TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. ·...

13
TECHNICAL NOTE Selection of LongRange Energy Systems Modelling Platforms The MAPS Chile experience ISSUE 22

Transcript of TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. ·...

Page 1: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

         

             TECHNICAL  NOTE  

Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms

The  MAPS  Chile  experience  

ISSUE  22  

Page 2: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

     Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms

The  MAPS  Chile  experience  

 

 

Date:  12/06/2014  

Country:  Chile  

Authors:  

Carlos  Benavides  Farías,  Energy  Research  Centre,  University  of  Chile    Manuel  Diaz  Romero,  Energy  Research  Centre,  University  of  Chile  

 

© MAPS  2014  

 

Disclaimer:  the  contents  of  these  briefings  are  the  responsibility  of  the  authors,  and  the  views  expressed  therein  those  of  the  author  alone.  

 

The  following  citation  should  be  used  for  this  document:  

Benavides  Farías,  C.,  and  Diaz  Romero,  M.,  2014.  Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience.  

Cape  Town.  MAPS

Page 3: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

Table  of  Contents  

Introduction   1  

The  sectoral  models   1  

Commercial,  public  and  residential  (CPR)   1  

Transport   2  

Electricity  generation   2  

Industry  and  mining   3  

Agriculture   4  

Forestry   4  

Waste   4  

Challenges  in  finding  baseline  data   5  

Motivation  for  model  selection   7  

Lessons  for  future  studies   8  

Conclusions   9  

References   10  

Page 4: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

1 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

INTRODUCTION  

MAPS  Chile   is  a  government  project,  which,  through  a  process  of  research  and  stakeholder  participation,  aims  to   identify  

options  for  reducing  greenhouse  gases  emissions  in  Chile,  through  providing  a  sound  evidence  base.  The  project  is  divided  

into  three  phases.  In  Phase  1,  the  team  generated  the  2007-­‐2030  Baseline  scenario   (PRIEN  2013;  POCH  Ambiental  2013a;  

SISTEMAS   SUSTENTABLES   2013a;   AGRIMED   2013;   POCH   Ambiental   2013b;   FUNDACIÓN   CHILE   2013a;   POCH   Ambiental  

2013c).  Phase  2   involved   the  preparation  of   the  Baseline  2013-­‐2050  scenario  and   the  development  of  mitigation  actions  

(Centro   Cambio   Global-­‐UC   2013;   SISTEMAS   SUSTENTABLES   2013;   INFOR   2013;   UNTEC   2013;   FUNDACION   CHILE   2013;  

GreenLab  UC  2013.  Phase  3  will  build  on  and  refine  outputs  and  results  from  Phase  2  including  the  bridge  to  an  ambitious  

2050  vision,  and  include  the  analysis  of  co-­‐benefits.    

The   research   team,   led  by  an  engineering  group   from  the  University  of  Chile  and  an  economic  group   from  the  Pontifical  

Catholic  University,  plans  and  coordinates  the  research  process  and  commissioned  external  researchers  to  conduct  seven  

sectoral   studies   to   inform  the  baseline   scenarios.  The  consultants   for   these   studies  were   selected   through  a  competitive  

bidding   process   led   by  United  Nations   Development   Programme   (UNDP).   The   consultants   selected   in   Phase   1  were   not  

necessarily  involved  in  Phase  2  and  as  a  result  some  of  the  models  used  in  Phase  1  were  different  from  those  used  in  Phase  

2.    

This  note   is  part  of  a  series   that  aims  to  support  stakeholders  and  research  groups   in   the  selection  of   long-­‐range  energy  

systems   modelling   platforms,   to   inform   decision   making   for   public   policy   options   which   are   compatible   with   national  

development  goals.  It  documents  and  provides  brief  reflections  on  the  development  of  the  baseline  scenarios,  based  on  the  

observations   of   the   consultants   involved   in   the   two   phases   of   the   project,   with   a   view   to   sharing   experiences   with  

modellers   in   the   other   MAPS   country   teams.   The   note   assumes   a   basic   understanding   of   models   and   the   modelling  

terminology.  

THE  SECTORAL  MODELS    

In   general   the  modellers   used   one   or   a   combination   of   econometric,   optimisation   and   bottom-­‐up   end-­‐use  models.   The  

focus   of   this   note   is   on   the   energy  models   that   were   used   for   the   commercial,   public   and   residential   (CPR),   transport,  

electricity   generation,   industry   and   mining   sectors.   Brief   descriptions   of   the   models   used   in   the   non-­‐energy   sectors  

(forestry,  agriculture  and  waste)  are  also  given,  as  despite  not  being  the  focus  of  this  note,  they  were  also  included  in  the  

scenario  building  exercise.  

