Taller de Altas Energías (TAE 2016) 2016, 04 -17 September...

75
Taller de Altas Energías (TAE 2016) 2016 , 04 - 17 September , Benasque , Spain Arantza Oyanguren (IFIC – CSIC/UV) 1

Transcript of Taller de Altas Energías (TAE 2016) 2016, 04 -17 September...

Page 1: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Taller de Altas Energías (TAE 2016)2016, 04 -17 September, Benasque, Spain

Arantza Oyanguren (IFIC – CSIC/UV) 1

Page 2: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

LHCb ATLAS

2

Page 3: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

• The CKM matrix

• Pentaquarks

• The LHCb experiment

• Rare decays of B mesons

Outline

• Introduction

• B mixing and CP violation

• Future plans

3

Page 4: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

IntroductionOur Standard Model of Particle Physics:

+ antiparticles

1675 pages!! Particle Data Book (PDG):

Hadrons:

4

Page 5: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

- Quantum Theory of Gravity- Inflation- Quark/lepton generation masses: compositeness?

Substructure? Strings? Common sub-elements quarks and leptons? Why three families?

- Matter-Antimatter asymmetryCPV in SM (K, B) + Big Bang ?

- Cosmological constant (dark energy … ) - Dark matter- Higgs & EW symmetry breaking? Forces Unification?- Neutrinos (mass?, hierarchy?...)

IntroductionThe problems of our Standard Model …

5

Page 6: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Direct searches:

High energy→ particles created on-shell: Evidence in mass plots

Looking for New Physics…

top

Introduction

Higgs

6

201219951983 (√s= 7 TeV)(√s= 1.9 TeV)(√s= 546 GeV)

UA1

Higgs discovery, 2012

Page 7: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Indirect searches:High precision→ particles created off-Shell: Evidence in quantum effects (loops)

(BR’s, asymmetries… )

Looking for New Physics…

Introduction

Predicted fromelectroweak

measurements

Before the Higgs Discovery…

7

Page 8: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

* *

What we see What we think it is What it is

Standard Model BSM

It can be tested by studying quantum effects:

* ¡Oh!, Josse Goffin

e

e

bs

Bs

Introduction

?

Number of particles produced, angular distributions,origin point in the detector…

8

Page 9: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

* *

What we see What we think it is What it is

BSM

It can be tested by studying quantum effects:

* ¡Oh!, Josse Goffin

e

e

bs

Bs

Number of particlesproduced, angular distributions,origin point in the detector…

New Particles

Standard Model

Introduction

9

Page 10: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

• The GIM mechanism:

In 1970’s Glashow, Iliopoulos and Maini describe themechanism by which flavour-changing neutralcurrents (FCNCs) are suppressed, and predicted theexistence of the c quark

• 1974 c quark discovered

Introduction

• Gaillard, Lee and Rosner :mc~1.5 GeV from kaon mixing

cccKKF

K sincosmfmGm θθπ

=∆ 22222

4

c,u

c,u

+W−Ws

d s

d

0K 0KJ/ψ

(B. Richter at SLACand S. Ting at BNL)

10

Page 11: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

VCKM =

Cabibbo Kobayashi Maskawa

Introduction• The CKM mechanism:

11

Page 12: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Example: β -decay (very well known)

Introduction

Vud

( Vud is large ~ 0.97 )

12

Page 13: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

• Transitions between the same family are favored• Some of them are very rare (ex: Vub)• Need to change charge: FCNC not allowed at tree level,

need to proceed via loop diagrams (CKM suppressed) • If a transition occurs with larger probability than expected

→ New Particle (i.e. New Physics)

Introduction

13

Page 14: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

• We understand that the Standard Model cannot be the ultimate theory

It should be a low-energy effective theory of a more fundamental theory at a higher energy scale (TeV range)

Hierarchy problem: New Physics required to cancel radiative corrections to the Higgs mass but leave the electroweak predictions from the SM unaffected

• Flavour structure:→ provide the suppression mechanism for FCNC processes already observed.→ need to measure the flavour structure to distinguish between the NP models.

• The physics performed at LHCb (flavour physics) goes hand-in-hand with direct searches (ATLAS and CMS).

