.2 ± 1.63 mm/an

  • Multi-purpose Physical Geodesy and Geodynamic

    Network of Iran (2005-8) (MPGGNI10)

    Objectives

    – Densification of the absolute gravity network (0 order) by the 1-st

    order gravity network

    calculating locally the geoidal undulation

    Specifications:Specifications:

    - Measuring relative gravities each 55 km, with a precision of the order

    of 10 µGal

    - GPS geodetic height determination with a precision of the order of 1-3

    cm

    - Precise levelling Height determination with a precision of the order of

    Opportunity

    – Study of the Geodynamics and Crustal structure of Iran

  • 30° N

    35° N

    40° N

    Region of study

    Old g in land

    g at 1 st levelling

    g at Sea

    data5

    data6

    Land boundary

    Sea boundary

    Pre-existed gravimetric measurements

    45 ° E 50° E 55

    ° E 60

    ° E

    25° N

    Distribution of the pre-existed gravities BGI)

    • Land gravity (Green Points)

    • At Levelling BMs (Yellow points)

    • Sea gravity (red points)

    Complete Bouguer Anomaly map (1984)

    Completed based on 10 000 gravity data

    (Green points)

    Not enough measurements for calculation of a

    precise geoid

  • Multi-purpose Network ’’MPGGNI10’’• 600 sites

    • 1600 gravimetric

    observations

    • 1600 working days at

    field by 6 gravimètres

  • Relative Gravimetry ( ) ( )j jij i it St

    f S S S j i j iC m m V g g D t t− + = − + −

  • Ahvaz

    Astara

    Birjand

    Bushehr

    Chalous

    Cheshmeh-shur

    Esfahan

    Kalaleh

    Kandovan

    Kerman

    Kermanshah

    Lahijan

    Low shan

    Mashhad

    Shiraz

    Tabas

    Tabriz

    Teheran Abali

    Yazd

    Zahedan

    30° N

    35° N

    40° N

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    m

    Astara

    Chalous

    Kandovan

    Lahijan

    Low shan

    Teheran-NCCAbali

    Tochal1Tochal2

    Tochal5Tochal7

    Caspian Sea

    36° N

    37° N

    38° N

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    m

    National Gravity Calibration Lines of Iran

    Bandar Abbas

    Chabahar

    Laar

    45 ° E 50° E 55

    ° E 60

    ° E

    25° N

    0

    500

    1000Cheshmeh-shur

    48° E 49

    ° E 50

    ° E 51

    ° E 52

    ° E 53

    ° E

    35° N

    0

    500

    1000

    Old Line

    851 mGal

    New Line

    1154 mGal

  • Profile of Damavand gravimetry

    6- Damavand Summit St.

    5610 m

    5- Permanent icefall St.

    5100 m

    4- Climbing house St.4- Climbing house St.

    4200 m

    3- Goosfandsara St.

    3000 m

    2- Iraa St.

    1700 m

    1- ABALI Absolute Gravity st.

    3160 m

    Polour Permanent GPS Station

    2280 m ■

  • Objectives of Damavand gravimetry

    - To obtain minimum gravity value in Alborz mountain

    - To extend and modify national gravity calibration line

    - To modify the gravity prediction models

    - To study the isostasy situation of the highest mountain of Iran

    - To modify and control the existed numerical density models- To modify and control the existed numerical density models

    - To modify the quality of Geoid

    - To establish the control points for the future airborne gravimetry

    - To study the geodynamical phenomena (Earthquake, Volcano, …)

    - To obtain the correct elevation value of Damavand Summit

    ( Before= 5671 m , Now= ?)

  • Damavand Gravimetry Profile + NGCLI10

    979,400

    979,500

    979,600

    979,700

    979,800

    979,900

    980,000

    980,100

    980,200Damavand Summit Gravimetry and Extending the new National Gravity Calibration Line of Iran (TC/L NGCLI2005)

    All

    Gra

    vit

    y V

    alu

    es

    in

    Ira

    n (

    mG

    al)

    Gravity Values (Blue)

    Gravity Station (Red)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16978,200

    978,300

    978,400

    978,500

    978,600

    978,700

    978,800

    978,900

    979,000

    979,100

    979,200

    979,300

    Damavand Abshar PanahGah Gosfand Ira Abali TochalS Tochal7 Tochal5 Tochal2 Tochal1 NCC Lowshan Lahijan Astara

    Summit Yakhi Sara

    All

    Gra

    vit

    y V

    alu

    es

    in

    Ira

    n (

    mG

    al)

  • Misclosure Errors of the triangular gravity loops

    Error < 50 µµµµGal

  • 40

    60

    80

    100

    120

    40

    60

    80

    100

    120

    Uncertainties of the relative gravity measurements

    and of the gravity values

    -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.040

    20

    mGal0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.0220

    20

    mGal

    Histogram of the residuals of the relativegravity measurements

    Histogram of the precisions of the gravities

    Errors at measurements and at gravity of

    the MPGGNI10, of the order of 10 µµµµgal

  • Permanent GPS Network + IGS

    Precision for the GPS height : 1 cm

    National GPS and Precise Levelling Networks

    1st order

    2nd order

    Precision for the GPS height : 1 cm

    GPS Measurements at 55 km Network (duration 24h)