Commercial,  public  and  residential  (CPR)    

For   the  commercial  and  public   sectors  an  econometric  model  was  used   in  Phase  1,  using  GDP  as   the  key  driver.   For   the  

residential  sector,  a  bottom-­‐up,  end-­‐use  model  was  developed.  Here,  drivers  were  related  to  economic  parameters  (GDP  

per  capita)  and  population  (numbers  of  households  and  people  per  household,  based  on  the  relationship  between  GDP  per  

capita   and   people   per   household).   The   econometric   model   was   developed   using   EViews   and   implemented   in   Excel  

spreadsheets.   GHG   emissions   were   calculated   by   multiplying   energy   consumption   in   a   particular   year   by   the   relevant  

emission  factors,  using  the  IPCC  2006  guidelines  as  a  basis.  

Page 5: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

2 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

The   residential   sector  methodology   considered   heating,   hot  water,   cooking   and   electrical   uses.   It   took   a   base-­‐year   fuel  

share  based  on  statistical  information  from  a  single  year  which  was  gathered  through  surveys,  and  technical  considerations  

and  fuel  substitution  according  to  future  fuel  price  series.  For  residential  heating,  one  of  the  most  important  consumers  of  

energy  in  this  sector  and  the  country  -­‐  a  thermal  comfort  assumption  at  a  high  GDP  per  capita  level  -­‐  was  established  as  a  

saturation  parameter.  A  criterion  of  saturation  of  household  appliances  according  to  international  experience  and  GDP  per  

capita  was  also  considered.  

In  Phase  2,  bottom-­‐up  end-­‐use  models  were  used  in  each  sector.  Heating,  electrical,  air  conditioners,  and  other  uses  were  

estimated   for   this   sector   in   addition   to   the   allocation   of   the   share   of   different   fuel   types.   This   approach   allowed   for  

mitigation  actions  to  be  easily  modelled.  The  model  was  developed  in  a  software  tool  called  LEAP  (The  Long-­‐Range  Energy  

Alternatives   Planning   system).   In   the   commercial   and   public   sector   a   new   approach   was   developed   considering   drivers  

related   to   population,   GDP   per   capita   and   benchmarked   against   international   indices   by   subsectors   (hospitals,   schools,  

universities,   public   buildings,   shopping   centres,   supermarkets,   banks,   and   clinics).   These   international   sub-­‐indices   play   a  

role  in  determining  the  saturation  parameter  in  the  future.  The  residential  sector  was  modelled  similarly  to  Phase  1.  

Transport    

Several  econometric  models  were  used  during  Phase  1  and  Phase  2   in  this  sector.  The  main  variables  projected  by  these  

econometric  models  are;  passenger  kilometres  (PKM)  for  passenger  transport,  tonne  kilometres  (TKM)  for  freight  transport,  

and  energy  consumption   for  aviation  and  shipping   transport.  The  econometric  models  were  built  using  EViews  statistical  

software  and  implemented  in  Excel  spreadsheets.  No  modelling  or  software  package  (such  as  LEAP  or  MARKAL  was  used)  to  

build  the  transport  model,  and  all  the  calculations  were  done  in  Excel  spreadsheets,  which  were  similar  in  structure  to  the  

UK  2050  Pathways  Calculator1.  The  main  drivers  were  GDP,  GDP  per  capita  and  population.  GHG  emissions  were  calculated  

by  multiplying   energy   consumption   in   particular   year   by   the   relevant   emission   factors.   Equations   (1)   and   (2)   show   the  

relationship  between  energy  consumption  and  TKM  and  PKM,  respectively.    

 

𝐸𝐶(𝑙𝑡) = !"#  (!"#!!")!"(!"

!")∗!( !"#

!"!!"#$)  (1),  𝐸𝐶(𝑇𝐽) = 𝑀! % ∗

!"# !"!ñ!

/!"# ×![!"#]

!" !"!!"!!"

×!" !"#!"!

     (2)  

Where   EC   is   energy   consumption,   FE   is   fuel   efficiency,   L   is   average   load   by   vehicle,   OC   is   average   occupancy,   P   is   the  

population  and  M  is  the  modal  share  (bus,  private  vehicle,  taxi,  etc.).  During  Phase  1  the  modal  share  was  projected  based  

on  expert  opinion  and  historical  information.  A  preliminary  model  to  project  modal  share  was  developed  during  Phase  2.  In  

addition,  fuel  efficiency  improvements  were  projected  based  on  expert  opinion.  