Introduction

In summary:

14

Page 15: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The b of LHCb…

Introduction

• Heaviest quark that forms hadronic bound states (m~4.7 GeV)

• Must decay outside the 3rd family• All decays are CKM suppressed• Long lifetime (~1.6 ps)

• High mass: many accessible final states

(all Br’s are small)

• Dominant decay process: “tree” b→c transition

• Very suppressed “tree” b→u transition

• FCNC: “penguin” b→ s,d transition

• Flavour oscillations (b→t “box” diagram)

• CP violation – expect large CP asymmetries in some B decays

bt

sc

du

15

Page 16: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Semi-leptonic Hadronic

Internal spectator Gluonicpenguin

W-exchange

Radiative penguinElectroweakpenguin

Electroweak Box

Annihilation

Introduction

Radiative and leptonic decays

Rare hadronic decays

Dominant tree decays:

16

Page 17: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

IntroductionThe precesors of LHCb, key in flavour physics:The b-factories: Belle at KEK (Japan) and BaBar at PEP-II (California)

PEP-II /KEK-B High Energy Ring : 9.0 / 8.0 GeV e-

Low Energy Ring : 3.1 / 3.5 GeV e+

Design luminosity : 3 x 1033 / 1034 cm-2s-1

Beam crossing angle : 0 / 22 mrad

Asymmetric e+ e- colliders working at the Υ(4S) energy.

(1999 - 2008 / 2010 ) * First measurement of CPV in the B system* High precision CKM matrix* Discovery of ηb

17

Page 18: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

IntroductionThe precesors of LHCb, key in flavour physicsThe Tevatron at Fermilab (Illinois): CDF and D0

TEVATRONSuperconducting pp ringEnergy : 1 TeV/beamDetectors: CDF, D0 Luminosity: 1032 cm-2s-1

Physics: W, Z,Top ProductionHiggs searchesB physics

Fermilab(Illinois)

pp collider working at cm of mass energy of 1.96 TeV.

(1987- 2011)

* Discovery of the top quark* First measurement of Bs oscillations* Discovery of the Ξb baryon

18

Page 19: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment

19

Page 20: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

● The bb cross section in pp collisions is large, mainly from gluon fusion ~250 μb @ √s=7 TeV~500 μb @ √s=14 TeV

The LHCb experiment

b, b

b, b

● The LHCb idea: to build a single-arm forward spectrometer: ~ 4% of the solid angle (2 < η < 5), ~30% of the b hadron production

The b quarks hadronize in B, Bs, B*(s), b-baryons… → average B meson momentum ~ 80 GeV

Letter of Intent, 1995

20

Page 21: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

~ 1.5 x 1011

● Very good performance: 3 fb-1 accumulated in Run1 at 7 TeV, working well for Run2 at 13TeV, expected 5 fb-1

The LHCb experiment

In terms of b-hadrons: N=∫ Lσ

→ σ ~ 500 μb at 13TeV, x 30% (due to the acceptance) = 150 μb→ bb pairs produced in 1 inverse femtobarn (N/fb-1) = 1015 * 150 x 10-6

21

Page 22: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment

22

Page 23: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment[INT.J.MOD.PHYSA 30 (2015) 1530022][JINST 3 (2008) S08005]

23

Page 24: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment

What do we need?

pp

- To reconstruct production and decay vertices→ Good decay vertex resolution→ Good impact parameter resolution

- To reconstruct the particle trajectory→ Good momentum resolution

Vertex detector (VELO)

: How long will a Λb baryon be travelling in the detector before decaying? (βγ ~100) 24

Page 25: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Precise tracking (p∈0 GeV/c –200 GeV/c, Δp/p = 0.5%–1%)Good Impact Parameter (IP) resolution (20 μm)Good vertex resolution (15µm (x,y) - 70µm(z))

The LHCb experiment

25

Page 26: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment

The LHCb magnet:

→ Inversion of polarity to study detector asymmetries26

Page 27: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment- To recognize the type of particles

→ Good particle identification systems (PID)

Cherenkov detectors (RICH) Calorimeters (ECAL, HCAL)

Muon chambers

µ

M1

M2M3

M4 M5

27

Page 28: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Calorimeter systemΔE/E = 1 % ⨁10 %/√E (GeV)

Excellent particle identicationπ/K separation over 2-100 GeVε(K→K) ~ 95 %, mis-ID ε(π→K) ~ 5 %

The LHCb experimentPowerful µ identificationε(μ→μ) ~ 97 %, mis-ID ε(π→μ) ~ 1-3 %

28

Page 29: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment- B mesons oscillates between particle and antiparticle B0 → B0

- We need to know the flavour of the particle at the production point

Flavour tagging

Use different algorithms that make use of thecharacteristics of the fragmentation of theb quark, the charge of the decay productsor the charge related to the other b mesonproduced in pp → X bb

