Techniques for Pixel Level Analog to Digital...

29
Techniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang, and Abbas El Gamal Stanford University Aerosense 98 3360-1 1

Transcript of Techniques for Pixel Level Analog to Digital...

Page 1: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Techniques for Pixel Level Analog to Digital Conversion

Boyd Fowler, David Yang, and Abbas El Gamal

Stanford University

Aerosense 98 3360-1 1

Page 2: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Output MuxOutput

Digital

Image Sensor

Array

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

Array Core

Image Sensor

ADC

Multiplxer outputDigital

Array

ADC

Approaches to Integrating ADC with Image Sensor

• Chip Level

• Column Level

• Pixel Level

Aerosense 98 3360-1 2

Page 3: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Pixel Level ADC

• Advantages

– Continuous observation of the pixel

– Low noise

– Low power

• Disadvantages

– Limited area at the pixel level – this becomes

less of a problem as technology scales

Aerosense 98 3360-1 3

Page 4: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Outline

⇒ • Architecture

– Σ∆ ADC– MCBS ADC– Readout circuitry

• Circuits

– Σ∆ pixel– MCBS pixel

• Results

• Comparision

Aerosense 98 3360-1 4

Page 5: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Pixel Level ADC

• Pixel size limits ADC architecture

• Cannot use conventional bit-parallel ADC

techniques, because they require memory at the

pixel

• Bit serial ADC is required but conventional

techniques are too complicated

• To overcome this problem we developed two bit

serial techniques

– Oversampled

– Nyquist rate

Aerosense 98 3360-1 5

Page 6: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Oversampled ADC

• Robust operation over process variation and noise

• Simple imprecise circuits can be used

• Use first order 1 bit Σ∆ modulation

– Requires small silicon area

Aerosense 98 3360-1 6

Page 7: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

dTInput Output

First Order 1 Bit Σ∆ Modulation

Output decimated using LPF to obtain pixel values -performed off chip.

Aerosense 98 3360-1 7

Page 8: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Oversampling Ratio L as a function of SNR

Number of bit planes L per frame for a desired average

SNR

log2(L) =SNR + 5.2dB

9.0

Examples:• SNR = 48dB (8 bits) ⇒ L = 60

• SNR = 20dB (3.3 bits) ⇒ L = 7

Aerosense 98 3360-1 8

Page 9: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Σ∆ ADC Limitations

• Increased output bandwidth caused by

oversampling

• Decimation/DSP is required to resample the data

at the Nyquist frequency

• Poor low light response due to nonuniform

quantization

Aerosense 98 3360-1 9

Page 10: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Pixel Level Nyquist Rate ADC

Recently developed a new multi-channel bit-serial(MCBS) ADC technique (Yang, Fowler, El GamalCICC’98)

• Low output data rate

• Requires very few transistors at the pixel

• Uses very simple circuits

• Complex circuits shared by all pixels

• No external DSP is required to consturct image

Aerosense 98 3360-1 10

Page 11: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

MCBS ADC

ADC assigns binary codewords to quantization intervals3-bit example: signal S ∈ [0, 1))

Quantization table

S Gray Code

0 − 18 0 0 0

18 − 2

8 0 0 128 − 3

8 0 1 138 − 4

8 0 1 048 − 5

8 1 1 058 − 6

8 1 1 168 − 7

8 1 0 178 − 1 1 0 0

Key observation: Each output bit can be viewed as abinary-valued function over intervals (independent ofother bits!)

Aerosense 98 3360-1 11

Page 12: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Operation of the 1-bit Comparator/Latch

3 Bit LSB Example

Aerosense 98 3360-1 12

Page 13: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

MCBS ADC – Block Diagram

Aerosense 98 3360-1 13

Page 14: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

MCBS ADC Limitation

The gain bandwidth product must exceed 2Fd × 4m

• To perform m bit quantization at least 2m − 1

comparison must be performed

• Assuming uniform quantization, the gain of the

comparator must be proportional to 2m.