Electricity  generation    

An  optimisation  model  was  used  during  Phase  1  and  Phase  2  for  the  electricity  generation  sector.  The  objective  function  

minimised   the   investment   cost,   operation   cost   and   the   unserved   energy   cost.   The   problem   was   subject   to   several  

constraints:  energy  balance  between  electricity  generation  and  demand,  appropriate  upper  and  lower  bounds  to  electricity  

generation,  maximum   feasible   amount   of   investment   for   each   kind   of   technology   that   could   happen   during   every   year,  

quota   obligation   to   renewable   energy   generation,   etc.   GHG   emissions   were   calculated   by   multiplying   primary   energy  

1  Available  online  at  http://2050-­‐calculator-­‐tool.decc.gov.uk/pathways/.      

Page 6: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

3 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

consumed   to   produce   electricity   in   a   particular   year   by   the   relevant   emission   factors.   The  MESSAGE   and   LEAP   software  

packages  were  used  in  Phase  1  and  Phase  2,  respectively.    

Hydroelectric   generation   is   one   of   the  main   sources   of   electricity   in   Chile.   Between   1996   and   2010   this   represented   an  

average  of  50%  of  total  generation.  Although  Chile  has  suffered  some  droughts  in  the  last  three  years,  this  energy  source  

has  contributed  up  to  the  30%  of  the  total  generation.  MESSAGE  and  LEAP  do  not  accommodate  hydroelectric  uncertainties  

due   to   climate   conditions   hence   an   exogenous   approach   was   used   to   deal   with   this.   Five   hydrological   scenarios   were  

projected:  wet,  middle  wet,  normal,  middle  dry,  and  dry.  Historic   information  was  used  to  develop  these  projections.  For  

example,  for  the  wet  scenario,  rainfall  records  from  1972  were  used  to  project  for  the  first  year,  those  from  1973  were  used  

to  project  the  second  year,  and  so  on.  Capacity  factors  for  hydroelectric  plants  were  calculated  according  these  hydrological  

scenarios.  For  every  scenario  an  optimum  expansion  plant  was  obtained.  The  expansion  plant  which  minimises  the  average  

cost  was  selected.  

Electricity  demand  was  projected  by  the  sectoral  study  teams  and  passed  manually  to  the  electricity  generation  model.  

Industry  and  mining  

In   Phase   1,   an   econometric   model   was   used   as   the   basis   from   which   to   project   emissions   in   industry   and   mining.  

Researchers   defined   drivers   related   to   economic   parameters   (national   and   global   GDP),  mainly   in   the   ‘Other   Industries’  

sector.   They   defined   production   parameters   (production   functions)   and   technology   penetration   as   the   main   drivers   in  

sectors  including  copper,  pulp  and  paper,  and  cement.  The  econometric  model  was  developed  in  EViews  and  implemented  

in  Excel  spreadsheets.    

In  the  case  of  the  Industry  sector,  the  projection  was  based  on  models  of  the  type:  

𝑌! = 𝑎!𝑥!"!"

!

 

Where  Yt:  Energy  consumption  at  time  t;  ai:  Constant;  xit:  consumption  explanatory  variable  Y  i  at  time  t;  bi:  elasticity  with  

respect  to  consumption  and  the  explanatory  variable  i  at  time  t.  The  consumption  explanatory  variable  is  the  driver  which  

in  most  cases  is  the  GDP  projection.  

In  Chile,  one  of  the  main  economic  sectors  is  the  copper  industry.  This  sector’s  energy  consumption  is  modelled  according  

to  the  following  expression:    

Energy  Consumption =  Unit  power  coefficient×CopperProduction      

Where  Unit  power  coefficient  is  the  amount  of  energy  required  in  producing  a  fine  metric  ton  (TMF)  of  copper.    

Additionally,  GHG  emissions  from  Industrial  Processes  are  estimated  in  this  model.  They  correspond  to  the  GHG  emissions  

generated   by   energy   use   in   production   processes   and   the   physical   and   chemical   transformation   of   raw  materials.   They  

include  emissions  from  the  production  process  of  cement  and  lime,  and  steel  production  cycle.  

During   Phase   2,   bottom-­‐up   (useful   energy   approach)   end-­‐use   models   were   used.   Motor,   electrical   and   thermal  

consumption  were  estimated  for  each  sector  in  addition  to  the  allocation  of  fuel  share.  This  approach  allows  for  mitigation  

Page 7: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

4 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

actions  to  be  modelled  easily.  The  model  was  developed  using  LEAP  software.  The  useful  energy  approach  is  represented  in  

Figure  1:  

Figure  1:  Useful  energy  approach  in  the  industrial  sector  

Modelling  considers  projections  of  production  with  specific  criteria  for  each  sector  and  the  projection  of  energy  intensities  

by  product  and  subsector,  which  takes  into  account  improving  efficiencies  by  international  standards  in  the  long  term  and  

fuel   substitution  according   to   future   fuel  price   series.   In   this   case,   the  mining   sector   is  modelled  according   to  Processed  

Mineral  (for  extraction  and  concentration)  and  TMF  (for  refining),  not  just  TMF  as  in  Phase  1.  

