Telecom Tower Roof top Analysis Report

37
MTE Engineering Co.,Ltd. Fax: 513598, Mobile: 5019332, 5106643, 73042214 STRUCTURAL ANALYSIS Operator for Roof Top Installation Project HUAWEI SITE CODE: YGN-0072 Technologies (YGN) SITE OWNER: SA By Tarabit Wave SITE ADDRESS: SA Team ID TW-SA-01 SUMMARY Report Engineer Mr. 29-July-2013 Location Map YGN RESULTS AND RECOMMENDATIONS: A Good Tripod status at Point of each Pole 9M 6m Pole 1 YES YES Pole 2 YES Yes Pole 3 NO YES Pole 4 NO YES Equ. on beam Yes YES Analysis Reference Data: 1 No 2 Yes The analysis of the building (data) as per ACI- Steel Minimium See Site survey sketch Yes/No Remark The strengthening : No the structure modification: No Nan Dar B.E ( Civil) Structural Engineer STRUCTURAL ENGINEER The building is structurally adequate in its current condition. Additional Task work Status Sir. Description As-built Reference on XCDC - As-built Data Survey Data The building is structurally adequate for proposed tripod tower The building is structurally adequate for proposed tripod tower Yes/No The building is structurally adequate for proposed tripod tower BTS load on beam ( exception of Tripod support on beam) Site photos & Survey Attached Source of data Item Description of each analysis ( Roof top) adequate status position The building is structurally adequate for proposed tripod tower 0 2 4 6 8 10 1 2 3 4 9M 6M Location Type of Tripod 12.8 0 Tripole, Roof top, 0 2 4 6 8 10 12 14 0 5 10 15 Height of BLD Roof top BLd width (m) H(m) H(m) 1 3 4 2

description

Roof top analysis report for Telecom tower installation in myanmar.

Transcript of Telecom Tower Roof top Analysis Report

Page 1: Telecom Tower Roof top  Analysis Report

MTE Engineering Co.,Ltd.

Fax: 513598, Mobile: 5019332, 5106643, 73042214

STRUCTURAL ANALYSIS Operator

for Roof Top Installation Project

HUAWEISITE CODE: YGN-0072

Technologies (YGN)

SITE OWNER: … SA By Tarabit WaveSITE ADDRESS: … SA Team ID TW-SA-01SUMMARY Report Engineer Mr.

29-July-2013 Location Map YGNRESULTS AND RECOMMENDATIONS:

A Good

Tripod status at Point of each Pole

9M 6m

Pole 1 YES YES

Pole 2 YES Yes

Pole 3 NO YES

Pole 4 NO YES

Equ. on beam Yes YES

Analysis Reference Data:

1 No Floors=4

2 Yes

The analysis of the building (data) as per

ACI- Steel Minimium See Site survey sketch

Yes/No Remark

The strengthening : No

the structure modification: No

Nan Dar

B.E ( Civil)

Structural Engineer

STRUCTURAL ENGINEER

The building is structurally adequate in its current condition.

Additional Task work Status

Sir. Description As-built Reference on

XCDC - As-built Data Survey Data

The building is structurally adequate for proposed tripod tower

The building is structurally adequate for proposed tripod tower

Yes/No

The building is structurally adequate for proposed tripod tower

BTS load on beam ( exception of Tripod support on beam)

Site photos & Survey Attached

Source of data

Item Description of each analysis ( Roof top) adequate statusposition

The building is structurally adequate for proposed tripod tower

0

2

4

6

8

10

1 2 3 4

9M

6M

Location

Type of Tripod

12.8

0

Tripole, Roof top,

0

2

4

6

8

10

12

14

0 5 10 15

Height of BLD

Roof top

BLd width (m)

H(m

)

H(m

)

1

3 4

2

Page 2: Telecom Tower Roof top  Analysis Report

MTE Engineering Co.,Ltd.

Fax: 513598, Mobile: 5019332, 5106643, 73042214

STRUCTURAL ANALYSIS Operator

for Roof Top Installation Project

HUAWEISITE CODE: YGN-0072 Technologies (YGN)

SITE OWNER: … SA By Tarabit WaveSITE ADDRESS: … SA Team ID TW-SA-01

Engineer Mr.

29-July-2013 Location Map YGNRESULTS AND RECOMMENDATIONS:

Tripod position at: 1

Sr. Yes/NoA Yes

B YES

C YES

Tripod position at: 2B YES

C YES

The structural framming system for Pole 2 is the same as the pole 1.

B9''X14"

The roof top STR status in without poles: Structure is safe 3-16Фmm @T&B

Structure is safe for 9M and 6M is OK 1-6.5Фmm @6"

Analysis Reference Data:

1 XCDC - As-built Data No Survey Data2 Site photos & Survey Yes Attached

The analysis of the building (data) as per

ACI- Steel Minimium See Site survey sketch

Yes/No Remark

The strengthening : No

the structure modification: No

Nan Dar C9''X9" B9''X12"

B.E (Civil) 4-16Фmm @section 2-16Фmm @T&B

Structural Engineer 1-6.5Фmm @7.5"Tie 1-6.5Фmm @5"

Description of each analysis ( Roof top) adequate statusThe building is structurally adequate in its current condition.

The building is structurally adequate for proposed 9m tripod and equipment.

The building is structurally adequate for proposed 6m tripod and equipment.

Source of data

Additional Task work Status

Reference onSir. As-builtDescription

The building is structurally adequate for proposed 9m tripod and equipment.

The building is structurally adequate for proposed 6m tripod and equipment.

1

3 4

2

Page 3: Telecom Tower Roof top  Analysis Report

MTE Engineering Co.,Ltd.

Fax: 513598, Mobile: 5019332, 5106643, 73042214

TABLE OF CONTENTS

1. CRITERIA / DESIGN SPECIFICATION3 Page

1.1 Important Factor 2

1.2 Exposure Category / Wind Speed – up 2

1.3 Design Considerations 3

1.4 Material Strength 4

1.5 Codes and References 5

2. INVESTIGATION REPORT 6

2.1 Introduction 4

2.2 Tower Description 4

2.3 Roof Description 5

2.4 Conclusions and Recommendations 5

3. DESIGN COMPUTATIONS 5

3.1 Calculations of Wind Forces 6

3.2 Etab Analysis Result Summary 8

4. ANNEX Pages

1 CRITERIA / DESIGN SPECIFICATION

In the structural investigation of the 9m and 6m Type Tower and the immediately affected roof framing due to

the installation of the proposed telecom antennas.

The modeling and analysis of the tower were performed using ETab 9.5

Load criteria

Dead Load : Super imposed dead Load = 20 psf

Parapet Wall Load = 120 lb per cuft ( as per site )

Live load : Reactions at each point of Tripod. ( see Table)

Service equipment load = as per requested loads

Existing Water Tank load = according to Capacity

Wind Load: As per Attached Wind Load reaction data

V200 and V160

1.1 IMPORTANCE FACTOR

For serviceability consideration, this shall be taken equal to 1.0

9M

6M

Page 4: Telecom Tower Roof top  Analysis Report

MTE Engineering Co.,Ltd.

Fax: 513598, Mobile: 5019332, 5106643, 73042214

1.2 EXPOSURE CATEGORY / WIND SPEED-UP

According Tower Reaction Tables, where all necessaries Service reactions are described.

1.3DESIGN CONSIDERATION

In the analysis of the tower which in addition to the existing roof top, the design take into consideration

for the proposed antenna and appurtenances as follows:

Fx'@XMax.= +/- 1.14 kNFy'@XMax.= +/- 7.581 kN

Mx'@X Max.= +/- 0 kN*mMy'@X Max.= +/- 0 kN*m

Fz'@XMax.= +/- 26.634 kN

1 Fx© Max.= +/- 1.209 kNFy© Max.= +/- 0.89 kN

1 Mx© Max.= +/- 0.921 kN*mMy© Max.= +/- 1.112 kN*m

57 DN -Fz© Max.= + 57.011 kNUp- Fz© Max.= -48.827 kN

Fx'@YMax.= +/- 10.377 kNFy'@YMax.= +/- 0.531 kN

Mx'@Y Max.= +/- 0 kN*mMy'@Y Max.= +/- 0 kN*m

Fz'@YMax.= +/- 37.713 kN

-60

-40

-20

0

20

40

60

80

1 2 3 4

Fz@C (9m)

Fz@C(6m)

@Center

-30

-20

-10

0

10

20

30

1 2 3 4

Fz@X (9m)

Fz@X(6m)

@X

-60

-40

-20

0

20

40

60

1 2 3 4

Fz@Y (9m)

Fz@Y(6m)

@Y

@C

@X

@Y

Page 5: Telecom Tower Roof top  Analysis Report

MTE Engineering Co.,Ltd.

