Temperature-Dependent Biquadratic Exchange Coupling...

21
Temperature-Dependent Biquadratic Exchange Coupling in Co/CuMn Multilayers Thomas Saerbeck, Nick Loh, Frank Klose Australian Nuclear Science and Technology Organisation - Bragg Institute PNCMI Workshop July 1-5, 2010

Transcript of Temperature-Dependent Biquadratic Exchange Coupling...

Temperature-Dependent Biquadratic Exchange Coupling

in Co/CuMn Multilayers

Thomas Saerbeck, Nick Loh, Frank KloseAustralian Nuclear Science and Technology Organisation - Bragg Institute

PNCMI Workshop July 1-5, 2010

Frank KlosePNCMI

Magnetic Coupling in Thin Films

• Exchange Bias Systems

Pinned FM

• Multiferroics

• Interlayer Exchange Coupling

• Magnetic Springs

La

Ba

Y

OMn

LCMO

YBCO

Cu

• Superconductors

• Patterned Films

• Magnetic Semiconductors

EuS

PbS

► J. Chakhalian et al., Nature Physics 2, 244 (2006)

► J. Hoppler et al., Nature Materials 8, 315 (2009)

▲ K. Theis-Broehl et al., New Journal of Physics 10, 093021 (2009)

▲ H. Kepa et al.,Phys. Rev. B 64, 121302 (2001)

► H. Bea et al., Phys. Rev. Lett. 100, 017204 (2009)

► K.V. O’Donovan et al. Phys. Rev. Lett. 88, 067201 (2002)

ΛΛΛΛmag= 2ΛΛΛΛchem

ΛΛΛΛchem

Frank KlosePNCMI

Magnetic Coupling in Thin Films

• Exchange Bias Systems

Pinned FM

• Multiferroics

• Interlayer Exchange Coupling

• Magnetic Springs

La

Ba

Y

OMn

LCMO

YBCO

Cu

• Superconductors

• Patterned Films

• Magnetic Semiconductors

EuS

PbS

► J. Chakhalian et al., Nature Physics 2, 244 (2006)

► J. Hoppler et al., Nature Materials 8, 315 (2009)

▲ K. Theis-Broehl et al., New Journal of Physics 10, 093021 (2009)

▲ H. Kepa et al.,Phys. Rev. B 64, 121302 (2001)

► H. Bea et al., Phys. Rev. Lett. 100, 017204 (2009)

► K.V. O’Donovan et al. Phys. Rev. Lett. 88, 067201 (2002)

ΛΛΛΛmag= 2ΛΛΛΛchem

ΛΛΛΛchem

Interlayer exchange coupling:

How do magnetic ions in the spacer layer impact the exchange coupling?

Multilayer system: Co/Cu94Mn6

Interesting feature: Bulk Cu94Mn6 is a spinglass @ <10 K

Frank KlosePNCMI

Temperature Dependent Giant Magnetoresistance in Co/Cu94Mn 6 Multilayers

Co

Co

Co

Co

CuMn

CuMn

CuMn

CuMn

From:

Y. Kobayashi et al., Phys. Rev. B, 59, 3734 (1999)

• Pure AFM ordering fails to explain observations: Biquadratic coupling?

• Influence of spin glass on RKKY coupling?

Change from FM (300 K ) to AFM (4 K)?

d (CuMn) = 15 Å, 19 Å, 26 Å

Frank KlosePNCMI

Polarised Neutron Reflectometry

x

y

z

Hext

M ||

M ⊥⊥⊥⊥

M tot

φφφφ

ααααiααααfSpin up

Spin down

R++

R--R

-+

R+-

Specular Reflection:ααααi = ααααf

Qz = 4ππππ/λλλλ sin ααααi

Frank KlosePNCMI

PNR: Off-specular ScatteringLateral magnetic domains

• Different magnetization

• Different direction

Or structural domains

Frank KlosePNCMI

PNR: Off-specular ScatteringOff-Specular Reflection:

∆α∆α∆α∆αf ≠≠≠≠ 0000

QZ= 2ππππ/λλλλ (sin ααααi+ sin( ααααf+∆α∆α∆α∆αf))

QX = 2ππππ/λλλλ (cos( ααααf+∆α∆α∆α∆αf)- cos ααααi)

k i

k f

QX

QZZZZ Qtotaltotaltotaltotal

Frank KlosePNCMI

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.01E-5

1E-4

1E-3

0.01

0.1

1

R++ R-- R-+ R+-

Nor

mal

ized

spe

cula

r re

flect

ivity

Incident angle ααααi (°)

Polarized neutron reflectivity at 300 K and 7 mT

Co

Co

Co

CoCu0.94Mn0.06

Cu0.94Mn0.06

Cu0.94Mn0.06

Cu0.94Mn0.06

Magnetization

1st order Bragg-peak

PeriodicityRoughness

T = 300 KB = 7 mT

1st order Bragg peak

⇒ FM coupling

Frank KlosePNCMI

Co

Co

Co

CoCu0.94Mn0.06

Cu0.94Mn0.06

Cu0.94Mn0.06

Cu0.94Mn0.06

1/2 order (AFM) peak 1st order

Bragg-peak

Antiferromagnetic coupling?

Half order peak

⇒ Double periodicity antiferromagnetism

Spin Flip Channel ⇒⇒⇒⇒ Canting

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.01E-5

1E-4

1E-3

0.01

0.1

1

Nor

mal

ized

spe

cula

r re

flect

ivity

(ar

b. u

n.)

Incident angle ααααi (°)

R++ R-- R-+ R+-

T = 30 KB = 7 mT

Polarized neutron reflectivity at 30 K and 7 mT

Frank KlosePNCMI

Co/Cu0.94Mn0.06MultilayerOff-specular scattering (ααααi vs. ααααf) at low temperature

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Out

goin

g an

gle

α α α αf [°

]

Incident angle ααααi [°]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0O

utgo

ing

angl

e α α α α

f [°]

Incident angle ααααi [°]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Out

goin

g an

gle

α α α αf [°

]

Incident angle ααααi [°]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Out

goin

g an

gle

α α α αf [°

]

Incident angle ααααi [°]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Out

goin

g an

gle

α α α αf [°

]Incident angle αααα

i [°]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Out

goin

g an

gle

α α α αf [°

]

Incident angle ααααi [°]

T=30 K, B=7 mT

R++, simulation

T=30 K, B=7 mT

R--, simulation

T=30 K, B=7 mT

R-+, simulation

T=30 K, B=7 mT

R++

T=30 K, B=7 mT

R--

T=30 K, B=7 mT

R-+

Simulation: DWBA method (B. Toperverg)

Frank KlosePNCMI

PNR simulations at 30 K

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Out

goin

g an

gle

α α α αf [°

]

Incident angle ααααi [°]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Out

goin

g an

gle

α α α αf [°

]

Incident angle ααααi [°]

T=30 K, B=7 mT

R-+, simulation

T=30 K, B=7 mT

R-+

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.01E-5

1E-4

1E-3

0.01

0.1

1

Nor

mal

ized

spe

cula

r re

flect

ivity

(ar

b. u

n.)

Incident angle ααααi (°)

R++ R-- R-+ R+-

-1.0 -0.5 0.0 0.5 1.0

1E-4

1E-3

0.01

Nor

mal

ized

offs

pecu

lar

refle

ctiv

ity

Offspecular angle φφφφ (°)

R++ R-- R-+ R+-

Simulation: DWBA method (B. Toperverg)

Frank KlosePNCMI

Magnetization model at low temperature: Average domain size 0.43µµµµm

30°

30°

-30°

-30°

-30°

-30°30°

30°

60°60°

H

Projections

Spin-flip

Non Spin-flip

Co: B

Co: A

Co: B

Co: A

Layer:

“Biquadratic” 60 deg. coupling is present!