Nevts x εtag(1-2ω)2

Tagging efficiency εtag : fraction of events with a flavour tag decisionWrong-tag fraction ω:fraction of tagged events forwhich tagging decision is wrongFigure of merit: effective tagging powerεeff = εtag D2 = εtag (1 – 2ω)2

Opposite side

Same side

D2 ≡ dilution factor 29

Page 30: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment

µ+

µ-

Bs →µ+µ- event

30

Page 31: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment

• Comparison between facilities:

: Which is the maximum momentum of the pion in the B → πν decay in the lab frame in BaBar at PEP-II and LHCb at LHC experiments ?

31

Page 32: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment

Examples of observables:

What do we measure?

- Invariant masses: from momentum and PID hypothesis of the detected particles- Decay times: from distance between the origin and decay vertices

(and using information of the particle momentum)

- Angular distributions: from directions of the decay products (momentum, vertices)

- Branching fractions: from the mass distributions, counting the number of events

32t(ns)

2284 evts

MBs(MeV) (φγ)

- Ratios of observables: cancellation of systematic uncertainties

MJ/ψ (MeV)

- Time dependent asymmetries (needed flavour tagging!)

Page 33: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The LHCb experiment

Observable(X’) = Physics (X, P) · Acceptance(X) x Resolution (X,X’)

Efficiency dependent of X

A tiempos de desintegración demasiado cortos el detector no puede reconstruir el tiempo

t-t’ (ps)

µ =0 fsσ ~ 50 fs

Physics function(t, τ)

N·e-t/τ

(Ex: time-dependentdecay width)

Acceptance(t)

# detected (X)# produced (X)

R(t,t’)

Including experimental effects:

33

- One can use MC simulations to study the acceptance and resolution functions- Better: Use control samples from data (similar to the signal channel) to extract them

Page 34: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The CKM matrix VCKM describes rotation for quarks between the weak eigenstates (d',s',b') and mass eigenstates (d,s,b)

Quarks

Antiquarks

CP violation due to complex phases of CKM matrix elements

=

bsd

VVVVVVVVV

bsd

tbtstd

cbcscd

ubusud

'''

***

***

***

=

bsd

VVVVVVVVV

bsd

tbtstd

cbcscd

ubusud

'''

Vij governs the transitionfrom quark j to quark i

ubVb u

−W

The CKM matrix

b u

+W

*ubV

34

Page 35: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

• The CKM matrix is complex and unitary

• 4 independent parameters→ Fundamental constants of the Standard Model → Must be determined from experiment

• Standard parametrization (PDG):

• 3 angles: and 1 phase

1ˆˆ =+CKMCKMVV

121323 RRRVCKM ××=

−=

−=

−=

δ

δ−

1313

1313

13

2323

2323231212

1212

12

0010

0

00

001

10000

ces

escR

csscRcs

scR

i

i

ijijijij cs θθ cossin ==

δ

The CKM matrix

132312 ,, θθθ

35

Page 36: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

d

s

b

u

c

t

O(1)O(λ)O(λ2)O(λ3)

2312

13

2312

13212

2312

sincosss

sss

sssAs δηδρλ ====

23012 .sin ≈θ=λ

The CKM matrix• Wolfenstein parameterization:

- Perturbative, reflects the hierarchy of the matrix elements in terms of λ

- The four parameters are defined as:

s12 ~ 0.2, s23 ~ 0.04, s23 ~ 0.004

36

Page 37: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Wolfenstein parameterization to O(λ3):

( )

( )( )4

23

22

32

tbtstd

cbcscd

ubusud

CKM O1Ai1A

A21

iA21

VVVVVVVVV

V λ+

λ−η−ρ−λ

λλ−λ−

η−ρλλλ−

=

=

( )( ) ( )

( ) ( )( )6

42423

224252

342

21211

4182121

821

λ+

λ−η−ρ−λ+λ−η−ρ−λ

λ+λ−λ−η−ρ−λ+λ−

η−ρλλλ−λ−

= OAiAAiA

AAiA

iA

VCKM

The CKM matrix

(but next-to leading order corrections in λ may be important at LHC)

37

ρ,η( )≡ 1− λ2 2( ) ρ,η( )

Page 38: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

• CP Violation in the Standard Model:

( )( )( )( )( )( ) 0

222222

222222

≠×−−−×

−−−

CPdsdbsb

ucutct

Jmmmmmmmmmmmm

JCP = Im ViαV jβViβ* V jα

*{ } i ≠ j,α ≠ β( )

JCP = s12s13s23c12c23c13 sinδ = λ6A2η = O 10−5( )- Jarlskog invariant:

The CKM matrix

- Requirements for CP violation

→ CP violation is small in the Standard Model

(and cannot explain the observed baryon asymmetry of the Universe)38

Page 39: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

: How well is satisfied unitarity from the measured CKMs?

