Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel...

25
Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel dark energy Chung-Chi Lee National Tsing Hua University, Taiwan May. 10, 2012 Based on: CQ Geng, CC Lee, E. N. Saridakis, YP Wu PLB 704, 384 (2011) CQ Geng, CC Lee, E. N. Saridakis JCAP 1201, 002 (2012) JA Gu, CC Lee, CQ Geng arXiv:1204.4048

Transcript of Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel...

Page 1: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel dark energy

Chung-Chi Lee

National Tsing Hua University, Taiwan

May. 10, 2012

Based on:CQ Geng, CC Lee, E. N. Saridakis, YP Wu PLB 704, 384 (2011)CQ Geng, CC Lee, E. N. Saridakis JCAP 1201, 002 (2012)

JA Gu, CC Lee, CQ Geng arXiv:1204.4048

Page 2: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Outline

Teleparallel Gravity

Teleparallel Dark Energy model

Observational Constraints

Tracker Behavior

Page 3: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel GravityWhat is the feature of teleparallel gravity?

An alternative theory of gravity, which is equivalent toGeneral Relativity.

This is a curvatureless gravity theory, and the gravitationaleffect comes from torsion instead of curvature.

Page 4: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel GravityA brief introduction

The dynamical variable of teleparallel gravity is thevierbein fields eA(x

μ), which form an orthonormal basisfor the tangent space at each point xμ of the manifold:eA · eB = ηAB , where ηAB = diag(1,−1,−1,−1).

Notation:Greek indices μ, ν,... : coordinate space-time.Latin indices A,B,... : tangent space-time.

The relationship between metric and vierbein fields is

gμν(x) = ηAB eAμ (x) eBν (x).

Page 5: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel GravityA brief introduction

Weitzenbock connection: a curvatureless connection

wΓλ

νμ ≡ eλA ∂μeAν

The torsion tensor is defined as

T λμν ≡

wΓλ

νμ −wΓλ

μν = eλA (∂μeAν − ∂νe

Aμ ).

Under Weitzenbock connection, the Riemann tensorvanishes:

Rρμσν =

wΓρ

μν,σ −wΓρ

μσ,ν +wΓρ

δσ

wΓδ

μν −wΓρ

δν

wΓδ

μσ = 0.

Page 6: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel GravityA brief introduction

We can construct the “teleparallel Lagrangian” by usingthe torsion tensor,LT = T = a1T

ρμνTρμν + a2TρμνTνμρ + a3T

ρρμ T μν

ν .

It is a good approach of General Relativity when we choosethe suitable parameters a1 =

14 , a2 =

12 and a3 = −1:

R = −T − 2∇μT νμν ,

where R is constructed by Levi-Civita connection.

Page 7: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel GravityA brief introduction

The action of teleparallel gravity is

S =

∫d4xe

[T

2κ2+ LM

],

where e = det(eAμ

)=

√−g.

Varying this action respect to the vierbein fields gives thefield equation

e−1∂μ(eeρASρ

μν)− eλATρμλSρ

νμ − 1

4eνAT =

κ2

2eρA

emT ρ

ν ,

whereemT ρ

ν stands for the energy-momentum tensor andSρ

μν = 14 (T

νμρ − T μν

ρ + T μνρ ) + 1

2

(δμρ Tαν

α − δνρ Tαμα

).

Page 8: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel Dark EnergyWhat is teleparallel dark energy model?

Teleparallel dark energy model is a dark energy model,which can explain the late time accelerating universe.

This model combines quintessence model with teleparallelgravity.

This model differs from quintessence model when we turnon the non-minimal coupling term.

Page 9: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel Dark EnergyA brief review of quintessence model

Quintessence is one of the most popular dark energymodel.

The generalized quintessence model action is given by

S =

∫d4x

√−g

[R

2κ2+

1

2

(∂μφ∂

μφ+ ξRφ2)− V (φ) + LM

]

Under the flat Friedmann-Robertson-Walker (FRW)background ds2 = dt2 − a2(t)dx2, the effective energy andpressure density can be defined as

ρφ =1

2φ2 + V (φ) + 6ξHφφ+ 3ξH2φ2,

pφ =1

2φ2 − V (φ) + ξ

(2H + 3H2

)φ2 + 4ξHφφ

+2ξφφ+ 2ξφ2

Page 10: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel Dark Energy

Similar to quintessence model, we can constructteleparallel dark energy model, and the action is given by

S =

∫d4xe

[T

2κ2+

1

2

(∂μφ∂

μφ+ ξTφ2)− V (φ) + LM

].

Variation of action with respect to the vierbein fields yieldsthe field equation(

2

κ2+ 2ξφ2

)[e−1∂μ(ee

ρASρ

μν)− eλATρμλSρ

νμ − 1

4eνAT

]

−eνA

[1

2∂μφ∂

μφ− V (φ)

]+ eμA∂

νφ∂μφ

+4ξeρASρμνφ (∂μφ) = eρA

emT ρ

ν .

Page 11: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel Dark Energy

Again, the effective energy and pressure density underFRW metric (eAμ = diag(1, a, a, a)) are

ρφ =1

2φ2 + V (φ)− 3ξH2φ2,

pφ =1

2φ2 − V (φ) + 4ξHφφ+ ξ

(3H2 + 2H

)φ2.

Variation of action with respect to the scalar field gives usthe equation of motion of the scalar field

φ+ 3Hφ+ 6ξH2φ+ V ′(φ) = 0.

These equations lead to the continuity equationρφ + 3H(1 + wφ)ρφ = 0, where wφ is the equation ofstate of the scalar field, which is defined as wφ ≡ pφ

ρφ.