During  Phase  2,  Other  Industries  and  Industrial  Processes  were  modelled  similarly  to  Phase  1.  

Agriculture  

During  Phase  1  expert  opinion  (based  on  historical   tendencies)  was  used  to  project   land  use  for   the  agriculture  sector.  A  

similar   approach  was   used   to   project   the   livestock   population.   The  model  was   implemented   in   an   Excel   spreadsheet.   In  

Phase  2  a  more  robust  model  was  used  with  different  econometric  models  implemented  to  project  these  variables.    

Forestry  

In   Phase   1   a   distinction  was  made   between   two   types   of   forests:   native   forests   and   plantations.   A   simulation  model   of  

forestry  growth  was  used  to  project  carbon  capture.  In  the  case  of  native  forests  only  new  native  forest  were  considered  to  

capture   carbon.   The   number   of   hectares   in   the   first   year   and   the   rate   of   growth   for   different   forest   species   were   the  

parameters  used  to  simulate   the   future  capture.  The  emissions  associated  with  cutting  down  plantations  were  projected  

using  the  information  on  the  pulp  industries  demand  which  was  published  in  public  reports.  The  model  was  implemented  in  

an  Excel  spreadsheet.  In  addition,  emissions  related  to  fires  were  projected  according  to  historical  averages.    

Waste        

An   econometric   model   was   used   to   project   the   total   per   capita   waste   generation   for   the   solid   waste   category.   Expert  

opinion  was   considered   to  project   the   composition   (food,  paper,   textile,  wood,   and  others).   In  Phase  1   the  econometric  

models   were   estimated   using   the   statistical   software   (EViews)   and   implemented   in   Excel   spreadsheets.   In   Phase   2   the  

econometric  model  was  implemented  in  Analytica.  

Final  Ene

rgy

Final  EnergyMotor  Use

Efficiency(%)

Final  EnergyThermal Use

Efficiency  (%)

Final  EnergyElectrical Use Efficiency  (%)

UsefulEne

rgy

Page 8: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

5 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

CHALLENGES  IN  FINDING  BASELINE  DATA  

The   main   source   of   energy   consumption   data   is   the   National   Energy   Balance   (NEB)   (Ministry   of   Energy,   2012).   This  

information  is  available  to  the  public  from  1991  in  an  electronic  format  and  from  1973  in  a  physical  format.  The  following  

table  shows  the  main  issues  and  challenges  related  to  baseline  data.  

Table  1:  Baseline  data  issues  and  challenges  

Sector   Issues  and  challenges  

Transport  Historical  information:  PKM,  TKM.  There  is  no  information  about  PKM  and  TKM  for  road  freight  transport  and  

passenger  transport,  respectively.  This  information  is  critical  to  calibrating  the  econometric  models.  The  

historical  variables  PKM  and  TKM  were  calculated  indirectly  using  historical  energy  consumption  (obtained  from  

NEB)  and  equation  (1)  and  (2).  Many  assumptions  about  critical  parameters  (FE,  L,  OC  and  M)  were  made.  

Modal  share:  The  main  information  source  is  the  Origin-­‐Destination  Survey  (ODS).  Unfortunately,  this  survey  is  

only  done  every  six  or  ten  years.  In  some  regions  there  is  only  one  data  point  available.  Therefore,  there  are  no  

trends  in  modal  share  per  year  available.  

Main  parameters:  Apart  from  the  FE  parameter,  there  is  a  lack  of  information  for  the  main  parameters.  The  ODS  

is  also  the  main  information  source  for  the  OC  parameter.  With  regard  to  freight  transport,  there  is  a  lack  of  

information  for  the  L  parameter  for  the  different  kinds  of  freight.  In  addition,  there  is  little  information  of  the  

freight  trip  length  which  is  useful  to  calculate  TKM.    

Electricity  generation  

For  the  electricity  generation  problem,  apart  from  information  about  capacity  factor,  the  main  issues  are  in  the  

future  projections.  

Investment  cost:  It  is  possible  to  find  information  about  investment  costs  in  the  press  or  in  public  sources,  such  

as  the  Environmental  Evaluation  System  (Environmental  Assessment  Service  n.d.).  However  these  values  have  

uncertainties  because  there  is  no  a  policy  or  law  to  compel  the  owners  to  publish  the  real  costs.  It  is  likely  that  

only  the  owners  or  manufacturers  know  the  real  investment  costs  of  new  plants.  In  addition,  current  costs  are  as  

important  to  know  as  future  investment  cost.  For  example,  there  is  uncertainty  about  projections  of  solar  energy  

investment  cost.  