Fax: 513598, Mobile: 5019332, 5106643, 73042214

The Analysis of the structure is based on the following Reaction table. ( The Max. reactions due to Wind)Reaction of RT Pole 9m (V200) is The Major Criteria check loads for 9 M and 6M Type Towers Installation.

Horizontal Vertical HorizontalFx kN Fz kN Fy kN Mx kNm Mz kNm My kNm

Case1 0° -1.204 -33.362 -0.001 -0.11 0 1.084

Case2 45° -0.881 -48.827 -0.885 -0.892 0 0.886

Case3 180° 1.209 41.546 0.006 0.138 0 -1.112

Case4 270° 0.886 57.011 0.89 0.921 0 -0.914

Case1 0° -1.14 0.093 -0.365 0 0 0

Case2 45° -0.531 26.634 -7.581 0 0 0

Case3 180° 1.138 0.259 0.362 0 0 0

Case4 270° 0.529 -26.281 7.578 0 0 0

Case1 0° -10.377 37.713 0.366 0 0 0

Case2 45° -7.585 26.638 -0.531 0 0 0

Case3 180° 10.374 -37.361 -0.368 0 0 0

Case4 270° 7.582 -26.286 0.529 0 0 0

Reaction of RT Pole 6m (V200)Horizontal Vertical Horizontal

Fx kN Fz kN Fy kN Mx kNm Mz kNm My kNmCase1 0° 2.92 -18.285 -0.02 -0.061 0 -3.036

Case2 45° 2.05 -26.555 2.05 2.102 0 -2.102

Case3 180° -2.917 21.632 0.023 0.07 0 3.027

Case4 270° -2.047 29.902 -2.047 -2.093 0 2.093

Case1 0° -10.678 20.177 0 0 0 0

Case2 45° -7.536 14.289 -0.478 0 0 0

Case3 180° 10.675 -19.828 0 0 0 0

Case4 270° 7.533 -13.94 0.478 0 0 0

Case1 0° -0.675 0.131 0.02 0 0 0

Case2 45° -0.478 14.289 -7.536 0 0 0

Case3 180° 0.675 0.218 -0.023 0 0 0

Case4 270° 0.478 -13.94 7.533 0 0 0

1.4MATERIAL STRENGTH

Material strength used for structural steel assumed to have complied with internationallyrecognized

standards and have the following minimum yield strength.

- All steel pipes assumed to conform to ASTM A53 Grade with Minimum Yield Stress of 240MPa.

- Structural Steel Plate assumed to have minimum yield s strength of 240 MPa.

- Structural Connection Bolts assumed to conform to ASTM A325.

- Anchor Bolts assumed to conform to ASTM A572 with minimum yield strength of 414 MPa.

The Compressive Strength of reinforced concrete is assumed at 18MPa. Reinforcing steel bars are

likewise assumed to have minimum yield strength of 275 Mpa.

reinforcement, respectively.

The

Firs

t crit

eria

che

ck li

st (

Reac

tions

) for

9M

and

6M

Typ

es

Wind Load'@

Center

Support X

Support Y

Wind Load'@Node

Moment

Moment

The

Seco

nd c

riter

ia c

heck

list

( Re

actio

ns) f

or 6

M

Type

if th

e 9M

Typ

e re

actio

ns a

re n

ot a

daqu

ate.

Center

Support X

Support Y

Node

Page 6: Telecom Tower Roof top  Analysis Report

MTE Engineering Co.,Ltd.

Fax: 513598, Mobile: 5019332, 5106643, 73042214

1.5 CODES AND REFERENCES

- AISC Steel Construction Manual, 9th,13th Edition

- AISC LRFD "Load and Resistance Factor Design" Vol. 1, 3rd edition

- ACI 318.99 , ACI318-05 / 1BC 2003

2 INVESTIGATION REPORT

2.1 INTRODUCTION

This report summarizes the structural engineering investigation of the existing roof framing and the

immediately affected of 2 types of Towers. The tower shall be utilized to carry additional

telecommunication antennas, as indicated in tem 1.3. For this reason, a structural investigation is

conducted to determine the structural integrity of the tower and the roof structures.

2.2 TOWER DESCRIPTION

As per Towers specification (Type – 9M and 6M)

See Detail technical data sheets of each tower. 2.3 ROOOF DESCRIPTION

The roof structural framing considered immediately affected by the transmitted tower load are the roof

columns, beams and slab bounded along roof framing.

2.4 Assume Reinforcements tables:STRUCTURAL

MEMBER

Typ.Column C-1 225 x 225 4 of Фmm 16 Per section

At X Direction B1 225 x 350 3 of Фmm 16 At top and bot.

At Y Direction B2 225 x 300 2 of Фmm 16At top and bot.

Note: SECTION dimensions are based from contractor's site survey.

TOP and BTM(bottom) rebars are at ends and mid-span of beam, respectively or continuous.

Refer to 1.5 MATERIAL STRENGTH for concrete and reinforcement characteristic.

For the roof slab of 100mm thick, shrinkage and temperature reinforcement is only required.

Hence, the same is safe should its "as-built" reinforcement would be Ф10mm spaced equally at 250mm

placed along each side of the slab at the top and bottom layer positions.

Should be not less than the equivalent in ACI 318-05 Minimum Reinforcement if

to be verified

Should be not less than the equivalent in ACI 318-05 Minimum Reinforcement if

to be verified

Assume As, ACI 318-05 Minimum

ReinforcementREINTFORCEMENT OF "AS-BUILT"SECTION

Should be not less than the equivalent in ACI 318-05 Minimum Reinforcement if

to be verified

SECTION (mm)

Page 7: Telecom Tower Roof top  Analysis Report

MTE Engineering Co.,Ltd.

Fax: 513598, Mobile: 5019332, 5106643, 73042214

3.1 Calculation of wind forces

The Reaction tables was given by The Vendor ( Wind Load calculation)Reaction of RT Pole 9m (V200)

Horizontal Vertical HorizontalFx kN Fy kN Fz kN Mx kNm My kNm Mz kNm

1 -1.204 -33.362 -0.001 -0.11 0 1.084-0.881 -48.827 -0.885 -0.892 0 0.8861.209 41.546 0.006 0.138 0 -1.1120.886 57.011 0.89 0.921 0 -0.914

5 -1.14 0.093 -0.365 0 0 0-0.531 26.634 -7.581 0 0 01.138 0.259 0.362 0 0 00.529 -26.281 7.578 0 0 0

6 -10.377 37.713 0.366 0 0 0-7.585 26.638 -0.531 0 0 010.374 -37.361 -0.368 0 0 07.582 -26.286 0.529 0 0 0

Reaction of RT Pole 9m (V160)Horizontal Vertical Horizontal

Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm1 -0.781 -19.073 0.002 -0.039 0 0.685

-0.562 -28.521 -0.564 -0.53 0 0.5290.783 26.621 0.001 0.056 0 -0.7020.565 36.07 0.566 0.548 0 -0.546

5 -0.688 0.141 -0.218 0 0 0-0.324 16.319 -4.563 0 0 00.687 0.204 0.217 0 0 00.323 -15.975 4.561 0 0 0

6 -6.239 23.051 0.217 0 0 0-4.564 16.321 -0.324 0 0 06.237 -22.706 -0.218 0 0 04.563 -15.976 0.323 0 0 0

x

z

WIND 180 DEG WIND 275 DEG

WIND 0 DEG WIND 45 DEG

WIND 180 DEG WIND 275 DEG

WIND 0 DEG WIND 45 DEG

WIND 180 DEG WIND 275 DEG

WIND 0 DEG WIND 45 DEG

Node Service WindMoment

WIND 0 DEG WIND 45 DEG

WIND 180 DEG WIND 275 DEG

WIND 180 DEG WIND 275 DEG

WIND 0 DEG WIND 45 DEG

WIND 180 DEG WIND 275 DEG

Node WIND 0 DEG Service Wind

WIND 45 DEG

Moment

o Node 6

Node 5

1.5m

Node 1

1.5m

9M

Page 8: Telecom Tower Roof top  Analysis Report

MTE Engineering Co.,Ltd.