The CKM matrix

0.97425 ± 0.00022 0.2253 ± 0.0008 (4.13 ± 0.49)× 10−3

(8.4 ± 0.6)× 10−3 (40.0 ± 2.7)×10 −3 1.021 ± 0.032

superallowed 0+→0+ β decays semileptonic / leptonic kaon decays hadronictau decays

semileptonic / leptonic B decays

semileptonic / leptonic charm decayssemileptonic B decays

single top productionB oscillationsdB oscillationss

→ Need theory to describe QCD effects (lattice QCD)

0.225 ± 0.008semileptonic charm decays charm production in neutrino beams

0.986 ± 0.016 (41.1±1.3)×10−3

In theory:

• PDG 2014:

In practice:

39

Page 40: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The Unitarity Triangle → CKM is unitary:

3

*

λAVV udub

Re

α

γ β1

3

*

λAVV tdtb

3

*

λAVV cdcb

η ρ

0*** =++ tbtdcbcdubud VVVVVVIm

α ≡ π − β − γ

β ≡ arg −Vcb

* Vcd

Vtb*Vtd

= tan−1 η

1− ρ~ 21oo1

*

*

70~tanargρηγ −=

−≡

cdcb

udub

VVVV

ρ,η( )≡ 1− λ2 2( ) ρ,η( )

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

Vud Vcd Vtd

Vus Vcs Vts

Vub Vcb Vtb

*= Ι

The CKM matrix

A ( , )

40

Page 41: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The CKM matrixThe Unitarity Triangle

The idea: try to measure as many flavour observables as possibleoverconstraint the unitarity triangle

Ex: Measuring the b→ u ν vs the b→ c ν transition

Ex: Measuring time-dependent asymmetries in b→cc s decays(effect from interference of mixing and decay)

ρηβ−

= −

1tan 1

222 21

η+ρλ−λ

=cb

ub

VV

β

Γ b → uν( )Γ b → cν( )

~ Vub

Vcb

2

~ 150

41

Page 42: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The CKM matrixThe Unitarity Triangle

The idea: try to measure as many flavour observables as possibleoverconstraint the unitarity triangle

• If all measurements meet in the sameapex→ good understandingof the flavour structure of the SM

• If not → New Physics

42

Page 43: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The CKM matrixThe Unitarity Triangle

• Precision measurements of CKM elements (fundamental parameters!)• Measure all angles and sides in many different ways and look for

inconsistencies → quantum effects from new particles• Compare tree level processes (new physics is not expected) with loop

processes sensitive to new particles• With more precision the new physics scale has to be higher.

43

Page 44: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The CKM matrix

http://ckmfitter.in2p3.fr/

http://www.utfit.org/UTfit/

ρ = 0.132±0.020η = 0.358±0.012

- Good agreement betweenthe experimental measurements

- Validation of Standard Model in the flavour sector

- Few discrepancies (“tensions”)

- Understanding from QCD is crucial

- Still room for New Physics, needmore precision!

44

Page 45: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The CKM matrix• Measuring the CKM matrix element Vub at LHCb:

Key constraint in the flavour picture since itis extracted from decays at tree-level(No loops → no New Physics expected, it’s a reference to be compared with) Discrepancy between ways of

measuring this element during years:

Exclusive: from specific channels: B→πν, B→ρν …Inclusive: from total rate B → Xu ν 45

Page 46: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

x Ratio of form factors

Using semileptonic decays of b-baryons:

(5% accuracy from LQCD)

signalΛb→pµν

- Corrected mass:

N=17687 ± 733 N=34255 ± 733

- Use information from displaced vertex

Λb→Λcµν

- Select high q2 region (theory more precise)

The CKM matrixAt LHCb very challenging due to the missing neutrino:

[Nature Physics 10 (2015) 1038]46

Page 47: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

The CKM matrix[Nature Physics 10 (2015) 1038]

Using the world average fromexclusive Vcb:

Disfavours New Phyiscs models with Right-handed currents

Left-handed couplingvs fractional Right-handed

NP?