Fuel  prices:  The  information  on  current  fuel  prices  or  variable  costs  of  generation  is  available,  but  as  with  the  

investment  cost,  there  are  uncertainties  about  future  prices.  While  coal  is  used  by  base-­‐load  plants,  and  diesel  or  

fuel  oil  generation  meet  peak  demand,  it  is  not  clear  what  will  happen  with  natural  gas  plants  due  to  fuel  price  

uncertainties.  In  comparison  to  other  Latin  American  countries,  Chile  imports  almost  all  the  required  natural  gas  

(LNG).  While  in  other  Latin  American  countries  the  price  of  natural  gas  is  3-­‐5  US$/MMBTU,  in  Chile  this  price  is  

up  to  8  US$/MMBTU.    It  is  not  easy  to  project  if  new  investors  in  LNG  plants  will  be  able  to  provide  supply  of  

natural  gas  at  competitive  prices.    

Capacity  factor  of  renewable  sources:  During  the  last  year  the  public  sector  has  made  an  effort  to  improve  the  

information  available  on  renewable  energy  sources  (Solar  energy  explorer  n.d.;  Wind  energy  explorer  n.d.).    

However,  this  information  is  not  still  sufficient.  To  have  a  capacity  factor  equal  to  0.2  for  a  wind  plant  instead  of  

0.3  can  have  a  big  impact  on  the  economic  evaluation.  

Annual  capacity  potential:  There  are  some  studies  which  have  estimated  technical  potentials  of  different  kinds  of  

technologies,  but  the  main  challenge  is  to  know  or  project  the  maximum  feasible  capacity  that  can  be  built  every  

year.  Therefore,  it  is  necessary  to  achieve  consensus  among  stakeholders  because  the  results  are  very  sensitive  

to  these  assumptions.  

CPR   Information  on  end  uses  is  only  available  for  one  year  for  the  residential  sector  (the  most  energy-­‐intensive)  so  it  

Page 9: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

6 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

is  very  difficult  to  visualise  trends  and  change  the  fuel  share  over  the  evaluation  horizon.  For  the  commercial  and  

public  sectors  there  is  no  end  use  information.  

There  is  not  enough  historical  information  for  the  characterisation  of  technologies  such  as  appliances,  

households,  and  electronic  devices,  required  for  the  bottom  up  analysis,  and  the  available  data  is  not  always  

reliable.  A  lot  of  assumptions  are  required  to  characterise  the  base  year  

Mining  and  Industries  

Information  on  end  uses  is  available  for  one  year  for  the  main  sectors  and  industries.  Hence  it  is  very  difficult  to  

visualise  trends  and  change  fuel  shares  over  the  evaluation  horizon.  In  small  and  medium  enterprises  there  is  no  

end  use  information.  

Regarding  other  industries  (the  remaining  industries  in  the  most  important  subsectors),  historical  information  on  

energy  consumption  is  not  disaggregated  and  it  is  not  possible  to  deduce  shares  and  drivers  for  medium  or  small  

subsectors,  nor  can  end  uses  of  energy  be  identified.  

There  is  not  enough  historical  information  on  the  characterisation  of  technologies  such  as  machinery,  trucks,  

engines,  and  processes,  required  for  the  bottom-­‐up  analysis,  and  existing  information  is  not  always  reliable.  A  lot  

of  assumptions  are  required  to  determine  the  base  year.    

Waste  Waste  generation:  A  long  series  of  data  is  not  available.  There  is  data  only  for  some  specific  years  that  is  a  

disadvantage  if  researchers  want  to  calibrate  econometric  models.  

Waste  composition:  There  is  no  validated  source  about  the  organic  composition  of  waste  generation  or  disposal.  

There  is  also  no  historical  information.  

Recycling,  compost:  There  is  no  historical  information  on  recycling  and  composting.  There  are  some  specific  

studies  but  there  is  not  a  long  time  series  of  data.  

Agriculture  There  are  no  long  series  of  historical  land  use  and  livestock  population  data.  The  agriculture  census  is  made  

every  ten  years.  This  information  is  complemented  with  inter-­‐census  data  (a  reduced  census  done  every  year),  

however,  there  are  uncertainties  about  the  historical  information.  This  is  critical  when  researchers  try  to  use  

econometric  models.  In  addition,  there  is  a  lack  of  information  on  manure  management  and  unit  fertilizer  

consumption.    

Forestry  There  are  many  uncertainties  surrounding  critical  parameters  in  the  model.  The  main  ones  are  the  following:  

number  of  hectares  of  forest  area  (initial  condition),  rate  of  growth  of  different  forest  species,  carbon  content  of  

the  biomass  and  biomass  expansion  factor.  The  sectoral  results  (and  national  results)  are  very  sensitive  to  these  

parameters.  