Fax: 513598, Mobile: 5019332, 5106643, 73042214

Reaction of RT Pole 6m (V200)Horizontal Vertical Horizontal

Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm1 2.92 -18.285 -0.02 -0.061 0 -3.036

2.05 -26.555 2.05 2.102 0 -2.102-2.917 21.632 0.023 0.07 0 3.027-2.047 29.902 -2.047 -2.093 0 2.093

4 -10.678 20.177 0 0 0 0-7.536 14.289 -0.478 0 0 010.675 -19.828 0 0 0 07.533 -13.94 0.478 0 0 0

5 -0.675 0.131 0.02 0 0 0-0.478 14.289 -7.536 0 0 00.675 0.218 -0.023 0 0 00.478 -13.94 7.533 0 0 0

Reaction of RT Pole 6m (V160)Horizontal Vertical Horizontal

Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm1 1.857 -11.202 -0.01 -0.031 0 -1.977

1.306 -16.418 1.306 1.375 0 -1.375-1.855 13.973 0.012 0.037 0 1.971-1.303 19.189 -1.303 -1.369 0 1.369

4 -6.732 12.784 0 0 0 0-4.753 9.075 -0.301 0 0 06.73 -12.437 0 0 0 0

4.751 -8.728 0.301 0 0 05 -0.426 0.151 0.01 0 0 0

-0.301 9.075 -4.753 0 0 00.426 0.196 -0.012 0 0 00.301 -8.728 4.751 0 0 0

x

z

WIND 0 DEG WIND 45 DEG

WIND 180 DEG WIND 275 DEG

Moment

Moment

WIND 180 DEG WIND 275 DEG

WIND 0 DEG WIND 45 DEG

WIND 180 DEG WIND 275 DEG

WIND 180 DEG WIND 275 DEG

Node Service Wind WIND 0 DEG

WIND 45 DEG

WIND 0 DEG WIND 45 DEG

WIND 180 DEG WIND 275 DEG

WIND 0 DEG WIND 45 DEG

Node Service Wind WIND 0 DEG

WIND 45 DEG WIND 180 DEG WIND 275 DEG

N Node 4

Node 5

1.5m

Node 1

1.5m

6M

Page 9: Telecom Tower Roof top  Analysis Report

Site Code: YGN-0072

P1

P3 P4

P2

Page 10: Telecom Tower Roof top  Analysis Report
Page 11: Telecom Tower Roof top  Analysis Report
Page 12: Telecom Tower Roof top  Analysis Report

MTE engineerig Co.,Ltd.

SITE CODE: YGN-0072SITE OWNER:

SITE ADDRESS:

PROPOSED STRUCTURE: X-Beam is OK

RESULTS AND RECOMMENDATIONS:Tower type: 9M Tripod is OKconcrete f'c= 2.5 ksi

Steel Fy = 40 ksi Column is OK Y-Beam is OK

X direction Beam check resultType 9M

Case Description W (in) D (in)cover(in)

M u (kip-in)

V u

(kip)Flexural A s (in 2 )

Shear A vs (in 2 /in)

D/C stress ratio (moment)

D/C stress ratio (Shear)

1 Beam 1( X direction) 9 14 2 153 8.6 0.94 0.017 39% 0%2 Beam 1 (X direction) 9 14 2 113 6.5 0.94 0.017 29% 0%3 Beam 1 (X direction) 9 14 2 120 4 0.94 0.017 31% 0%4 Beam 1 (X direction) 9 14 2 78 3 0.94 0.017 20% 0%

39% 0%OK OK

Y direction Beam check resultType 9M

Case Description W (in) D (in)

cover(in)

M u (kip-in)

V u

(kip)Flexural A s (in 2 )

Shear A vs (in 2 /in)

D/C stress ratio (moment)

D/C stress ratio (Shear)

1 Beam 2( Y direction) 9 12 2 47 2.6 0.62 0.021 15% 0%2 Beam 2 (Y direction) 9 12 2 185 5 0.62 0.021 58% 0%3 Beam 2( Y direction) 9 12 2 156 4 0.62 0.021 49% 0%4 Beam 2 (Y direction) 9 12 2 100 4 0.62 0.021 31% 0%

58% 0%OK OK

Column check caseType 9M

Load Case Description W (in) D (in) V (kip) P u (kip)

M ux

(kip-in)M uy

(kip-in)Flexural A s (in 2 )

Shear A vs (in 2 /in)

D/C stress ratio (moment)

D/C stress ratio (Shear)

1 Column check for 9 9 0.3 7.7 10 31 1.25 0.013 15% 0%2 Column check for 9 9 0.24 8 29 23 1.25 0.013 17% 0%3 Column check for 9 9 0.2 8 16 23 1.25 0.013 13% 0%4 Column check for 9 9 0.2 15 14 16 1.25 0.013 18% 0%

18% 0%OK OK

ADDITIONAL COMMENTS AND RECOMMENDATIONS: 9M is OKRemarks,The Max. D/C ratio of the Column is 18% (Moment) according to Load case 4 And 0% D/C ( shear)with load Case all The Max. D/C ratio of the X beam is 39% (Moment) according to Load case 1 And 0% D/C ( shear)with load Case all The Max. D/C ratio of the Y beam is 58% (Moment) according to Load case 2 And 0% D/C ( shear)with load Case all

Max. D/C Stress ratio of Beam 1 (X direction)

Column Data Analysis (Etab)

Max. D/C Stress ratio of Beam 2 (Y direction)

Max. D/C Stress ratio of Column

conclustion for X direction beam

conclustion for Y direction beam

Check result

Assume Steel Check result

(signed and sealed by structural engineer)STRUCTURAL ENGINEER

Beam data Analysis (Etab) Assume Steel

conclustion for Column

STRUCTURAL ANALYSISfor Roof Top Installation

……

Check resultAssume Steel Beam data Analysis (Etab)

position at: 1

0%

20%

40%

60%

1 2 3 4

Mu

Vu

0%

50%

100%

1 2 3 4

Mu

Vu0%

10%

20%

1 2 3 4

Mu

Vu

Page 13: Telecom Tower Roof top  Analysis Report

MTE engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 9M Beam 1( X direction) 1

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTRposition at: 1Input Data:

bBeam or Slab Section? Beam

Exterior or Interior Exposure? ExteriorReinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 12.500 in.

Total Beam Depth, h = 14.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 3.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 8.93 ft-kips h=14'' d=12.5'' Ultimate Design Moment, Mu = 12.75 ft-kips

Ultimate Design Shear, Vu = 8.60 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00831 fs = 10.32 ksi

ρ(min) = 0.00500 fs(used) = 10.32 ksi

As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = 41.88 in. >= s1 = 3 in., O.K.

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03151 dc = 1.5000 in.

As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. z = 24.56 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 24.56 k/in.,

39% φMn = 32.29 ft-k >= Mu = 12.75 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 9.56 kips fr = 0.375 ksi

φVs = 7.23 kips kd = 3.8448 in.

φVn = φVc+φVs = 16.79 kips >= Vu = 8.6 kips, O.K. Ig = 2058.00 in.^4

φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 9.19 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 912.47 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = 2058.00 in.^4 (for deflection)

Av(min) = 0.066 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = 6.250 in. >= s2 = 5.88 in., O.K.

Comments:The D/C stress ratio for Moment is 39% and the D/C Shear Stress Ratio is 0 %

Page 14: Telecom Tower Roof top  Analysis Report

MTE engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 9M Beam 1( X direction) 2

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTRposition at: 1Input Data:

bBeam or Slab Section? Beam

Exterior or Interior Exposure? ExteriorReinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 12.500 in.

Total Beam Depth, h = 14.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 3.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 6.59 ft-kips h=14'' d=12.5'' Ultimate Design Moment, Mu = 9.42 ft-kips

Ultimate Design Shear, Vu = 6.50 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00831 fs = 7.62 ksi

ρ(min) = 0.00500 fs(used) = 7.62 ksi

As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = 56.70 in. >= s1 = 3 in., O.K.

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03151 dc = 1.5000 in.

As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. z = 18.14 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 18.14 k/in.,

29% φMn = 32.29 ft-k >= Mu = 9.42 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 9.56 kips fr = 0.375 ksi

φVs = 7.23 kips kd = 3.8448 in.

φVn = φVc+φVs = 16.79 kips >= Vu = 6.5 kips, O.K. Ig = 2058.00 in.^4

φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 9.19 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 912.47 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = 2058.00 in.^4 (for deflection)

Av(min) = 0.066 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = 6.250 in. >= s2 = 5.88 in., O.K.

Comments:The D/C stress ratio for Moment is 29% and the D/C Shear Stress Ratio is 0 %

Page 15: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 9M Beam 1( X direction) 3

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTRposition at: 1Input Data:

bBeam or Slab Section? Beam

Exterior or Interior Exposure? ExteriorReinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 12.500 in.

Total Beam Depth, h = 14.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 3.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 7.00 ft-kips h=14'' d=12.5'' Ultimate Design Moment, Mu = 10.00 ft-kips

Ultimate Design Shear, Vu = 4.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00831 fs = 8.09 ksi

ρ(min) = 0.00500 fs(used) = 8.09 ksi

As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = 53.39 in. >= s1 = 3 in., O.K.

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03151 dc = 1.5000 in.

