Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional...

32
Tempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June 2014 Mark M. Meerschaert Department of Statistics and Probability Michigan State University [email protected] http://www.stt.msu.edu/users/mcubed

Transcript of Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional...

Page 1: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered Fractional Calculus

2014 International Conference on

Fractional Differentiation and Its Applications

University of Catania, Italy

23–25 June 2014

Mark M. Meerschaert

Department of Statistics and Probability

Michigan State University

[email protected]

http://www.stt.msu.edu/users/mcubed

Page 2: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Abstract

Fractional derivatives and integrals are convolutions with a powerlaw. Including an exponential term leads to tempered fractionalderivatives and integrals. Tempered fractional Brownian motion,the tempered fractional integral or derivative of a Brownian mo-tion, is a new stochastic process whose increments can exhibitsemi-long range dependence. A tempered Grunwald-Letnikovformula provides the basis for finite difference methods to solvetempered fractional diffusion equations. The tempered finitedifference operator is also useful in time series analysis, whereit provides a useful new stochastic model for turbulent velocitydata. Tempered stable processes are the limits of random walkmodels, where the power law probability of long jumps is tem-pered by an exponential factor. These random walks convergeto tempered stable stochastic process limits, whose probabilitydensities solve tempered fractional diffusion equations. Tem-pered power law waiting times lead to tempered fractional timederivatives. Applications include geophysics and finance.

Page 3: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Acknowledgments

Farzad Sabzikar, Statistics and Probability, Michigan State

Inmaculada Aban, Biostatistics, Univ Alabama Birmingham

Boris Baeumer, Maths & Stats, University of Otago, New Zealand

Jinghua Chen, School of Sciences, Jimei University, China

Peter Franz Kern, Math, Universitat Dusseldorf, Germany

Anna K. Panorska, Mathematics and Statistics, U of Nevada

M.S. Phanikumar, Civil & Environ. Eng., Michigan State

Parthanil Roy, Indian Statistical Institute, Kolkata

Hans-Peter Scheffler, Math, Universitat Siegen, Germany

Qin Shao, Mathematics, University of Toledo, Ohio

Alla Sikorskii, Statistics and Probability, Michigan State

Aklilu Zeleke, Lyman Briggs School, Michigan State

Yong Zhang, Department of Geological Sciences, U Alabama

Page 4: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Recent Books

Stochastic Models for Fractional Calculus

Mark M. Meerschaert and Alla Sikorskii

De Gruyter Studies in Mathematics 43, 2012

Advanced graduate textbook

ISBN 978-3-11-025869-1

Mathematical Modeling, 4th Edition

Mark M. Meerschaert

Academic Press, Elsevier, 2013

Advanced undergraduate / beginning graduate textbook

(new sections on particle tracking and anomalous diffusion)

ISBN 978-0-12-386912-8

Page 5: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Fourier transform definition

Define the Fourier transform f(k) =∫ ∞

−∞e−ikxf(x) dx.

Positive fractional derivatives and integrals of order α > 0 satisfy

Dαxf(x) ⇐⇒ (ik)αf(k) and I

αxf(x) ⇐⇒ (ik)−αf(k)

Negative fractional derivatives and integrals of order α > 0 satisfy

Dα−xf(x) ⇐⇒ (−ik)αf(k) and I

α−xf(x) ⇐⇒ (−ik)−αf(k)

Tempered fractional derivatives with α, λ > 0 satisfy

Dα,λx f(x) ⇐⇒ (λ+ ik)αf(k) and I

α,λx f(x) ⇐⇒ (λ+ ik)−αf(k)

Dα,λ−x f(x) ⇐⇒ (λ− ik)αf(k) and I

α,λ−x f(x) ⇐⇒ (λ− ik)−αf(k)

Note the Fourier symbol (λ± ik)−α no longer blows up at k = 0.

