Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2,...

26
Terrain and drift influences on snow surface aerodynamics A. Clifton 1 , K. C. Leonard 1 , C. Manes 2 , M. Lehning 1 . 1. SLF Davos, Switzerland 2. Politecnico di Torino, Turin, Italy AGU Fall Meeting 2010 C11C-02
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    217
  • download

    0

Transcript of Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2,...

Page 1: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Terrain and drift influences on snow surface aerodynamics

A. Clifton1, K. C. Leonard1, C. Manes2, M. Lehning1.

1. SLF Davos, Switzerland2. Politecnico di Torino, Turin, Italy

AGU Fall Meeting 2010C11C-02

Page 2: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Surface aerodynamics

• Interaction of boundary layer and surface

• Log law framework– Friction velocity (m/s)– Roughness length (m)

0.5 1 1.5 2 2.5 3 3.5 4 4.50

0.5

1

1.5

2

2.5

0.3 m/s, 1 mmIncreased friction velocity (0.5 m/s)Increased roughness (10 mm)Both increase (0.5 m/s, 10 mm)

Speed [m/s]

Z [m]

Page 3: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Relevant processes

Anything that alters momentum transfer• Drift• Crystal structure• Snow metamorphosis• Surface forms• Local terrain

Page 4: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Wind tunnel measurements

Page 5: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Wind tunnel measurements

Page 6: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Wind tunnel measurements

Clifton, A., Rüedi, J.-D., Lehning, M. (2006).Snow saltation threshold measurements in a drifting snow wind tunnel.J. Glaciol., 52(179), 585-596. DOI: 10.3189/172756506781828430

Page 7: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Alpine test site measurements

• Fluxes of momentum, heat and water vapour– Sonic anemometer and

fast hygrometer– Concurrent surface

observations– 3 months of

observations– 5m measurement height

Stössel, F., M. Guala, C. Fierz, C. Manes, and M. Lehning (2010)Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover.Water Resour. Res., 46, W04511. DOI: 10.1029/2009WR008198.

Page 8: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Alpine test site measurements

• Fluxes of momentum, heat and water vapour– Sonic anemometer and

fast hygrometer– Concurrent surface

observations– 3 months of

observations– 5m measurement height

Davos 3 km

Stössel, F., M. Guala, C. Fierz, C. Manes, and M. Lehning (2010).Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover.Water Resour. Res., 46, W04511. DOI: 10.1029/2009WR008198.

Page 9: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Alpine test site measurements

• Fluxes of momentum, heat and water vapour– Sonic anemometer and

fast hygrometer– Concurrent surface

observations– 3 months of

observations– 5m measurement height

Davos 3 km

Stössel, F., M. Guala, C. Fierz, C. Manes, and M. Lehning (2010).Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover.Water Resour. Res., 46, W04511. DOI: 10.1029/2009WR008198.

Page 10: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Williams Field, Antarctica

Page 11: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Williams Field, Antarctica

Commercial widget counter

York U. particle counter(P. Taylor)

Page 12: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Williams Field, AntarcticaWillie Field AWSAntarctic Automatic Weather Station Program AMRC, SSEC, UW-Madison

Page 13: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Williams Field, Antarctica

Page 14: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Role of snow structure

Clifton, A., C. Manes, J.-D. Ruedi, M. Guala, and M. Lehning (2008)On shear-driven ventilation of snow. Boundary-Layer Meteorol., 126, 249-261.

DOI: 10.1007/s10546-007-9235-0.

Images courtesy M. Schneebeli, SLF

1 mm

New snow Polyester foam

Page 15: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Results

Wind tunnel, without drift

Page 16: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Results

Hydraulically smooth wall

Wind tunnel (no drift)

Page 17: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Results

Wind tunnel, sustained drift

Wind tunnel (no drift)

Smooth wall

Page 18: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Results

Drifting sand, soil, waves over open water (Owen, 1960)

Wind tunnel (no drift)

Smooth wall

Wind tunnel (drift)

Page 19: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Results

William Field, without drift

Wind tunnel (no drift)

Smooth wall

Wind tunnel (drift)

Drifting sandand soil

Page 20: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Results

Williams Field, with sustained drift(neutral conditions only)

Wind tunnel (no drift)

Smooth wall

Wind tunnel (drift)

Drifting sandand soil

Williams Field(no drift)

Page 21: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Results

Alpine test site, all data(neutral conditions & NW flows only)

Wind tunnel (no drift)

Smooth wall

Wind tunnel (drift)

Drifting sandand soil

Williams Field(no drift)

Williams Field (drift)

Page 22: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Results

Revised Davenport ClassificationDavenport (2000)

Wind tunnel (no drift)

Smooth wall

Wind tunnel (drift)

Drifting sandand soil

Williams Field(no drift)

Williams Field (drift)

Alpine Site(all data)

Page 23: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

ResultsDavenport

Classification

Wind tunnel (no drift)

Smooth wall

Wind tunnel (drift)

Drifting sandand soil

Williams Field(no drift)

Williams Field (drift)

Alpine Site(all data)

Page 24: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Conclusions

• Log law is a useful analogy near the ground

Page 25: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Conclusions

• Log law is a useful analogy near the ground• Roughness length of ‘snow’ is a function of– Friction velocity– Drift rates (increase or decrease)– Surface features (increase)– Fetch (increase)

Page 26: Terrain and drift influences on snow surface aerodynamics A. Clifton 1, K. C. Leonard 1, C. Manes 2, M. Lehning 1. 1.SLF Davos, Switzerland 2.Politecnico.

Conclusions

• Log law is a useful analogy near the ground• Roughness length of ‘snow’ is a function of– Friction velocity– Drift rates (increase or decrease)– Surface features (increase)– Fetch (increase)

• Next steps– Wind and drift profiles coupled with surface

characterization