 

 

Page 10: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

7 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

MOTIVATION  FOR  MODEL  SELECTION  

The  TORs  of  the  sectoral  studies  did  not  require  the  use  of  any  specific  model  or  software,  but  included  several  technical  

requirements.  For  example,  a  general  requirement  for  every  Baseline  model  (2007  and  2013)  was  that   it  must  be  able  to  

integrate   different   mitigation   actions.   In   addition,   there   were   budget   and   time   restrictions   to   select   and   develop   the  

models.    

As  explained  above,  the  main  source  of  energy  consumption  data  is  the  National  Energy  Balance.  The  availability  and  extent  

of  historical  data  offered  in  the  Energy  Balances  is  critical   in  selection  of  econometric  models.  For  the  industrial,  CPR  and  

transport   sectors,  one  of   the  main  advantages  of  using   this  data   is   that   the  models  are  calibrated  according   to  historical  

energy  consumption.    

The  main  drivers  of  the  sectoral  models  are  GDP,  GDP  per  capita  and  population.  These  variables  are  modelled  exogenously  

by   the   economic   research   team   and   approved   by   stakeholders   through   the   participatory  MAPS   Chile   process.   They   are  

common  to  all  sectors  and  consistent  with  the  macroeconomic  scenarios.    

Some  specific  advantages  of  the  models  are  described  below.  

Transport   sector:   This   approach   projects   transport   demand   (PKM   or   TKM)   which   is   useful   to   model   modal   shift,   for  

example,   from  private   vehicle   to   bus   or   non-­‐motorised   transport.  Other   kinds   of  mitigation   actions   can   be  modelled   by  

modifying  the  main  parameters  of  equations  (1)  and  (2).  Previous  work  in  Chile  projected  the  number  of  vehicles  instead  of  

transport  demand.  The  problem  with  this  approach  is  the  difficulty  in  simulating  mitigation  action  as  modal  share  changes.  

Another   benefit   of   this   approach   is   that   the   drivers   used   (GDP,   GDP   per   capita,   and   population)   are   available   and   are  

common  to  all  sectors.  In  general,  this  last  advantage  is  common  to  other  sectors.  

Electricity  Generation  sector:  In  Chile  the  daily  dispatch  of  the  electricity  generation  units  of  the  two  main  power  systems  

(SIC  and  SING)  is  coordinated  by  two  Independent  System  Operators  (ISO).  These  ISOs  try  to  minimise  the  operation  cost  to  

dispatch  the  electricity  generation  units.  Therefore,  to  use  an  optimisation  problem  to  project  the  dispatch  and  emissions  is  

an   acceptable   approach   in   terms   of   replicating   the   ISO’s   rules.   However,   as   we   explain   below,   the   investment   in   new  

generation  capacity  is  made  by  the  private  sector.  

Waste   sector:   The   drivers   used   are  GDP  per   capita,   and   population  which   are   available   and   are   common   to   all   sectors.  

There  is  international  information  which  allows  for  the  comparison  of  the  Chilean  waste  per  capita  generation  with  data  of  

other  countries  with  similar  GDP.    

Mining  and   Industry  and  CPR   sectors:  Microsoft  Excel  models  were  chosen   in  Phase  1  because  of   its  simplicity  and  data  

reproducibility.  This  software  allows  for  developing  a  robust  model  and  good  visualisation  of  the  results.  A  LEAP  model  was  

used  in  Phase  2.  LEAP  allows  for  the  modelling  of  mitigation  actions  and  alternative  scenarios.  Econometrics  models  were  

used  in  sectors  where  long  data  series  were  available.  A  data  mining  approach  was  used  in  this  case.  

 

Page 11: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

8 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

LESSONS  FOR  FUTURE  STUDIES  

The  following  are  some  reflections  on  the  different  approaches  that  could  have  been  adopted  and  may  be  preferable  for  

future  studies.  Researchers  found  that  the  electricity  generation  models,  in  particular,  could  be  improved  in  the  future.  

General  (all  sectors):  

Most   models   use   GDP   and   population   as   drivers.   The   results   are   very   sensitive   to   these   assumptions.  

Therefore,  more  discussions  amongst  stakeholders  and  technical  experts  on  these  main  drivers  are  necessary.    

Lack  of   information  has  been  identified  in  all  sectors.  To   improve  the  quality  of  the  models   it   is  necessary  to  

improve  the  available  information.  However,  for  an  econometric  approach  the  benefits  of  additional  data  can  

only  be  realised  in  the  long  term  due  to  the  requirement  of  long  data  series.    