As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. z = 19.27 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 19.27 k/in.,

31% φMn = 32.29 ft-k >= Mu = 10 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 9.56 kips fr = 0.375 ksi

φVs = 7.23 kips kd = 3.8448 in.

φVn = φVc+φVs = 16.79 kips >= Vu = 4 kips, O.K. Ig = 2058.00 in.^4

φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 9.19 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 912.47 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = 2058.00 in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 31% and the D/C Shear Stress Ratio is 0 %

Page 16: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 9M Beam 1( X direction) 4

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTRposition at: 1Input Data:

bBeam or Slab Section? Beam

Exterior or Interior Exposure? ExteriorReinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 12.500 in.

Total Beam Depth, h = 14.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 3.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 4.55 ft-kips h=14'' d=12.5'' Ultimate Design Moment, Mu = 6.50 ft-kips

Ultimate Design Shear, Vu = 3.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00831 fs = 5.26 ksi

ρ(min) = 0.00500 fs(used) = 5.26 ksi

As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = 82.14 in. >= s1 = 3 in., O.K.

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03151 dc = 1.5000 in.

As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. z = 12.52 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 12.52 k/in.,

20% φMn = 32.29 ft-k >= Mu = 6.5 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 9.56 kips fr = 0.375 ksi

φVs = 7.23 kips kd = 3.8448 in.

φVn = φVc+φVs = 16.79 kips >= Vu = 3 kips, O.K. Ig = 2058.00 in.^4

φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 9.19 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 912.47 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = 2058.00 in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 20% and the D/C Shear Stress Ratio is 0 %

Page 17: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 9M Beam 2( Y direction) 1

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTRposition at: 1Input Data:

bBeam or Slab Section? Beam

Exterior or Interior Exposure? ExteriorReinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 10.500 in.

Total Beam Depth, h = 12.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 2.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 2.74 ft-kips h=12'' d=10.5'' Ultimate Design Moment, Mu = 3.92 ft-kips

Ultimate Design Shear, Vu = 2.60 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00989 fs = 3.81 ksi

ρ(min) = 0.00500 fs(used) = 3.81 ksi

As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = 113.48 in. >= s1 = 3 in., O.K.

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03310 dc = 1.5000 in.

As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. z = 10.38 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 10.38 k/in.,

15% φMn = 26.68 ft-k >= Mu = 3.92 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 8.03 kips fr = 0.375 ksi

φVs = 6.07 kips kd = 3.4719 in.

φVn = φVc+φVs = 14.10 kips >= Vu = 2.6 kips, O.K. Ig = 1296.00 in.^4

φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 614.11 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = 1296.00 in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 15% and the D/C Shear Stress Ratio is 0 %

Page 18: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 9M Beam 2( Y direction) 2

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTRposition at: 1Input Data:

bBeam or Slab Section? Beam

Exterior or Interior Exposure? ExteriorReinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 10.500 in.

Total Beam Depth, h = 12.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 2.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 10.79 ft-kips h=12'' d=10.5'' Ultimate Design Moment, Mu = 15.42 ft-kips

Ultimate Design Shear, Vu = 5.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Warning: s2 > s2(max) allowed!Results:

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00989 fs = 14.98 ksi

ρ(min) = 0.00500 fs(used) = 14.98 ksi

As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = 28.83 in. >= s1 = 3 in., O.K.

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03310 dc = 1.5000 in.

As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. z = 40.84 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 40.84 k/in.,

58% φMn = 26.68 ft-k >= Mu = 15.42 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 8.03 kips fr = 0.375 ksi

φVs = 6.07 kips kd = 3.4719 in.

φVn = φVc+φVs = 14.10 kips >= Vu = 5 kips, O.K. Ig = 1296.00 in.^4

φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 614.11 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = 780.97 in.^4 (for deflection)

Av(min) = 0.066 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = 5.250 in. < s2 = 5.88 in., N.G.

Comments:The D/C stress ratio for Moment is 58% and the D/C Shear Stress Ratio is 0 %

Page 19: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 9M Beam 2( Y direction) 3

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTRposition at: 1Input Data:

bBeam or Slab Section? Beam

Exterior or Interior Exposure? ExteriorReinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 10.500 in.

Total Beam Depth, h = 12.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 2.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 9.10 ft-kips h=12'' d=10.5'' Ultimate Design Moment, Mu = 13.00 ft-kips

Ultimate Design Shear, Vu = 4.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00989 fs = 12.64 ksi

ρ(min) = 0.00500 fs(used) = 12.64 ksi

As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = 34.19 in. >= s1 = 3 in., O.K.

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03310 dc = 1.5000 in.

As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. z = 34.44 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 34.44 k/in.,

49% φMn = 26.68 ft-k >= Mu = 13 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 8.03 kips fr = 0.375 ksi

φVs = 6.07 kips kd = 3.4719 in.

φVn = φVc+φVs = 14.10 kips >= Vu = 4 kips, O.K. Ig = 1296.00 in.^4

φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 614.11 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = 892.40 in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 49% and the D/C Shear Stress Ratio is 0 %

Page 20: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 9M Beam 2( Y direction) 4

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTRposition at: 1Input Data:

bBeam or Slab Section? Beam

Exterior or Interior Exposure? ExteriorReinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 10.500 in.

Total Beam Depth, h = 12.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 2.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 5.83 ft-kips h=12'' d=10.5'' Ultimate Design Moment, Mu = 8.33 ft-kips

Ultimate Design Shear, Vu = 4.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00989 fs = 8.10 ksi

ρ(min) = 0.00500 fs(used) = 8.10 ksi

As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = 53.34 in. >= s1 = 3 in., O.K.

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03310 dc = 1.5000 in.

As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. z = 22.08 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 22.08 k/in.,

31% φMn = 26.68 ft-k >= Mu = 8.33 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 8.03 kips fr = 0.375 ksi

φVs = 6.07 kips kd = 3.4719 in.

φVn = φVc+φVs = 14.10 kips >= Vu = 4 kips, O.K. Ig = 1296.00 in.^4

φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 614.11 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = 1296.00 in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 31% and the D/C Shear Stress Ratio is 0 %

Page 21: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/COLUMN ANALYSISFor Biaxial Flexure with Axial Compression or Tension Load

Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code)Job Name: STRUCTURAL ANALYSIS Subject: 9M Column check case

Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTRposition at: 1 Case 1Input Data:

Lx=9Reinforcing Yield Strength, fy = 40 ksi.

Concrete Comp. Strength, f 'c = 2.5 ksi

Total Member Width, Lx = 9.000 in.

Total Member Depth, Ly = 9.000 in.

Distance to Long. Reinforcing, d' = 2.000 in. Ly=9 Ntb=4Ultimate Design Axial Load, Pu = 7.70 kips Nsb=0Ultimate Design Moment, Mux = 0.83 ft-kips

Ultimate Design Moment, Muy = 2.58 ft-kips

Total Top/Bot. Long. Bars, Ntb = 4 d'=2 (typ.)Top/Bot. Longitudinal Bar Size = 5

Total Side Long. Bars, Nsb = 0 Member SectionSide Longitudinal Bar Size = 5

Results:Gross reinforcing ratio provided:

ρg = 0.01531

X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram PointsLocation φPnx (k) φMnx (ft-k) ey (in.) Comments Location φPny (k) φMny (ft-k) ex (in.) CommentsPoint #1 170.72 0.00 0.00 Nom. max. compression = φPo Point #1 170.72 0.00 0.00 Nom. max. compression = φPoPoint #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPo Point #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPoPoint #3 136.58 7.99 0.70 Min. eccentricity Point #3 136.58 7.99 0.70 Min. eccentricityPoint #4 104.77 15.43 1.77 0% rebar tension = 0 ksi Point #4 104.77 15.43 1.77 0% rebar tension = 0 ksi

Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi

Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi

Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi

Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*Ag Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*AgPoint #9 0.00 11.81 (Infinity ) Pure moment capacity Point #9 0.00 11.81 (Infinity ) Pure moment capacity

Point #10 -44.64 0.00 0.00 Pure axial tension capacity Point #10 -44.64 0.00 0.00 Pure axial tension capacity

Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:Interpolated Results from Above: Interpolated Results from Above:φPnx (k) φMnx (ft-k) ey (in.) φPny (k) φMny (ft-k) ex (in.)