Page 12: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel Dark Energy

In the minimal coupling case (ξ = 0), the teleparallel darkenergy is equivalent to quintessence model

However, these two models are different theories when weturn on the non-minimal coupling constant (ξ �= 0)

Teleparallel dark energy model can cross thephantom-divide easily.

Similar to f(T ) theory,this model has the localLorentz violation problem.

Page 13: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel Dark Energy:Observational Constraints

We would like to test teleparallel dark energy model byusing the SNIa, BAO and CMB data. These observationaldata can tell us whether this is a suitable model for darkenergy or not

We consider three kinds of potential cases:Power-Law potential: V (φ) = V0φ

4

Exponential potential: V (φ) = V0e−κφ

Inverse hyperbolic cosine potential: V (φ) = V0cosh(κφ)

Page 14: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel Dark Energy:Observational Constraints

Potential: V (φ) = V0φ4

Left: fixing Ωm = 27%, the best fit locates at h � 0.7,ξ � −0.42, wφ � −0.96 and χ2 � 543.9

Right: fixing ξ = −0.41, the best fit locates at h � 0.7,Ωm � 28.0%, wφ � −0.99 and χ2 � 544.5

Page 15: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel Dark Energy:Observational Constraints

Potential: V (φ) = V0e−κφ

Left: fixing Ωm = 27%, the best fit locates at h � 0.7,ξ � −0.41, wφ � −1.04 and χ2 � 544.3

Right: fixing ξ = −0.41, the best fit locates at h � 0.7,Ωm � 27.1%, wφ � −1.07 and χ2 � 544.6

Page 16: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Teleparallel Dark Energy:Observational Constraints

Potential: V (φ) = V0cosh(κφ)

Left: fixing Ωm = 27%, the best fit locates at h � 0.7,ξ � −0.38, wφ � −1.05 and χ2 � 544.8

Right: fixing ξ = −0.41, the best fit locates at h � 0.7,Ωm � 26.7%, wφ � −1.03 and χ2 � 545.1

Page 17: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Summary

Teleparallel gravity is an alternative gravity theory of theuniverse.

Teleparallel dark energy model is equivalent toquintessence model happens at the minimal coupling case(ξ = 0), but it has a different behavior when we include anon-minimal coupling term (ξ �= 0).

We show that the equation of state of teleparallel darkenergy model can cross the phantom-divide easily.

The observational constraints show a good result on thismodel. This model is suitable for the late-timeaccelerating universe.

Page 18: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Tracker BehaviorBasic Idea and Features

Potential-free: V (φ) = 0.

Analytic solutions in the radiation (RD), matter (MD),and scalar field (SD) dominated eras.

The tracker behavior for wφ in the RD and MD eras.

Page 19: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Tracker BehaviorBasic Idea and Features

The field equation of gravity and scalar field lead to

φ+ 3Hφ+ 6ξH2φ = 0 ,

H2 ≡(a

a

)2

=κ2

3(ρφ + ρm + ρr) ,

H = −κ2

2(ρφ + pφ + ρm + 4ρr/3) .

The effective energy and pressure density are

ρφ =1

2φ2 − 3ξH2φ2 ,

pφ =1

2φ2 + 3ξH2φ2 + 2ξ

d

dt(Hφ2) .

Page 20: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Tracker BehaviorAnalytic Solutions in RD and MD eras

H = α/t, i.e. a(t) ∝ tα, with α constant:

φ(t) = C1tl1 + C2t

l2 ,

where C1,2 are constants and

l1,2 =1

2

[±√

(3α− 1)2 − 24ξα2 − (3α− 1)].

For ξ < 0, the power-index l1 is positive and l2 is negative,corresponding to increasing and decreasing modes,respectively.

Considering only the increasing mode, i.e., φ(t) = C1tl1 .

Page 21: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Tracker BehaviorTracker Behavior in RD and MD eras

We can solve the analytic solution in RD and MD eras:

wφ =1

3

(2−

√1− 24ξ

),

1

2

(1−

√1− 32ξ/3

),

ρφ ∝ a−5+√1−24ξ , a(−9+

√9−96ξ )/2,

for the RD (α = 1/2) and MD (α = 2/3) eras,respectively.

Page 22: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Tracker BehaviorAnalytic Solutions in SD era

Setting ρr = 0:

d

dt

[F (φ)a3H

]=

κ2

2ρma

3 =3

2H2

0Ωm0 ,

F (φ) ≡ 1 + κ2ξφ2.

Setting ρm = 0 and combining with field equation, we cansolve the analytic solution:

φ(a) = ± sin θ√−κ2ξ

,

wφ(a) = −1−√

−32ξ/3 tan θ ,

θ(a) ≡√

−6ξ ln a+ C3 ,

where C3 is the integration constant.There exists one kind of finite-time future singularities,called “sudden singularity”.

Page 23: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Tracker BehaviorNumerical Result

The tracker behavior in RD (MD) eras,and the singularity happens in SD era.

The present (z = 0) values of (Ωm, wφ)with ξ = −0.35.

Page 24: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Tracker BehaviorNumerical Result

Combining SNIa, BAO and CMB data:

Page 25: Teleparallel dark energy · 2013-12-06 · Teleparallel dark energy Chung-Chi Lee Teleparallel Gravity Teleparallel Dark Energy Observational Constraints Tracker Behavior Teleparallel

Teleparalleldark energy

Chung-ChiLee

TeleparallelGravity

TeleparallelDark Energy

ObservationalConstraints

TrackerBehavior

Summary

Analytic solution exist in this potential-free case.

Equation of state (wφ) has a tracker behavior and onlydepend on ξ in RD and MD eras.

The final energy density depends on ξ and initial conditionparameter C1.

The observational data can be fitted well but theconcordance region for all data is only at the 3σ level.