It  is  recommended  that  more  sensitivity  analyses  be  conducted  to  quantify  the  impact  of  a  lack  of  information  

on   the   results.   Once   the   parameters   or   data   which   produce   the   greatest   dispersion   of   results   have   been  

identified,   the   researchers   or   stakeholders   should   try   to   improve   the   quality   of   this   information   before  

developing  the  models.  

In  addition  to  the  previous  point,  a  probabilistic  uncertainty  analysis  is  recommended.  

Including  energy  price  as  an  endogenous  variable  is  useful  to  evaluate  mitigations  actions  such  as  the  carbon  

tax.  With  the  exception  of  the  electricity  generation  models,  all  of  the  sectoral  models  do  not  include  the  price  

of   energy   as   endogenous   variable.   However,   this   can   be   a   big   challenge   due   to   lack   of   information.   For  

example,   to   include   the   fuel   price   as   a   variable   to   project   the   modal   share   in   the   transport   sector   model  

requires  having  historical  information  of  modal  share  behaviour  of  people.  

Benchmarking  with  international  parameters  to  compare  results  can  be  useful.  

Electricity  generation  models:  

More  sensitivity  or  probabilistic  uncertainty  analysis   for   the  main  projected  parameters,   for  example  natural  

gas  price,  investment  cost,  and  annual  capacity  potential.  

Complementing   the   long-­‐term   models   with   medium   term   and   short   term   models,   especially   when   a   high  

capacity   of   renewable   energy   sources   is   projected.   Power   systems   with   a   high   proportion   of   variable  

renewable  resources  such  as  solar  energy  and  wind  energy  require  more  reserves  which  are  normally  satisfied  

by  conventional  electric  plants,  and  affect  the  dispatch  of  power  plants  and  projected  emissions.  This  kind  of  

phenomenon  is  not  possible  to  analyse  using  long-­‐term  models.  

Attempting   to  model  private  decisions   instead  of   centralised  decisions  while   the  effect  on   the   results   is   not  

clear,  an  analysis  would  add  depth  and  credibility  to  the  models.  

Allowance  for  flexibility  to  add  specific  constraints:  hydraulic  net,  natural  gas  constraint,  transmission  system,  

etc.    

 

Page 12: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

9 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

CONCLUSIONS  

The  objective  of  this  paper  was  to  collect  reflections  from  the  teams  during  the  two  phases  of  the  MAPS-­‐Chile  process  in  

order  to  form  a  basis  on  which  to  build  future  models  and  approaches.   It  has  been  shown  that  an   integrated  model  that  

covers   all   energy   sectors   (transport,   electricity   generations,   industries   and   mining,   and   CPR)   has   not   been   used   or  

developed.  Different  models  and  software  packages  have  been  developed  or  used  for  the  different  sectors,  according  to  the  

expertise  of  the  researchers  and/or  the  information  available.  In  addition  to  this,  different  consultants  were  involved  in  the  

preparation  of  scenarios  during  Phase  1  and  Phase  2  of  the  project  which  led  to  additional  issues  in  models  used.    

However,  regardless  of  these  limitations,  it  is  suggested  that  the  credibility  of  the  results  has  not  been  compromised.  The  

quality   of   the  mathematical   and   econometric  models   in   the  provision  of   results   has   been  high.   The   coherence  between  

sectors   has   been   guaranteed   by   having   periodical  meetings  with   the   different   research   groups   or   consultants   to   ensure  

consistency   of   inputs.   For   example,   all   sectors   used   the   same   GDP   and   population   projections,   and   the   electricity  

generation  model  used  the  electric  demand  projected  by  the  sectoral  models.  This  information  has  been  shared  manually.    

In  some  cases  the  assumptions  like  GDP,  population,  fuel  prices,  etc.  are  as  important  as  the  models  or  software  package  

used  because  these  parameters  are  drivers  of  many  of  the  models.    

To   improve   the  quality  of   the  models   it   is  necessary   to   improve   the  available   information.  However,   for  an  econometric  

approach  the  benefits  of  this  strategy  can  only  be  observed  in  long  term  due  to  these  kinds  of  models  requiring  long  data  

series.      

Page 13: TECHNICAL!NOTE! SelectionofLong5RangeEnergy!Systems! … · 2016. 11. 19. · SelectionofLong5RangeEnergy!Systems!Modelling!Platforms TheMAPS!Chile!experience!!! Date:!12/06/2014!