Page 6: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Riemann-Liouville definition

Tempered fractional integrals can also be defined by

Iα,λx f(x) =

1

Γ(α)

∫ x

−∞f(u)(x− u)α−1e−λ(x−u)du

Iα,λ−x f(x) =

1

Γ(α)

∫ ∞

xf(u)(u− x)α−1e−λ(u−x)du

for any α, λ > 0. For λ = 0, these are Riemann-Liouville frac-

tional integrals.

For 0 < α < 1 and λ > 0 we also have

Dα,λx f(x) = λαf(x) +

α

Γ(1− α)

∫ x

−∞

f(x)− f(u)

(x− u)α+1e−λ(x−u)du

Dα,λ−x f(x) = λαf(x) +

α

Γ(1− α)

∫ +∞

x

f(x)− f(u)

(u− x)α+1e−λ(u−x)du

For λ = 0, these are Marchaud fractional derivatives.

Page 7: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Grunwald-Letnikov definition

For λ > 0 and 0 < α < 1 we have

limh→0

h−α∆α,λh f(x) = D

α,λx f(x)

where the tempered fractional difference

∆α,λh f(x) =

∞∑

j=0

(

αj

)

(−1)je−λjhf(x− jh)− (1− e−λh)αf(x).

using the fractional binomial coefficients(

αj

)

=Γ(α+1)

j!Γ(α− j +1)

Can use to construct finite difference codes [special session].

These codes are mass-preserving since (by the Binomial formula)

∞∑

j=0

(

αj

)

(−1)je−λjh = (1− e−λh)α

Page 8: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered fractional Brownian motion

Yaglom noise is defined by

Yα,λ(t) =∫ t

−∞(t− u)−αe−λ(t−u) W (u) du = I

1−α,λt W (t)

where W (u) is a white noise.

Tempered fractional Brownian motion (TFBM) is defined by

Bα,λ(t) = Yα,λ(t)− Yα,λ(0)

=∫ ∞

−∞

[

e−λ(t−u)+(t− u)−α+ − e−λ(0−u)+(0− u)−α

+

]

W (u) du

where (x)+ = x for x > 0 and (x)+ = 0 for x ≤ 0.

When λ = 0, Yaglom noise is undefined, and TFBM = FBM.

Page 9: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

FBM and tempered FBM

FBM (thin line) and TFBM (thick line) with same W (u) for

H = 0.3, λ = 0.03 (left) and H = 0.7, λ = 0.01 (right).

0 100 200 300 400 500

−5

05

10

t

X(t

)

0 100 200 300 400 500

−20

010

20t

X(t

)

Sample paths are Holder continuous of order H = 1/2− α.

Scaling: Bα,λ(ct)d= cHBα,cλ(t) .

Page 10: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered fractional time series

The ARMA(p, q) time series model is

Yt −p∑

j=1

φjYt−j = Zt +q∑

i=1

θiZt−i

where Zt ∼ IID(0, σ2).

We say that Xt follows an ARTFIMA(p, α, λ, q) model if

Yt = ∆α,λ1 Xt =

∞∑

j=0

(

αj

)

(−1)je−λjXt−j

follows an ARMA(p, q) model.

Then Xt = ∆−α,λ1 Yt, a kind of tempered fractional integration.

Page 11: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Spectral approach

Kolmogorov argued that the spectral density of turbulence data

follows h(k) ≈ k−5/3 in the inertial range of frequency k.

Tempered fractional Gaussian noise (TFGN) is defined by

Xj = Bα,λ(j)−Bα,λ(j − 1) = Yα,λ(j)− Yα,λ(j − 1).

Its spectral density (FT of the autocovariance function) is

h(k) = C|e−ik − 1|2

(λ2 + k2)H+1/2

≈ Ck1−2H

for k small and λ ≈ 0. Set H = 4/3 for Kolmogorov scaling.

The ARTFIMA(0, α, λ,0) model has spectral density

h(k) = C∣

∣1− e−(λ+ik)∣

−2α≈ Ck−2α

for k small and λ ≈ 0. Set α = 5/6 for Kolmogorov scaling.