112.33 12.16 1.30 54.61 18.32 4.03

Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: Column Shear checkφPn = N.A. kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 k*Lu <= 4.95 ft. (for k*Lu/r(min) <= 22) Vu(Max.)= 0.3 kipS.R. = N.A. S.R. = Pu/φPn <= 1.0 k*Lu <= 9.00 ft. (for k*Lu/r(min) <= 40) Ф Vc = 4.725 kip

Req'd AVs= 0 in2

Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:15% S.R. = 0.151 S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag) #3@9'' 0.00%

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPnx

(k)

φMnx (ft-k)

X-AXIS INTERACTION DIAGRAM

X

Y

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPny

(k)

φMny (ft-k)

Y-AXIS INTERACTION DIAGRAM

Page 22: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/COLUMN ANALYSISFor Biaxial Flexure with Axial Compression or Tension Load

Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code)Job Name: STRUCTURAL ANALYSIS Subject: 9M Column check case

Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTRposition at: 1 Case 2Input Data:

Lx=9Reinforcing Yield Strength, fy = 40 ksi.

Concrete Comp. Strength, f 'c = 2.5 ksi

Total Member Width, Lx = 9.000 in.

Total Member Depth, Ly = 9.000 in.

Distance to Long. Reinforcing, d' = 2.000 in. Ly=9 Ntb=4Ultimate Design Axial Load, Pu = 8.00 kips Nsb=0Ultimate Design Moment, Mux = 2.42 ft-kips

Ultimate Design Moment, Muy = 1.92 ft-kips

Total Top/Bot. Long. Bars, Ntb = 4 d'=2 (typ.)Top/Bot. Longitudinal Bar Size = 5

Total Side Long. Bars, Nsb = 0 Member SectionSide Longitudinal Bar Size = 5

Results:Gross reinforcing ratio provided:

ρg = 0.01531

X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram PointsLocation φPnx (k) φMnx (ft-k) ey (in.) Comments Location φPny (k) φMny (ft-k) ex (in.) CommentsPoint #1 170.72 0.00 0.00 Nom. max. compression = φPo Point #1 170.72 0.00 0.00 Nom. max. compression = φPoPoint #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPo Point #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPoPoint #3 136.58 7.99 0.70 Min. eccentricity Point #3 136.58 7.99 0.70 Min. eccentricityPoint #4 104.77 15.43 1.77 0% rebar tension = 0 ksi Point #4 104.77 15.43 1.77 0% rebar tension = 0 ksi

Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi

Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi

Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi

Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*Ag Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*AgPoint #9 0.00 11.81 (Infinity ) Pure moment capacity Point #9 0.00 11.81 (Infinity ) Pure moment capacity

Point #10 -44.64 0.00 0.00 Pure axial tension capacity Point #10 -44.64 0.00 0.00 Pure axial tension capacity

Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:Interpolated Results from Above: Interpolated Results from Above:φPnx (k) φMnx (ft-k) ey (in.) φPny (k) φMny (ft-k) ex (in.)

61.72 18.64 3.63 75.42 18.07 2.88

Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: Column Shear checkφPn = N.A. kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 k*Lu <= 4.95 ft. (for k*Lu/r(min) <= 22) Vu(Max.)= 0.24 kipS.R. = N.A. S.R. = Pu/φPn <= 1.0 k*Lu <= 9.00 ft. (for k*Lu/r(min) <= 40) Ф Vc = 4.725 kip

Req'd AVs= 0 in2

Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:17% S.R. = 0.171 S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag) #3@9'' 0.00%

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPnx

(k)

φMnx (ft-k)

X-AXIS INTERACTION DIAGRAM

X

Y

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPny

(k)

φMny (ft-k)

Y-AXIS INTERACTION DIAGRAM

Page 23: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/COLUMN ANALYSISFor Biaxial Flexure with Axial Compression or Tension Load

Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code)Job Name: STRUCTURAL ANALYSIS Subject: 9M Column check case

Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTRposition at: 1 Case 3Input Data:

Lx=9Reinforcing Yield Strength, fy = 40 ksi.

Concrete Comp. Strength, f 'c = 2.5 ksi

Total Member Width, Lx = 9.000 in.

Total Member Depth, Ly = 9.000 in.

Distance to Long. Reinforcing, d' = 2.000 in. Ly=9 Ntb=4Ultimate Design Axial Load, Pu = 8.00 kips Nsb=0Ultimate Design Moment, Mux = 1.33 ft-kips

Ultimate Design Moment, Muy = 1.92 ft-kips

Total Top/Bot. Long. Bars, Ntb = 4 d'=2 (typ.)Top/Bot. Longitudinal Bar Size = 5

Total Side Long. Bars, Nsb = 0 Member SectionSide Longitudinal Bar Size = 5

Results:Gross reinforcing ratio provided:

ρg = 0.01531

X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram PointsLocation φPnx (k) φMnx (ft-k) ey (in.) Comments Location φPny (k) φMny (ft-k) ex (in.) CommentsPoint #1 170.72 0.00 0.00 Nom. max. compression = φPo Point #1 170.72 0.00 0.00 Nom. max. compression = φPoPoint #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPo Point #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPoPoint #3 136.58 7.99 0.70 Min. eccentricity Point #3 136.58 7.99 0.70 Min. eccentricityPoint #4 104.77 15.43 1.77 0% rebar tension = 0 ksi Point #4 104.77 15.43 1.77 0% rebar tension = 0 ksi

Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi

Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi

Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi

Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*Ag Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*AgPoint #9 0.00 11.81 (Infinity ) Pure moment capacity Point #9 0.00 11.81 (Infinity ) Pure moment capacity

Point #10 -44.64 0.00 0.00 Pure axial tension capacity Point #10 -44.64 0.00 0.00 Pure axial tension capacity

Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:Interpolated Results from Above: Interpolated Results from Above:φPnx (k) φMnx (ft-k) ey (in.) φPny (k) φMny (ft-k) ex (in.)

97.31 16.22 2.00 75.42 18.07 2.88

Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: Column Shear checkφPn = N.A. kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 k*Lu <= 4.95 ft. (for k*Lu/r(min) <= 22) Vu(Max.)= 0.2 kipS.R. = N.A. S.R. = Pu/φPn <= 1.0 k*Lu <= 9.00 ft. (for k*Lu/r(min) <= 40) Ф Vc = 4.725 kip

Req'd AVs= 0 in2

Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:13% S.R. = 0.132 S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag) #3@9'' 0.00%

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPnx

(k)

φMnx (ft-k)

X-AXIS INTERACTION DIAGRAM

X

Y

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPny

(k)

φMny (ft-k)

Y-AXIS INTERACTION DIAGRAM

Page 24: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/COLUMN ANALYSISFor Biaxial Flexure with Axial Compression or Tension Load

Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code)Job Name: STRUCTURAL ANALYSIS Subject: 9M Column check case

Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTRposition at: 1 Case 4Input Data:

Lx=9Reinforcing Yield Strength, fy = 40 ksi.

Concrete Comp. Strength, f 'c = 2.5 ksi

Total Member Width, Lx = 9.000 in.

Total Member Depth, Ly = 9.000 in.

Distance to Long. Reinforcing, d' = 2.000 in. Ly=9 Ntb=4Ultimate Design Axial Load, Pu = 15.00 kips Nsb=0Ultimate Design Moment, Mux = 1.17 ft-kips

Ultimate Design Moment, Muy = 1.33 ft-kips

Total Top/Bot. Long. Bars, Ntb = 4 d'=2 (typ.)Top/Bot. Longitudinal Bar Size = 5

Total Side Long. Bars, Nsb = 0 Member SectionSide Longitudinal Bar Size = 5

Results:Gross reinforcing ratio provided:

ρg = 0.01531

X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram PointsLocation φPnx (k) φMnx (ft-k) ey (in.) Comments Location φPny (k) φMny (ft-k) ex (in.) CommentsPoint #1 170.72 0.00 0.00 Nom. max. compression = φPo Point #1 170.72 0.00 0.00 Nom. max. compression = φPoPoint #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPo Point #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPoPoint #3 136.58 7.99 0.70 Min. eccentricity Point #3 136.58 7.99 0.70 Min. eccentricityPoint #4 104.77 15.43 1.77 0% rebar tension = 0 ksi Point #4 104.77 15.43 1.77 0% rebar tension = 0 ksi

Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi

Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi

Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi

Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*Ag Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*AgPoint #9 0.00 11.81 (Infinity ) Pure moment capacity Point #9 0.00 11.81 (Infinity ) Pure moment capacity

Point #10 -44.64 0.00 0.00 Pure axial tension capacity Point #10 -44.64 0.00 0.00 Pure axial tension capacity

Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:Interpolated Results from Above: Interpolated Results from Above:φPnx (k) φMnx (ft-k) ey (in.) φPny (k) φMny (ft-k) ex (in.)