Frank KlosePNCMI

Temperature dependence

1.0 1.2 1.4 1.6 1.8 2.01.0

1.2

1.4

1.6

1.8

2.0

T=4K

αα αα f [°

]

ααααi [°]

1.0 1.2 1.4 1.6 1.8 2.01.0

1.2

1.4

1.6

1.8

2.0

T=15K

αα αα f [°

]

ααααi [°]

1.0 1.2 1.4 1.6 1.8 2.01.0

1.2

1.4

1.6

1.8

2.0

T=45K

αα αα f [°

]

ααααi [°]

1.0 1.2 1.4 1.6 1.8 2.01.0

1.2

1.4

1.6

1.8

2.0

T=60Kαα αα f

[°]

ααααi [°]

1.0 1.2 1.4 1.6 1.8 2.01.0

1.2

1.4

1.6

1.8

2.0

T=75K

αα αα f [°

]

ααααi [°]

1.0 1.2 1.4 1.6 1.8 2.01.0

1.2

1.4

1.6

1.8

2.0

T=90K

αα αα f [°

]

ααααi [°]

2.2 2.0 1.8 1.6 1.4 1.2 1.0

Inte

grat

ed In

tens

ity [a

rb. u

n.]

Angle of Linescan along ααααf=-ααααi+3.17°

T = 4K T = 15K T = 45K T = 60K T = 75K T = 90K T = 100K

0

• Continuous decrease in intensity with increasing temperature

• Constant domain size

• Rotation of magnetization

T = 4 K T = 60 K

T = 45 K T = 90 K

T = 15 K T = 75 K

Frank KlosePNCMI

External field dependence at 8K, R-+ channel

1.0 1.5 2.0

1.0

1.5

2.0

30K, 7mT -+ channel

αα ααf [

°]

ααααi [°]

1.0 1.5 2.0

1.0

1.5

2.0

αα ααf [

°]

ααααi [°]

30K, 25mT -+ channel

1.0 1.5 2.0

1.0

1.5

2.0

30K, 70mT -+ channel

αα ααf [

°]

ααααi [°]

1.0 1.5 2.0

1.0

1.5

2.0

30K, 100mT -+ channel

αα ααf [

°]

ααααi [°]

1.0 1.5 2.0

1.0

1.5

2.0

30K, 150mT -+ channel

αα ααf [

°]

ααααi [°]

1.0 1.5 2.0

1.0

1.5

2.0

30K, 300mT -+ channel

αα ααf [

°]

ααααi [°]

7 mT

26 mT

70 mT

100 mT

160 mT

200 mT

Frank KlosePNCMI

Complementary methods: Magnetometry

5 10 15 200.0

1.0x10-7

2.0x10-7

3.0x10-7

4.0x10-7

χχ χχ" [(

emu/

mT

)*m

T]

Temperature (K)

Field cooled in 1T, ac field 575 Hz Field cooled in 1T, ac field 1000 Hz Not field cooled in 1T, ac field 575 Hz Not field cooled, ac field 1000 Hz

0 50 100 150 200

0.0

1.0x10-6

2.0x10-6

3.0x10-6

4.0x10-6

χχ χχ" [(

emu/

mT

)*m

T]

Temperature (K)

Field cooled in 1T (up), 1000Hz Zero field cooled (down), 1000Hz

-60 -40 -20 0 20 40 60-8.0x10-4

-6.0x10-4

-4.0x10-4

-2.0x10-4

0.0

2.0x10-4

4.0x10-4

6.0x10-4

8.0x10-4

Mom

ent (

emu)

Moment (emu) at 5K Moment (emu) at 30K Moment (emu) at 70K Moment (emu) at 110K Moment (emu) at 300K

Magnetic Field (mT)

Ac susceptibilityVibrating Sample Magnetometry

� Temperature dependent magnetization behaviour

� Spin glass transition??

low T

high T

Frank KlosePNCMI

X-Ray Magnetic Circular Dichroism

-50 -25 0 25 50

XM

CD

Inte

nsity

\ M

agne

tisat

ion

(arb

. un.