Page 12: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Spectral density of TFGN and ARTFIMA

log

h(k

)

log k

Log-log plot of spectral density for TFGN (solid), ARTFIMA

(dotted), and Kolmogorov scaling (dashed). Here λ = 0.03.

Page 13: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Lake Huron water velocity spectrum

-8

-6

-4

-2

0

2

4

6

8

10

12

14

-10 -8 -6 -4 -2 0

ln(spectrum)

ln(frequency)

Spectrum of Saginaw Bay velocity data (symbols), fitted

ARTFIMA model (thick line) with α = 5/6 and λ = 0.006, and

Kolmogorov model (thin line).

Page 14: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Davenport spectrum for wind gusts

Spectral density of wind gustiness from Davenport (1961). The

Davenport spectrum is the same as TFGN with H = 5/6.

Page 15: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Fractional diffusion and probability

The space-time fractional diffusion equation

Dβt p(x, t) = aDα

xp(x, t) + bDα−xp(x, t) + δ(x)

t−β

Γ(1− β)

governs a stochastic process Xt with power law jumps in space

P(|∆Yu| > x) ≈ Ax−α

and power law waiting times

P(∆Du > t) ≈ Bt−β

for 0 < α < 2 and 0 < β < 1.

Graph of sample paths (particle traces): (t,Xt) = (Du, Yu) .

Hence Dβt codes power law waiting times, D

α±x power law jumps.

Page 16: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Continuous time random walks

-

6

J1

J2J3

J4J5

u

u

u

u

u

u

Rd

0tW1 W2 W3 W4 W5

For particle jumps P(J > x) ≈ Ax−α, J1 + · · · + J[nu] ≈ n1/αYu.

For waiting times P(W > t) ≈ Bx−β, W1 + · · ·+W[nu] ≈ n1/βDu.

Page 17: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Fractional diffusion particle tracking

Here α = 2.0,1.7 (left/right) and β = 1.0,0.9 (top/bottom).

0 2000 4000 6000 8000 10000

−50

050

100

200

t

At

0 2000 4000 6000 8000 10000

−60

0−

400

−20

00

t

At

0 500000 1000000 1500000

050

100

150

200

250

t

AE

t

0 500000 1000000 1500000

−30

0−

100

010

020

0

t

AE

t

Page 18: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered fractional diffusion

The tempered space-fractional diffusion equation

Dtp(x, t) = a∂α,λx p(x, t) + b∂α,λ−x p(x, t)

governs a stochastic process Xt with tempered power law jumps

P(|∆Xu| > x) ≈ Ax−αe−λx

for 0 < α < 2 and λ > 0.

This normalized tempered fractional derivative is defined by

∂α,λ±x f(x) ⇐⇒ [(λ± ik)α − λα]f(k) for 0 < α < 1, and

∂α,λ±x f(x) ⇐⇒ [(λ± ik)α − λα ∓ ikαλα−1]f(k) for 1 < α < 2.

The λα term makes p(x, t) a PDF.

The ikαλα−1 term makes p(x, t) have zero mean.

Page 19: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered fractional diffusion particle tracking

Tempered stable process with α = 1.2 transitions from

Brownian motion to stable Levy motion as λ decreases.

0 5000 10000−150

−100

−50

0

λ = 0.1

0 5000 10000−200

0

200λ = 0.01

0 5000 10000−500

0

500λ = 0.001

0 5000 10000

−500

0

500

1000λ = 0.0001

Page 20: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered power laws in finance

AMZN stock price changes fit a tempered power law model

P (X > x) ≈ x−0.6e−0.3x for x large

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooo ooooooo oooooooooooooooooo o o o ooo o ooo

ooo

o

o

o

o

1.5 2.0 2.5 3.0

-8-7

-6-5

-4-3

-2

1.5 2.0 2.5 3.0

-8-7

-6-5

-4-3

-2

ln(x)

ln(P

(X>

x))

1.5 2.0 2.5 3.0

-8-7

-6-5

-4-3

-2

Page 21: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered power laws in hydrology

Tempered power law model P (X > x) ≈ x−0.6e−5.2x for incre-

ments in hydraulic conductivity at the MADE site.