123.50 9.61 0.93 118.54 10.54 1.07

Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: Column Shear checkφPn = N.A. kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 k*Lu <= 4.95 ft. (for k*Lu/r(min) <= 22) Vu(Max.)= 0.2 kipS.R. = N.A. S.R. = Pu/φPn <= 1.0 k*Lu <= 9.00 ft. (for k*Lu/r(min) <= 40) Ф Vc = 4.725 kip

Req'd AVs= 0 in2

Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:18% S.R. = 0.181 S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag) #3@9'' 0.00%

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPnx

(k)

φMnx (ft-k)

X-AXIS INTERACTION DIAGRAM

X

Y

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPny

(k)

φMny (ft-k)

Y-AXIS INTERACTION DIAGRAM

Page 25: Telecom Tower Roof top  Analysis Report

MTE engineerig Co.,Ltd.

SITE CODE: YGN-0072SITE OWNER:

SITE ADDRESS:

PROPOSED STRUCTURE: position at: 1 X-Beam is OK

RESULTS AND RECOMMENDATIONS:Tower type: 6M Tripodconcrete f'c= 2.5 ksi

Steel Fy = 40 ksi Column is OK Y-Beam is OK

X direction Beam check resultType 6M

Case Description W (in) D (in) cover(in)M u (kip-in)

V u

(kip)Flexural A s (in 2 )

Shear A vs (in 2 /in)

ratio (moment)

ratio (Shear)

1 Beam 1( X direction) 9 14 2 0 0 0.94 0.017 0% 0%2 Beam 1 (X direction) 9 14 2 0 0 0.94 0.017 0% 0%3 Beam 1 (X direction) 9 14 2 0 0 0.94 0.017 0% 0%4 Beam 1 (X direction) 9 14 2 0 0 0.94 0.017 0% 0%

0% 0%OK OK

Y direction Beam check resultType 6M

Case Description W (in) D (in)cover(in)

M u (kip-in)

V u

(kip)Flexural A s (in 2 )

Shear A vs (in 2 /in)

ratio (moment)

ratio (Shear)

1 Beam 2( Y direction) 9 12 2 0 0 0.62 0.021 0% 0%2 Beam 2 (Y direction) 9 12 2 0 0 0.62 0.021 0% 0%3 Beam 2( Y direction) 9 12 2 0 0 0.62 0.021 0% 0%4 Beam 2 (Y direction) 9 12 2 0 0 0.62 0.021 0% 0%

0% 0%OK OK

Column check caseType 6MLoad Case Description W (in) D (in) V (kip) P u (kip)

M ux

(kip-in)M uy

(kip-in)Flexural A s (in 2 )

Shear A vs (in 2 /in)

ratio (moment)

ratio (Shear)

1 Column check for 9 9 0.24 8 29 23 1.25 0.013 17% 0%2 Column check for 9 9 0.15 8 20 16 1.25 0.013 12% 0%3 Column check for 9 9 0.1 8 12 8.3 1.25 0.013 9% 0%4 Column check for 9 9 0.1 12.7 10 10.5 1.25 0.013 14% 0%

17% 0%OK OK

ADDITIONAL COMMENTS AND RECOMMENDATIONS: 6M is OKRemarks,The Max. D/C ratio of the Column is 17% (Moment) according to Load case 1 And 0% D/C ( shear)with load Case all The Max. D/C ratio of the X beam is 0% (Moment) according to Load case 4 And 0% D/C ( shear)with load Case all The Max. D/C ratio of the Y beam is 0% (Moment) according to Load case 4 And 0% D/C ( shear)with load Case all

STRUCTURAL ANALYSISfor Roof Top Installation

……

Beam data Analysis (Etab) Assume Steel Check result

Max. D/C Stress ratio of Beam 1 (X direction)conclustion for X direction beam

Beam data Analysis (Etab) Assume Steel Check result

Max. D/C Stress ratio of Beam 2 (Y direction)conclustion for Y direction beam

(signed and sealed by structural engineer)STRUCTURAL ENGINEER

Column Data Analysis (Etab) Assume Steel Check result

Max. D/C Stress ratio of Column conclustion for Column

0%

50%

100%

1 2 3 4

Mu

Vu

0%

50%

100%

1 2 3 4

Mu

Vu0%

10%

20%

1 2 3 4

Mu

Vu

Page 26: Telecom Tower Roof top  Analysis Report

MTE engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 6M Beam 1( X direction) 1

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTR

Input Data: b

Beam or Slab Section? BeamExterior or Interior Exposure? Exterior

Reinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 12.500 in.

Total Beam Depth, h = 14.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 3.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 0.00 ft-kips h=14'' d=12.5'' Ultimate Design Moment, Mu = 0.00 ft-kips

Ultimate Design Shear, Vu = 0.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:#DIV/0!

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00831 fs = 0.00 ksi

ρ(min) = 0.00500 fs(used) = 0.00 ksi

As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = #DIV/0! #DIV/0!

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03151 dc = 1.5000 in.

As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. z = 0.00 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 0 k/in.,

0% φMn = 32.29 ft-k >= Mu = 0 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 9.56 kips fr = 0.375 ksi

φVs = 7.23 kips kd = 3.8448 in.

φVn = φVc+φVs = 16.79 kips >= Vu = 0 kips, O.K. Ig = 2058.00 in.^4

φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 9.19 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 912.47 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = #DIV/0! in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %

Page 27: Telecom Tower Roof top  Analysis Report

MTE engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 6M Beam 1( X direction) 2

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTR

Input Data: b

Beam or Slab Section? BeamExterior or Interior Exposure? Exterior

Reinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 12.500 in.

Total Beam Depth, h = 14.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 3.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 0.00 ft-kips h=14'' d=12.5''

Ultimate Design Moment, Mu = 0.00 ft-kips

Ultimate Design Shear, Vu = 0.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:#DIV/0!

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00831 fs = 0.00 ksi

ρ(min) = 0.00500 fs(used) = 0.00 ksi

As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = #DIV/0! #DIV/0!

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03151 dc = 1.5000 in.

As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. z = 0.00 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 0 k/in.,

0% φMn = 32.29 ft-k >= Mu = 0 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 9.56 kips fr = 0.375 ksi

φVs = 7.23 kips kd = 3.8448 in.

φVn = φVc+φVs = 16.79 kips >= Vu = 0 kips, O.K. Ig = 2058.00 in.^4

φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 9.19 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 912.47 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = #DIV/0! in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %

Page 28: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 6M Beam 1( X direction) 3

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTR

Input Data: b

Beam or Slab Section? BeamExterior or Interior Exposure? Exterior

Reinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 12.500 in.

Total Beam Depth, h = 14.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 3.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 0.00 ft-kips h=14'' d=12.5'' Ultimate Design Moment, Mu = 0.00 ft-kips

Ultimate Design Shear, Vu = 0.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:#DIV/0!

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00831 fs = 0.00 ksi

ρ(min) = 0.00500 fs(used) = 0.00 ksi

As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = #DIV/0! #DIV/0!

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03151 dc = 1.5000 in.

As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. z = 0.00 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 0 k/in.,

0% φMn = 32.29 ft-k >= Mu = 0 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 9.56 kips fr = 0.375 ksi

φVs = 7.23 kips kd = 3.8448 in.

φVn = φVc+φVs = 16.79 kips >= Vu = 0 kips, O.K. Ig = 2058.00 in.^4

φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 9.19 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 912.47 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = #DIV/0! in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %

Page 29: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 6M Beam 1( X direction) 4

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTR

Input Data: b

Beam or Slab Section? BeamExterior or Interior Exposure? Exterior

Reinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 12.500 in.

Total Beam Depth, h = 14.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 3.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 0.00 ft-kips h=14'' d=12.5''

Ultimate Design Moment, Mu = 0.00 ft-kips

Ultimate Design Shear, Vu = 0.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:#DIV/0!

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00831 fs = 0.00 ksi

ρ(min) = 0.00500 fs(used) = 0.00 ksi

As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = #DIV/0! #DIV/0!

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03151 dc = 1.5000 in.

As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. z = 0.00 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 0 k/in.,

0% φMn = 32.29 ft-k >= Mu = 0 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 9.56 kips fr = 0.375 ksi

φVs = 7.23 kips kd = 3.8448 in.

φVn = φVc+φVs = 16.79 kips >= Vu = 0 kips, O.K. Ig = 2058.00 in.^4

φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 9.19 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 912.47 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = #DIV/0! in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %

Page 30: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 6M Beam 2( Y direction) 1

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTR

Input Data: b

Beam or Slab Section? BeamExterior or Interior Exposure? Exterior

Reinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 10.500 in.

Total Beam Depth, h = 12.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 2.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 0.00 ft-kips h=12'' d=10.5''

Ultimate Design Moment, Mu = 0.00 ft-kips

Ultimate Design Shear, Vu = 0.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:#DIV/0!

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00989 fs = 0.00 ksi

ρ(min) = 0.00500 fs(used) = 0.00 ksi

As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = #DIV/0! #DIV/0!