)

Field (mT)

Mn Hysteresis from L-edge XMCD signal

at 130 K at 80 k at 61 K at 30 K

1.2

1.4

1.6

Mn Reflectivity Mn XMCD signal

Ref

lect

ivity

(ar

b. u

n.)

630 640 650 660

-0.14

-0.07

0.00

XM

CD

Sig

nal (

arb.

un.

)

Photon Energy (eV)

Element specific hysteresis loops and magnetization behaviour

Frank KlosePNCMI

X-Ray Magnetic Circular Dichroism

0 50 100 150 200 2500.25

0.30

0.35

0.40

0.45

0.50

0.55

XMCD signal strengthWarming Cooling

Co Co Mn Mn

Co

Mag

netis

atio

n (a

rb. u

n.)

Temperature (K)

0.04

0.05

0.06

Mn

Mag

netis

atio

n (a

rb. u

n.)

• Indication of Mn polarization at all temperatures (parallel Co)

Frank KlosePNCMI

Loose Mn Spins

s

m1 m2z

( ))0()(21

1 FFJ ls −= π

( ) )2/()0()(21

2 ππ FFFJ ls −+=

( ) ( ) ( )θθθ 221 CosCos JJE +−=

1Slonczewski, J. C. (1993). "Origin of biquadratic exchange in magnetic multilayers." Journal of Applied Physics. 73 (10): 5957

Ferromagnetic due to direct exchange

-1.0

-0.5

0.0

0.5

1.0

Fraction

al M

n p

olarisation

20151050Depth in Spacer layer [Å]

-150

-100

-50

0

50

100

150

RK

KY

Int

era

ctio

n [K

] Co CuMn

Mn Polarisation (50K) Left RKKY Right RKKY

, U1, U2

Nick Loh & Bob Stamps

1

F(T,θ)

U(θ) = |U1+U2|

J2 > 0 => BQ coupling

Frank KlosePNCMI

Theoretical Considerations - Competing Coupling

CuMnCo

---

--

+++

++

Co (FM) Mn (LS) Co (FM)

m1 m2

S

Z

• FM orange peel coupling(temperature independent, correlated roughness => FM coupling at RT)

0.3

0.2

0.1

0.0

J 2 (

mJ

m-2

)

200150100500

Temperature (K)

0.10

0.05

0.0028242016

CuMn (Å)26 Å

19 Å

15 Å

RKKY(z) = - A F(T0) Sin(qf z + φ)/z2

A = 3400K, T0 = 700K, qf = 0.45A-1

, φ = 115º

J1

Temperature independent J1from orange peel coupling

• RKKY “loose spin”(temperature dependent => BQ coupling at low T)

Frank KlosePNCMI

Co/Cu0.94Mn0.06MultilayerSummary and conclusion

Polarized Neutron Reflectometry (PNR)

• Temperature dependent coupling in column like domains

• ~60° coupling angle at 30K ⇒ “biquadratic coupling”

• Stable domain size of ~0.43µm

Complementary Techniques

• Spin glass transition at ~10K does not affect BQ-coupling (~100K)

• XMCD shows highly polarised Mn (>50% - paramagnetic)

• Theory: competing coupling => orange peel (FM) and loose spins (BQ)

Frank KlosePNCMI

Acknowledgements

• D. Lott, A. SchreyerGKSS Research Centre, Max-Planck Str. 1, 21502 Geesthacht, Germany

• M. Ali, B.J. Hickey University of Leeds, School of Physics and Astronomy, Leeds LS29JT, UK

• B.P. Toperverg Ruhr-University Bochum, Department of Physics, 44780 Bochum, Germany

• R.L. Stamps, R. MaggaragiaUniversity of Western Australia, School of Physics, Crawley, WA 6009, Australia

• A. Mulders Curtin University, Perth

• N. Loh, T. Saerbeck, F. Klose,ANSTO, The Bragg Institute, PMB1, Menai, NSW 2234, Australia