    Precision for the GPS height GPS: 1-3 cm (treated GAMIT)

    National Precise Levelling Networks

    Precision of the levelling: 3mm km

  • Transportable Zenith Cameras

    (TZK1 , TZK2 , TZK3)

    1976, 2000, 1986

  • Digital

    Zenith

    Camera

    TZK2-D

    (DIADEM)

    20062006

  • Airborne

    Gravimetry

    (Shipborne G.)

  • GRACE (Gravity Recovery and Climate Experiment)

    16 Mars 2002 – for 5 years NASA + DLR

    2 Satellite, 200 km distance,

    Polar orbit: 480 km

    Precision N: 1 cm for 300-400 km, Monthly N

    CHAMP (CHAllenging Minisatellite Payloadfor geoscience and application)

    15 July 2000

    Polar orbit

    Altitude: 400 km

    Constantly positioned by GPS

    Perturbation analyses:

    Precision N: 10 cm for wavelength 485 km

    CHAMP

    Precision N: 1 cm for 300-400 km, Monthly N

    1-st Model: GGM02S, Deg. 160, Resolutin:

    125 km (Tapley et al., 2005)

    GRACE

    GOCE

    GOCE (Gravity field and steady state Ocean Circulation Explorer mission) ---- 17 Mars 2009 (ESA)

    Orbit heliosyncronizd, Altitude: 250 km

    Measure Accelerations by 6 accelerometers, 50 cm apart,

    Tensor of the gradients (9 elements) and 6 are independent

    Precision: 1 cm for wavelength 100 km

  • Geoid computation

    Objective :

    Calculation of a new gravimetric geoid model with high

    precision - resolution

    Method:

    Remove - restore + Helmert Condensation

    1-D FFT (Haagmans, 1993)

  • Reference surfaces and heights

    N=R

    4πγ∆gS(ψ)dσ

    σ∫∫

    N(Geoid) = h(ellipsoidal) – H(orthometric)

    Earth Surface

    Geoid

    Ellipsoid

    Ellipsoidal height

    Geoidal Height

    Orthometric Height

  • SRTM topographical Data over Iran

    Distribution of gravity data over Iran

  • Free air Anomaly

    ∆gFGeopotential Model

    ∆gGGMDTM

    ∆gRTM

    ∆gres = ∆gF - ∆gGGM - ∆gRTMAtpoin

    ts

    Gravimetric Geoid Computation by remove-restore + Helmert C.

    Interpolation

    N = Nres + NGGM + NI

    ∆ggeoidres NresStokes

    At

    gri

    d

  • Free air Anomaly

    ∆gFGeopotential Model

    ∆gGGMDTM

    ∆gRTM

    ∆gres = ∆gF - ∆gGGM - ∆gRTMAtpoin

    ts

    Gravimetric Geoid Computation by remove-restore + Helmert C.

    Interpolation

    N = Nres + NGGM + NI

    ∆ggeoidres NresStokes

    At

    gri

    d

  • Free air Anomaly

    ∆gF

  • Gravimetric Geoid Computation by remove-restore + Helmert C.

    Free air Anomaly

    ∆gFGeopotential Model

    ∆gGGMDTM

    ∆gRTM

    ∆gres = ∆gF - ∆gGGM - ∆gRTMAtpoin

    ts

    Interpolation

    N = Nres + NGGM + NI

    ∆ggeoidres NresStokes

    At

    gri

    d

  • Statistics of different Global Geopotential Models (GGMs)

    At the points GPS / nivelés

    Geopotential Model

    ∆gGGM

  • Geopotential Model

    ∆gGGM

    Calculated by using the model GOCO01SEGM08(360)

  • Free air Anomaly

    ∆gFGeopotential Model

    ∆gGGMDTM

    ∆gRTM

    ∆gres = ∆gF - ∆gGGM - ∆gRTMAtpoin

    ts

    Gravimetric Geoid Computation by remove-restore + Helmert C.

    Interpolation

    N = Nres + NGGM + NI

    ∆ggeoidres NresStokes

    At

    gri

    d

  • 45 ° E ° 25° N

    30° N

    35° N

    40° N

    -100

    -50

    0

    50

    100

    150

    mGal

    40° N

    35

    mGal

    DTM

    ∆gRTM

    45 ° E 50° E 55° E 60

    ° E

    25 N -100

    45 ° E 50° E 55° E 60

    ° E

    25° N

    30° N

    35° N

    0

    5

    10

    15

    20

    25

    30

    The principal term of the

    Residual Terrain Model RTM

    Terrain Correction TC

    ∆∆∆∆gRTM = 2ΠΠΠΠkρρρρ(h - href) - TC

  • Free air Anomaly

    ∆gFGeopotential Model

    ∆gGGMDTM

    ∆gRTM

    ∆gres = ∆gF - ∆gGGM - ∆gRTMAtpoin

    ts

    Gravimetric Geoid Computation by remove-restore + Helmert C.