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03310 dc = 1.5000 in.

As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. z = 0.00 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 0 k/in.,

0% φMn = 26.68 ft-k >= Mu = 0 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 8.03 kips fr = 0.375 ksi

φVs = 6.07 kips kd = 3.4719 in.

φVn = φVc+φVs = 14.10 kips >= Vu = 0 kips, O.K. Ig = 1296.00 in.^4

φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 614.11 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = #DIV/0! in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %

Page 31: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 6M Beam 2( Y direction) 2

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTR

Input Data: b

Beam or Slab Section? BeamExterior or Interior Exposure? Exterior

Reinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 10.500 in.

Total Beam Depth, h = 12.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 2.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 0.00 ft-kips h=12'' d=10.5'' Ultimate Design Moment, Mu = 0.00 ft-kips

Ultimate Design Shear, Vu = 0.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:#DIV/0!

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:

c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00989 fs = 0.00 ksi

ρ(min) = 0.00500 fs(used) = 0.00 ksi

As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = #DIV/0! #DIV/0!

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03310 dc = 1.5000 in.

As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. z = 0.00 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 0 k/in.,

0% φMn = 26.68 ft-k >= Mu = 0 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 8.03 kips fr = 0.375 ksi

φVs = 6.07 kips kd = 3.4719 in.

φVn = φVc+φVs = 14.10 kips >= Vu = 0 kips, O.K. Ig = 1296.00 in.^4

φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 614.11 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = #DIV/0! in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %

Page 32: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 6M Beam 2( Y direction) 3

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTR

Input Data: b

Beam or Slab Section? BeamExterior or Interior Exposure? Exterior

Reinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 10.500 in.

Total Beam Depth, h = 12.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 2.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 0.00 ft-kips h=12'' d=10.5'' Ultimate Design Moment, Mu = 0.00 ft-kips

Ultimate Design Shear, Vu = 0.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:#DIV/0!

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:

c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00989 fs = 0.00 ksi

ρ(min) = 0.00500 fs(used) = 0.00 ksi

As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = #DIV/0! #DIV/0!

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03310 dc = 1.5000 in.

As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. z = 0.00 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 0 k/in.,

0% φMn = 26.68 ft-k >= Mu = 0 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 8.03 kips fr = 0.375 ksi

φVs = 6.07 kips kd = 3.4719 in.

φVn = φVc+φVs = 14.10 kips >= Vu = 0 kips, O.K. Ig = 1296.00 in.^4

φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 614.11 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = #DIV/0! in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %

Page 33: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/SECTION ANALYSISFlexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections

Per ACI 318-99 Code CaseJob Name: STRUCTURAL ANALYSIS Subject: 6M Beam 2( Y direction) 4

Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTR

Input Data: b

Beam or Slab Section? BeamExterior or Interior Exposure? Exterior

Reinforcing Yield Strength, fy = 40 ksi

Concrete Comp. Strength, f 'c = 2.5 ksi h dBeam Width, b = 9.000 in.

Depth to Tension Reinforcing, d = 10.500 in.

Total Beam Depth, h = 12.000 in. AsTension Reinforcing, As = 0.935 in.^2 Singly Reinforced Section

No. of Tension Bars in Beam, Nb = 2.000Tension Reinf. Bar Spacing, s1 = 3.000 in. d'=2'' b=9''

Clear Cover to Tension Reinf., Cc = 1.500 in.

Depth to Compression Reinf., d' = 2.000 in. A'sCompression Reinforcing, A's = 0.935 in.^2 =0.935 Working Stress Moment, Ma = 0.00 ft-kips h=12'' d=10.5'' Ultimate Design Moment, Mu = 0.00 ft-kips

Ultimate Design Shear, Vu = 0.00 kips

Total Stirrup Area, Av(stirrup) = 0.100 in.^2 As=0.935Tie/Stirrup Spacing, s2 = 5.8824 in. Doubly Reinforced Section

Results:#DIV/0!

Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):β1 = 0.85 Per ACI 318-99 Code:

c = 2.089 in. Es = 29000 ksi

a = 1.775 in. Ec = 2850 ksi

ρb = 0.03093 n = 10.18 n = Es/Ec

ρ(prov) = 0.00989 fs = 0.00 ksi

ρ(min) = 0.00500 fs(used) = 0.00 ksi

As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. s1(max) = #DIV/0! #DIV/0!

ρ(temp) = N.A. (total for section)

As(temp) = N.A. in.^2/face Per ACI 318-95 Code:ρ(max) = 0.03310 dc = 1.5000 in.

As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. z = 0.00 k/in.

f 's = 3.69 ksi (A's does not yield) z(allow) = 145.00 k/in. >= z = 0 k/in.,

0% φMn = 26.68 ft-k >= Mu = 0 ft-k, O.K. O.K.

Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:φVc = 8.03 kips fr = 0.375 ksi

φVs = 6.07 kips kd = 3.4719 in.

φVn = φVc+φVs = 14.10 kips >= Vu = 0 kips, O.K. Ig = 1296.00 in.^4

φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k

Av(prov) = 0.100 in.^2 = Av(stirrup) Icr = 614.11 in.^4

0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Ie = #DIV/0! in.^4 (for deflection)

Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K.

s2(max) = N.A. in.

Comments:The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %

Page 34: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/COLUMN ANALYSISFor Biaxial Flexure with Axial Compression or Tension Load

Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code)Job Name: STRUCTURAL ANALYSIS Subject: 6M Column check case

Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTRCase 1

Input Data: Lx=9

Reinforcing Yield Strength, fy = 40 ksi.

Concrete Comp. Strength, f 'c = 2.5 ksi

Total Member Width, Lx = 9.000 in.

Total Member Depth, Ly = 9.000 in.

Distance to Long. Reinforcing, d' = 2.000 in. Ly=9 Ntb=4Ultimate Design Axial Load, Pu = 8.00 kips Nsb=0Ultimate Design Moment, Mux = 2.42 ft-kips

Ultimate Design Moment, Muy = 1.92 ft-kips

Total Top/Bot. Long. Bars, Ntb = 4 d'=2 (typ.)Top/Bot. Longitudinal Bar Size = 5

Total Side Long. Bars, Nsb = 0 Member SectionSide Longitudinal Bar Size = 5

Results:Gross reinforcing ratio provided:

ρg = 0.01531

X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram PointsLocation φPnx (k) φMnx (ft-k) ey (in.) Comments Location φPny (k) φMny (ft-k) ex (in.) CommentsPoint #1 170.72 0.00 0.00 Nom. max. compression = φPo Point #1 170.72 0.00 0.00 Nom. max. compression = φPoPoint #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPo Point #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPoPoint #3 136.58 7.99 0.70 Min. eccentricity Point #3 136.58 7.99 0.70 Min. eccentricityPoint #4 104.77 15.43 1.77 0% rebar tension = 0 ksi Point #4 104.77 15.43 1.77 0% rebar tension = 0 ksi

Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi

Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi

Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi

Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*Ag Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*AgPoint #9 0.00 11.81 (Infinity ) Pure moment capacity Point #9 0.00 11.81 (Infinity ) Pure moment capacity

Point #10 -44.64 0.00 0.00 Pure axial tension capacity Point #10 -44.64 0.00 0.00 Pure axial tension capacity

Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:Interpolated Results from Above: Interpolated Results from Above:φPnx (k) φMnx (ft-k) ey (in.) φPny (k) φMny (ft-k) ex (in.)

61.72 18.64 3.63 75.42 18.07 2.88

Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: Column Shear checkφPn = N.A. kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 k*Lu <= 4.95 ft. (for k*Lu/r(min) <= 22) Vu(Max.)= 0.24 kipS.R. = N.A. S.R. = Pu/φPn <= 1.0 k*Lu <= 9.00 ft. (for k*Lu/r(min) <= 40) Ф Vc = 4.725 kip

Req'd AVs= 0 in2

Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:17% S.R. = 0.171 S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag) #3@9'' 0.00%

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPnx

(k)

φMnx (ft-k)

X-AXIS INTERACTION DIAGRAM

X

Y

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPny

(k)

φMny (ft-k)

Y-AXIS INTERACTION DIAGRAM

Page 35: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/COLUMN ANALYSISFor Biaxial Flexure with Axial Compression or Tension Load

Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code)Job Name: STRUCTURAL ANALYSIS Subject: 6M Column check case

Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTRCase 2

Input Data: Lx=9

Reinforcing Yield Strength, fy = 40 ksi.

Concrete Comp. Strength, f 'c = 2.5 ksi

Total Member Width, Lx = 9.000 in.

Total Member Depth, Ly = 9.000 in.