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5

−8

−7

−6

−5

−4

−3

ln(x)

ln(P

(X>

x))

Page 22: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered power laws in atmospheric science

Tempered power law model P (X > x) ≈ x−0.2e−0.01x for daily

precipitation data at Tombstone AZ.

4.0 4.5 5.0 5.5 6.0 6.5

−8

−6

−4

−2

ln(x)

ln(P

(X>

x))

Page 23: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered stable pdf in macroeconomics

data

Den

sity

−0.2 0.0 0.2 0.4

02

46

810

12

One-step BARMA forecast errors for annual inflation rates fit a

symmetric tempered stable with α = 1.1 and λ = 12.

Page 24: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered time-fractional diffusion model

Fitted concentration data from a 3-D supercomputer simulation.

ADE fit uses α = 2, β = 1. Without cutoff uses λ = 0.

Page 25: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Summary

• Tempered fractional derivatives

• Tempered fractional Brownian motion

• Applications to turbulence

• Tempered fractional diffusion

• Numerical methods [special session]

• Applications to finance and geophysics

Page 26: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

References1. I.B. Aban, M.M. Meerschaert, and A.K. Panorska (2006) Parameter Estimation for the

Truncated Pareto Distribution. Journal of the American Statistical Association: Theory

and Methods. 101(473), 270–277.

2. B. Baeumer and M.M. Meerschaert (2010) Tempered stable Levy motion and transientsuper-diffusion. Journal of Computational and Applied Mathematics 233, 2438–2448.

3. A. Cartea and D. del Castillo-Negrete (2007) Fluid limit of the continuous-time randomwalk with general Levy jump distribution functions. Phys. Rev. E 76, 041105.

4. A. Chakrabarty and M. M. Meerschaert (2011) Tempered stable laws as random walklimits. Statistics and Probability Letters 81(8), 989–997.

5. A. V. Chechkin, V. Yu. Gonchar, J. Klafter and R. Metzler (2005) Natural cutoff inLevy flights caused by dissipative nonlinearity. Phys. Rev. E 72, 010101.

6. S. Cohen and J. Rosinski (2007) Gaussian approximation of multivariate Levy processeswith applications to simulation of tempered stable processes, Bernoulli 13, 195-210.

7. A. G. Davenport (1961) The spectrum of horizontal gustiness near the ground in highwinds. Quarterly Journal of the Royal Meteorological Society 87, 194–211.

8. I. Koponen (1995) Analytic approach to the problem of convergence of truncated Levyflights towards the Gaussian stochastic process, Phys. Rev. E 52, 1197–1199.

9. M.M. Meerschaert and H.P. Scheffler (2001) Limit Theorems for Sums of Independent

Random Vectors: Heavy Tails in Theory and Practice. Wiley Interscience, New York.

Page 27: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

10. M.M. Meerschaert and H.P. Scheffler (2004) Limit theorems for continuous-time ran-dom walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623–638.

11. Meerschaert, M.M., Scheffler, H.P. (2008) Triangular array limits for continuous timerandom walks. Stoch. Proc. Appl. 118(9), 1606-1633.

12. Meerschaert, M.M., Y. Zhang and B. Baeumer (2008) Tempered anomalous diffusionin heterogeneous systems. Geophys. Res. Lett. 35, L17403.

13. M.M. Meerschaert and A. Sikorskii (2012) Stochastic Models For Fractional Calculus.De Gruyter, Berlin/Boston.

14. Meerschaert, M.M., P. Roy and Q. Shao (2012) Parameter estimation for temperedpower law distributions. Communications in Statistics Theory and Methods 41(10),1839–1856.

15. M.M. Meerschaert (2013) Mathematical Modeling. 4th Edition, Academic Press, Boston.

16. M.M. Meerschaert and F. Sabzikar (2013) Tempered fractional Brownian motion.Statist. Prob. Lett. 83 (2013), 2269–2275.