Aerosense 98 3360-1 14

Page 15: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Sense Amplifiers and Latches

Row

Addr

ess D

ecod

er

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

PixelBlock

WORD

BIT

Block Diagram for Image Sensor with Pixel Level ADC

Aerosense 98 3360-1 15

Page 16: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

1

2

34

Bit Plane

1

0

1

1

1

1

0

L1

2

Frame

Next Frame

Time

Output of Image Sensor with Pixel Level ADC

Aerosense 98 3360-1 16

Page 17: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Outline

• Architecture

– Σ∆ ADC– MCBS ADC– Readout circuitry

⇒ • Circuits

– Σ∆ pixel– MCBS pixel

• Results

• Comparision

Aerosense 98 3360-1 17

Page 18: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Multiplexed Σ∆ Pixel Block Diagram - 17 Transistors

Aerosense 98 3360-1 18

Page 19: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Multiplexed Σ∆ Pixel Block Circuit Schematic - 17

Transistors

Aerosense 98 3360-1 19

Page 20: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Σ∆ ADC Circuit

• Advantages

– Small size

– Low sensitivity to transistor noise, and no

offset FPN

– Large charge handling capacity

• Disadvantages

– Moderate gain FPN

– Poor low light response

– High output data rate

Aerosense 98 3360-1 20

Page 21: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

MCBS ADC Pixel Block Circuit Schematic - 19

Transistors

Aerosense 98 3360-1 21

Page 22: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

MCBS ADC

• Advantages

– Small size

– Low gain and offset FPN

– Complete testability

• Disadvantages

– Moderate comparator gain-bandwidth

– Reduced sensitivity caused by sample capacitor

Aerosense 98 3360-1 22

Page 23: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Outline

• Architecture

– Σ∆ ADC– MCBS ADC– Readout circuitry

• Circuits

– Σ∆ pixel– MCBS pixel

⇒ • Results

• Comparision

Aerosense 98 3360-1 23

Page 24: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Chip Characteristics

Σ∆ ADC MCBS ADC

Technology 0.8µm 3M1P 0.35µm 4M1P

Pixel Area 20.8 µm × 19.8 µm 8.9µm × 8.9µm

Transistors per pixel 4.25 (17 per four pixels) 4.5 (18 per four pixels)

Fill Factor 30% 25%

Array Size 128×128 320×240

Supply Voltage 3.3 v 3.3 v

Aerosense 98 3360-1 24

Page 25: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

0 0.2 0.4 0.6 0.8 1

x 10−3

−1

0

1

2

3

Time (ms)

!CK

(vo

lts)

0 0.2 0.4 0.6 0.8 1

x 10−3

−2

−1

0

1

2

3

4

Time (ms)

Pix

el O

utpu

t (vo

lts)

Σ∆ ADC Output Waveforms

CLKB

PIXEL

OUTPUT

SNR = 43dB with OSR = 64, Gain FPN = 1%

Aerosense 98 3360-1 25

Page 26: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

1 1.5 2 2.50

50

100

150

200

250

300

Input Voltage

Out

put C

odeADC Transfer Characteristic (10us)

Measured MCBS ADC Transfer Function

INL = 2.3 LSB, DNL = 1.2 LSB, Gain FPN = 0.24%,and Offset FPN = 0.2%Aerosense 98 3360-1 26

Page 27: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Outline

• Architecture

– Σ∆ ADC– MCBS ADC– Readout circuitry

• Circuits

– Σ∆ pixel– MCBS pixel

• Results

⇒ • Comparision

Aerosense 98 3360-1 27

Page 28: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Pixel Level ADC Comparison

Σ∆ ADC MCBS ADC

Size 4.25 transistors per pixel 4.5 transistor per pixel

Conversion mode Charge to bits Voltage to bits

Charge handling Capacity Large Small

FPN Moderate Small

Transistor noise sensitivity Small Moderate

Date rate Large Small

Quantization Nonuniform – fixed by L Programmable

External processing Decimation Filtering None

Required memory Large Small

Power Dissipation Moderate Small

Aerosense 98 3360-1 28

Page 29: Techniques for Pixel Level Analog to Digital Conversionabbas/group/papers_and_pub/aerosense98_slide.pdfTechniques for Pixel Level Analog to Digital Conversion Boyd Fowler, David Yang,

Conclusions

• Σ∆ ADC is better suited to IR sensors

– Large charge handling capacity

– Fine quantization near the center of the range

(i.e. small difference between large charge

value can be determined)

• MCBS ADC is better suited to visible range

sensors

– Low output data rate

– Programmable quantization

– High sensitivity

Aerosense 98 3360-1 29