Distance to Long. Reinforcing, d' = 2.000 in. Ly=9 Ntb=4Ultimate Design Axial Load, Pu = 8.00 kips Nsb=0Ultimate Design Moment, Mux = 1.67 ft-kips

Ultimate Design Moment, Muy = 1.33 ft-kips

Total Top/Bot. Long. Bars, Ntb = 4 d'=2 (typ.)Top/Bot. Longitudinal Bar Size = 5

Total Side Long. Bars, Nsb = 0 Member SectionSide Longitudinal Bar Size = 5

Results:Gross reinforcing ratio provided:

ρg = 0.01531

X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram PointsLocation φPnx (k) φMnx (ft-k) ey (in.) Comments Location φPny (k) φMny (ft-k) ex (in.) CommentsPoint #1 170.72 0.00 0.00 Nom. max. compression = φPo Point #1 170.72 0.00 0.00 Nom. max. compression = φPoPoint #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPo Point #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPoPoint #3 136.58 7.99 0.70 Min. eccentricity Point #3 136.58 7.99 0.70 Min. eccentricityPoint #4 104.77 15.43 1.77 0% rebar tension = 0 ksi Point #4 104.77 15.43 1.77 0% rebar tension = 0 ksi

Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi

Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi

Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi

Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*Ag Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*AgPoint #9 0.00 11.81 (Infinity ) Pure moment capacity Point #9 0.00 11.81 (Infinity ) Pure moment capacity

Point #10 -44.64 0.00 0.00 Pure axial tension capacity Point #10 -44.64 0.00 0.00 Pure axial tension capacity

Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:Interpolated Results from Above: Interpolated Results from Above:φPnx (k) φMnx (ft-k) ey (in.) φPny (k) φMny (ft-k) ex (in.)

85.35 17.78 2.50 97.31 16.22 2.00

Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: Column Shear checkφPn = N.A. kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 k*Lu <= 4.95 ft. (for k*Lu/r(min) <= 22) Vu(Max.)= 0.15 kipS.R. = N.A. S.R. = Pu/φPn <= 1.0 k*Lu <= 9.00 ft. (for k*Lu/r(min) <= 40) Ф Vc = 4.725 kip

Req'd AVs= 0 in2

Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:12% S.R. = 0.122 S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag) #3@9'' 0.00%

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPnx

(k)

φMnx (ft-k)

X-AXIS INTERACTION DIAGRAM

X

Y

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPny

(k)

φMny (ft-k)

Y-AXIS INTERACTION DIAGRAM

Page 36: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/COLUMN ANALYSISFor Biaxial Flexure with Axial Compression or Tension Load

Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code)Job Name: STRUCTURAL ANALYSIS Subject: 6M Column check case

Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTRCase 3

Input Data: Lx=9

Reinforcing Yield Strength, fy = 40 ksi.

Concrete Comp. Strength, f 'c = 2.5 ksi

Total Member Width, Lx = 9.000 in.

Total Member Depth, Ly = 9.000 in.

Distance to Long. Reinforcing, d' = 2.000 in. Ly=9 Ntb=4Ultimate Design Axial Load, Pu = 8.00 kips Nsb=0Ultimate Design Moment, Mux = 1.00 ft-kips

Ultimate Design Moment, Muy = 0.69 ft-kips

Total Top/Bot. Long. Bars, Ntb = 4 d'=2 (typ.)Top/Bot. Longitudinal Bar Size = 5

Total Side Long. Bars, Nsb = 0 Member SectionSide Longitudinal Bar Size = 5

Results:Gross reinforcing ratio provided:

ρg = 0.01531

X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram PointsLocation φPnx (k) φMnx (ft-k) ey (in.) Comments Location φPny (k) φMny (ft-k) ex (in.) CommentsPoint #1 170.72 0.00 0.00 Nom. max. compression = φPo Point #1 170.72 0.00 0.00 Nom. max. compression = φPoPoint #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPo Point #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPoPoint #3 136.58 7.99 0.70 Min. eccentricity Point #3 136.58 7.99 0.70 Min. eccentricityPoint #4 104.77 15.43 1.77 0% rebar tension = 0 ksi Point #4 104.77 15.43 1.77 0% rebar tension = 0 ksi

Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi

Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi

Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi

Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*Ag Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*AgPoint #9 0.00 11.81 (Infinity ) Pure moment capacity Point #9 0.00 11.81 (Infinity ) Pure moment capacity

Point #10 -44.64 0.00 0.00 Pure axial tension capacity Point #10 -44.64 0.00 0.00 Pure axial tension capacity

Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:Interpolated Results from Above: Interpolated Results from Above:φPnx (k) φMnx (ft-k) ey (in.) φPny (k) φMny (ft-k) ex (in.)

108.51 13.56 1.50 119.51 10.33 1.04

Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: Column Shear checkφPn = N.A. kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 k*Lu <= 4.95 ft. (for k*Lu/r(min) <= 22) Vu(Max.)= 0.1 kipS.R. = N.A. S.R. = Pu/φPn <= 1.0 k*Lu <= 9.00 ft. (for k*Lu/r(min) <= 40) Ф Vc = 4.725 kip

Req'd AVs= 0 in2

Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:9% S.R. = 0.094 S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag) #3@9'' 0.00%

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPnx

(k)

φMnx (ft-k)

X-AXIS INTERACTION DIAGRAM

X

Y

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPny

(k)

φMny (ft-k)

Y-AXIS INTERACTION DIAGRAM

Page 37: Telecom Tower Roof top  Analysis Report

MTE Engineering

RECTANGULAR CONCRETE BEAM/COLUMN ANALYSISFor Biaxial Flexure with Axial Compression or Tension Load

Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code)Job Name: STRUCTURAL ANALYSIS Subject: 6M Column check case

Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTRCase 4

Input Data: Lx=9

Reinforcing Yield Strength, fy = 40 ksi.

Concrete Comp. Strength, f 'c = 2.5 ksi

Total Member Width, Lx = 9.000 in.

Total Member Depth, Ly = 9.000 in.

Distance to Long. Reinforcing, d' = 2.000 in. Ly=9 Ntb=4Ultimate Design Axial Load, Pu = 12.70 kips Nsb=0Ultimate Design Moment, Mux = 0.83 ft-kips

Ultimate Design Moment, Muy = 0.88 ft-kips

Total Top/Bot. Long. Bars, Ntb = 4 d'=2 (typ.)Top/Bot. Longitudinal Bar Size = 5

Total Side Long. Bars, Nsb = 0 Member SectionSide Longitudinal Bar Size = 5

Results:Gross reinforcing ratio provided:

ρg = 0.01531

X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram PointsLocation φPnx (k) φMnx (ft-k) ey (in.) Comments Location φPny (k) φMny (ft-k) ex (in.) CommentsPoint #1 170.72 0.00 0.00 Nom. max. compression = φPo Point #1 170.72 0.00 0.00 Nom. max. compression = φPoPoint #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPo Point #2 136.58 0.00 0.00 Allowable φPn(max) = 0.8*φPoPoint #3 136.58 7.99 0.70 Min. eccentricity Point #3 136.58 7.99 0.70 Min. eccentricityPoint #4 104.77 15.43 1.77 0% rebar tension = 0 ksi Point #4 104.77 15.43 1.77 0% rebar tension = 0 ksi

Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi Point #5 86.87 17.74 2.45 25% rebar tension = 10 ksi

Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi Point #6 59.85 18.75 3.76 50% rebar tension = 20 ksi

Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi Point #7 53.64 18.24 4.08 100% rebar tension = 40 ksi

Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*Ag Point #8 20.25 12.81 7.59 φPn = 0.1*f'c*AgPoint #9 0.00 11.81 (Infinity ) Pure moment capacity Point #9 0.00 11.81 (Infinity ) Pure moment capacity

Point #10 -44.64 0.00 0.00 Pure axial tension capacity Point #10 -44.64 0.00 0.00 Pure axial tension capacity

Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:Interpolated Results from Above: Interpolated Results from Above:φPnx (k) φMnx (ft-k) ey (in.) φPny (k) φMny (ft-k) ex (in.)

130.85 8.59 0.79 128.61 8.86 0.83

Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: Column Shear checkφPn = N.A. kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 k*Lu <= 4.95 ft. (for k*Lu/r(min) <= 22) Vu(Max.)= 0.1 kipS.R. = N.A. S.R. = Pu/φPn <= 1.0 k*Lu <= 9.00 ft. (for k*Lu/r(min) <= 40) Ф Vc = 4.725 kip

Req'd AVs= 0 in2

Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:14% S.R. = 0.138 S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag) #3@9'' 0.00%

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPnx

(k)

φMnx (ft-k)

X-AXIS INTERACTION DIAGRAM

X

Y

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

φPny

(k)

φMny (ft-k)

Y-AXIS INTERACTION DIAGRAM