17. M.M. Meerschaert and F. Sabzikar (2014) Stochastic integration for tempered fractionalBrownian motion. Stoch. Proc. Appl. 124, 2363–2387.

18. J. Rosinski (2007), Tempering stable processes. Stoch. Proc. Appl. 117, 677–707.

19. F. Sabzikar, M.M. Meerschaert, and Jinghua Chen (2014) Tempered Fractional Calcu-lus. J. Comput. Phys., to appear in the Special Issue on Fractional Partial DifferentialEquations, preprint at www.stt.msu.edu/users/mcubed/TFC.pdf

Page 28: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Simulating tempered stable laws (JCAP 2010)

Simulation codes for stable random variates are widely available.

If X > 0 has stable density density f(x), TS density is

fλ(x) =e−λxf(x)

∫ ∞

0e−λuf(u) du

Take Y ∼ exp(λ) independent of X, (Xi, Yi) IID with (X,Y ).

Let N = min{n : Xn ≤ Yn}. Then XN ∼ fλ(x).

Proof: Compute P (XN ≤ x) = P (X ≤ x|X ≤ Y ) by conditioning,

then take d/dx to verify.

Page 29: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Triangular array scheme (SPL 2011)

Take P (J > x) ≈ Cx−α with 1 < α < 2. Triangular array limit

[nt]∑

k=1

n−1/αJk − b(n)t ⇒ Yt

is stable. Define tempering variables:

P (Z > u) = uα∫ ∞

ur−α−1e−λrdr

Replace n−1/αXk by Zk if n−1/αXk > Zk.

Triangular array limit is tempered stable.

Exponential tempering: sum of α and α− 1 tempered stables.

Page 30: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tail estimation (CIS 2012)

Hill-type estimator: Assume P (X > x) ≈ Cx−αe−λx for x large,

use order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n).

Conditional MLE given X(n−k+1) > L ≥ X(n−k):

T1 : =k∑

i=1

(logX(n−i+1) − logL)

T2 : =k∑

i=1

(X(n−i+1) − L)

1 =k∑

i=1

x(n−i+1)

kx(n−i+1) + α(T2 − T1x(n−i+1))

λ = (k − αT1)/T2

C =k

nLαeλL

R code available at www.stt.msu.edu/users/mcubed/TempParetoR.zip

Page 31: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Testing for pure power law tail (JASA 06)

Null hypthesis H0 : P (X > x) = Cx−α Pareto for x > L.

Test based on extreme value theory rejects H0 if

X(1) <

(

nC

− ln q

)1/α

where α,C can be estimated using Hill’s estimator

αH =

k−1k∑

i=1

{lnX(n−i+1) − lnX(n−k)}

−1

CH = (k/n)(X(n−k))αH

Simple p-value formula p = exp{−nC X−α(n)

}.

Page 32: Tempered Fractional CalculusTempered Fractional Calculus 2014 International Conference on Fractional Differentiation and Its Applications University of Catania, Italy 23–25 June

Tempered fractional calculus operators (SPA 2014)

Iα,λ±x f(x) ⇐⇒ (λ±ik)−αf(k) for f ∈ L2(R) = {f :

|f(x)|2dx < ∞}.

Define the fractional Sobolev space

Wα,2(R) := {f ∈ L2(R) :∫

(λ2 + k2)α|f(k)|2 dk < ∞}.

Then Dα,λ±x f(x) ⇐⇒ (λ± ik)αf(k) for f ∈ Wα,2(R).

Semigroup property: Iα,λ± I

β,λ± f = I

α+β,λ± f for f ∈ L2(R), and

Dα,λ± D

β,λ± f = D

α+β,λ± f for f ∈ Wα+β,2(R).

Adjoint property: 〈f, Iα,λ+ g〉

2= 〈I

α,λ− f, g〉

2for f, g ∈ L2(R), and

〈f,Dα,λ+ g〉

2= 〈D

α,λ− f, g〉

2for f, g ∈ Wα,2(R), using the L2 inner

product 〈f, g〉2 =∫

f(x)g(x) dx