    Interpolation

    N = Nres + NGGM + NI

    ∆ggeoidres NresStokes

    At

    gri

    d

  • 35° N

    40° N

    20

    40

    60

    80

    100

    mGal

    ∆gres = ∆gF - ∆gGGM - ∆gRTM

    45 ° E 50° E 55° E 60

    ° E

    25° N

    30° N

    -100

    -80

    -60

    -40

    -20

    0

    Map of the residual free-air gravity anomaly

  • Free air Anomaly

    ∆gFGeopotential Model

    ∆gGGMDTM

    ∆gRTM

    ∆gres = ∆gF - ∆gGGM - ∆gRTMAtpoin

    ts

    Gravimetric Geoid Computation by remove-restore + Helmert C.

    Interpolation

    N = Nres + NGGM + NI

    ∆ggeoidres NresStokes

    At

    gri

    d

  • 35° N

    40° N

    50

    100

    150

    200

    250mGal

    ∆ggeoidres

    45° E 50° E 55° E 60

    ° E

    25° N

    30° N

    -150

    -100

    -50

    0

    Residual free-air gravity anomaly at geoid surface

  • Free air Anomaly

    ∆gFGeopotential Model

    ∆gGGMDTM

    ∆gRTM

    ∆gres = ∆gF - ∆gGGM - ∆gRTMAtpoin

    ts

    Gravimetric Geoid Computation by remove-restore + Helmert C.

    Interpolation

    N = Nres + NGGM + NI

    ∆ggeoidres NresStokes

    At

    gri

    d

  • 35° N

    40° N

    -0.5

    0

    0.5

    1

    1.5

    m

    Nres

    45° E 50° E 55° E 60° E

    25° N

    30° N

    -2

    -1.5

    -1

    -0.5

    Residual Geoid undulation

  • Free air Anomaly

    ∆gFGeopotential Model

    ∆gGGMDTM

    ∆gRTM

    ∆gres = ∆gF - ∆gGGM - ∆gRTMAtpoin

    ts

    Gravimetric Geoid Computation by remove-restore + Helmert C.

    Interpolation

    N = Nres + NGGM + NI

    ∆ggeoidres NresStokes

    At

    gri

    d

  • -35

    -33-31-2

    9

    -27

    -25-23

    -21 -21

    -21

    -19

    -19-19

    -17

    -17

    -17

    -15

    -15

    -13

    -13

    -11

    -11

    -9

    -7

    -7

    -5

    -3

    -3-1

    1

    1

    3

    3

    5

    5

    5

    7

    7

    7

    9

    9

    11

    11

    13

    13

    15

    15

    17

    19

    2123

    35° N

    40° N

    0

    10

    20m

    The new Gravimetric

    Geoid Mode

    IRGeoid10

    Precision

    • Absolute : 0.26 m

    N = Nres + NGGM + NI

    -33

    -33

    -31-3

    1

    -29

    -29

    -29

    -27

    -27

    -27

    -27

    -25

    -25-23

    -23 -23

    -23

    -21

    -21

    -21

    -21

    -21

    -21

    -19

    -19

    -19

    -19

    -17

    -17

    -17

    -17

    -15

    -15

    -15

    -15

    -13

    -13

    -13

    -13

    -13

    -11

    -11

    -11

    -11

    -9

    -9

    -9

    -9

    -7-7

    -7

    -7

    -7

    -5-5

    -5

    -5

    -5

    -3

    -3

    -3

    -3

    -1-1

    -1 1

    1

    3

    3 5

    5

    9

    45 ° E 50° E 55° E 60

    ° E

    25° N

    30° N

    35 N

    -30

    -20

    -10

    0• Absolute : 0.26 m

    • Relative : 2.8 ppm

  • Gravimetric Geoids SD ou RMS (m) Nomber of

    GPS/Lev. points

    IRGeoid88 (Weber and Zomorrodian, 1988)

    IRGeoid01 (Ardalan et al, 2001)

    1.40 (RMS)

    1.26 (RMS)

    ----

    258

    Precision of the gravimetric geoids

    Comparison of the models at GPS/Levelling points

    IRGeoid01 (Ardalan et al, 2001)

    IRGeoid05a (Safari et al, )

    IRGeoid05b (Nahavandchi et Soltanpour, 2005)

    IRGeoid06 (Kiamehr, 2006)

    IRGeoid10 (Hatam et al, 2010)

    1.26 (RMS)

    1.068 (SD)

    0.672 (SD)

    0.58 (RMS)

    0.26 (SD)

    258

    51

    200

    260

    819

  • Thank you for your attention