 

10 Selection  of  Long-­‐Range  Energy  Systems  Modelling  Platforms:  MAPS  Chile  experience  

 

REFERENCES  

 Centro  Cambio  Global-­‐UC,  ["Scenario  for  2013  Baseline  and  Mitigation  Scenarios  for  Electricity  Generation  and  Transmission  of  Electricity  Sector"],  (on-­‐going),  Estudio  Proyecto  MAPS  Chile,  (licitado  a  través  de  PNUD).  (In  Spanish)    [Environmental  Assessment  Service](Online).  Available:  http://www.sea.gob.cl/  (In  Spanish)    FUNDACIÓN  CHILE,  ["Baseline  Emissions  Scenario  Retail  Sector  Public  and  Residential"],  Estudio  Proyecto  MAPS  Chile,  mayo  2013a  (licitado  a  través  de  PNUD  SDP  111/2010).    (In  Spanish)    FUNDACION  CHILE,  ["Scenario  for  2013  Baseline  and  Mitigation  Scenarios  Commercial,  Residential  and  Public  Sector"]  (on-­‐going),  Estudio  Proyecto  MAPS  Chile,  (licitado  a  través  de  PNUD).  (In  Spanish)    [Government  of  Chile,  Ministry  of  Energy,  National  Energy  Balance](Online).  Available:    http://antiguo.minenergia.cl/minwww/opencms/14_portal_informacion/06_Estadisticas/Balances_Energ.html  (In  Spanish)    [Government  of  Chile,  Ministry  of  Energy,  Solar  energy  explorer](Online).  Available:  http://ernc.dgf.uchile.cl/Explorador/Solar2/(In  Spanish)    [Government  of  Chile,  Ministry  of  Energy,  Wind  energy  explorer](Online).  Available:  http://ernc.dgf.uchile.cl/Explorador/Eolico2/(In  Spanish)    GreenLab  UC,  ["Scenario  for  2013  Baseline  and  Mitigation  Scenarios  Anthropic  Waste  Sector"]  (on-­‐going),  Estudio  Proyecto  MAPS  Chile,  (licitado  a  través  de  PNUD).  (In  Spanish)    INFOR,  ["Scenario  for  2013  Baseline  and  Mitigation  Scenarios  Forestry  and  Agricultural  Sector"]  (on-­‐going),  Estudio  Proyecto  MAPS  Chile,  (licitado  a  través  de  PNUD).  (In  Spanish)    Government  of  Chile,  Ministry  of  Environment.  Reference  Scenarios  for  Climate  Change  Mitigation  in  Chile  -­‐    Phase  1  Results[Online].  Available:    http://www.mapschile.cl/files/Chile_Results_Phase_I_Final_English_29042014-­‐1.pdf    POCH  Ambiental,  ["Baseline  Scenario  Emission  Mining  and  Other  Industries"],  Estudio  Proyecto  MAPS  Chile,  mayo  2013a  (licitado  a  través  de  PNUD  SDP  110/2012).  (In  Spanish)    POCH  Ambiental,  ["Baseline  Scenario  Emission  Forestry  and  Land  Use  Change"],  Estudio  Proyecto  MAPS  Chile,  mayo  2013b  (licitado  a  través  de  PNUD  SDP  112/2012).  (In  Spanish)    POCH  Ambiental,  ["Baseline  Scenario  GHG  Emissions  from  Waste  Sector  Anthropic"],  Estudio  Proyecto  MAPS  Chile,  mayo  2013c  (licitado  a  través  de  PNUD  SDP  114/2012).  (In  Spanish)    SISTEMAS  SUSTENTABLES,  ["Scenario  Baseline  Emissions  and  Urban  Transport  Sector"],  Estudio  Proyecto  MAPS  Chile,  mayo  2013a  (licitado  a  través  de  PNUD  SDP  109/2012).  (In  Spanish)    SISTEMAS  SUSTENTABLES,  ["Scenario  for  2013  Baseline  and  Mitigation  Scenarios  and  Urban  Transport  Sector"]  (on-­‐going),  Estudio  Proyecto  MAPS  Chile,  (licitado  a  través  de  PNUD).  (In  Spanish)    PRIEN,  University  de  Chile,  ["Baseline  Scenario  GHG  Emissions  Sector  Generation  and  Transmission  of  Electricity"],  Estudio  Proyecto  MAPS  Chile,  mayo  2013  (licitado  a  través  de  PNUD  108/2012).  (In  Spanish)    AGRIMED,  University  de  Chile,  ["Baseline  Emissions  Scenario  Agricultural  Sector  and  Land  Use  Change"],  Estudio  Proyecto  MAPS  Chile,  mayo  2013  (licitado  a  través  de  PNUD  SDP  113/2012).  (In  Spanish)    UNTEC,  ["Scenario  for  2013  Baseline  and  Mitigation  Scenarios  Mining  Industry  and  Other  Industries"]  (on-­‐going),  Estudio  Proyecto  MAPS  Chile,  (licitado  a  través  de  PNUD).  (In  Spanish)