SM

47

Page 48: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

i ∂∂t

ab

= H

ab

=

M11 −i2

Γ11 M12 −i2

Γ12

M12* −

i2

Γ12* M22 −

i2

Γ22

ab

BL,H = p B0 ± q B0

122 =+ qp

qp

=M12

* −i2

Γ12*

M12 −i2

Γ12

∆m = mH − mL = 2 M12

∆Γ = ΓL − ΓH = 2Γ12

0ps 505.0 -1

≈∆Γ≈∆

d

dm%10

ps7.17 -1

≈∆Γ≈∆

s

sm

1=pq

B mixing and CP violationMixing of neutral B mesons governed by

p and q represent the amount of state mixing

Mass eigenstates:

48

Page 49: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

B mixing and CP violation

f

ff A

Apq

00 BHfABHfA ff ==

( ) [ ]

( ) [ ]ττττλ

ττττλ

τ

τ

xtSxtCytAyteAqptBHf

xtSxtCytAtyeAtBHf

ffft

ff

f

ffft

ff

f

sincossinhcosh2

1

sincossinhcosh2

1

2220

22

20

+−++

=≡Γ

−+++

=≡Γ

∆−

∆−

1 1

1

1

Im2 2222

2

2 =+++

−=

+≡ ∆ fff

f

ff

f

ff CSACS

λ

λ

λ

λ

Decay amplitudes of flavour states decaying to the same final state f

Time dependence of decay rate for initially pure flavour states:

One can define

Γ∆Γ≡Γ∆≡

Γ≡τ

2

1

ymx

49

Page 50: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

ff Γ≠Γ

• CPV in Mixing: 1≠pq

Im Γ12* M12{ }≠ 0

• CPV in Decay: 1≠f

f

AA

• CPV in Interference between mixing and decay:

λ f =1, Im λ f{ }≠ 0

0B f

0Bpq

fA

fA

f

ff A

Apq

=λ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )2sinh2cosh

sincostAt

mtSmtCtttt

tAf

ff

ff

ffCPf ∆Γ+∆Γ

∆+∆−=

Γ+Γ

Γ−Γ=

CP Violation →

B mixing and CP violation

Three types:

0B 0Bf→ f→≠

0B 0B→ ≠0B → 0B

50

Page 51: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

B mixing and CP violation

00 KJB ψ→

{ } { } βλ β 2sinImIm 2 =−= − if e

Measuring the β angle of the CKM triangle

Golden channel:

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )mtSmtC

tAtmtSmtC

tttt

tA

ff

f

ff

ff

ffCPf

∆+∆−

∆Γ+∆Γ

∆+∆−=

Γ+Γ

Γ−Γ=

sincos ~

2sinh2coshsincos

1

Im22

f

ffS

λ

λ

+≡

Cf ~0 in the SM ( ) )sin(2sin~ mttACPf ∆β

*cbV

csV

51

Page 52: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

( ) ( ) ( )( ) ( ) ( ) ( ){ } ( )ttm

BBNBBN

BBNBBNtA

tagtag

tagtagCP ∆⊗∆∆××−±≈

=+=

=−== Rsin2sin21 00

00

βω

B mixing and CP violation

Flavour mistag calibratedusing a control sampleflavour specific (K*0 → K-π+)

Count number of tagged signal events reconstructed as function of time

52

Page 53: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

B mixing and CP violation

53

Page 54: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Measuring the other side of the CKM triangle

B mixing and CP violation

- Through the mass difference ∆md, ∆msin the box diagrams:

The time-dependent asymmetry A(t) of Bd,s events thatchanged flavour (mixed) or not (unmixed) is:

tmtNtNtNtNtA mixunmix

mixunmix

mix ∆=+− cos

)()()()()(

( ){ } ( )tRtm ∆⊗∆∆×−= cos21 ω

with experimental effects:

54NJP 15 (2013) 053021

Page 55: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Measuring the other side of the CKM triangle

B mixing and CP violation

Δmd =(0.5050 ±0.0021 ±0.0010) ps-1

Δms = (17.768 ± 0.023 ± 0.006) ps-1

∣V td /V ts∣ = 0.216±0.001±0.011

(best tagging category) t(ps)

error from theory

: Could you infer the top mass from the measured ∆md? 55

[EPJ C (2016) 76]

Page 56: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Measuring the γ angle of the CKM triangle

B mixing and CP violation

Key to determine the apex from tree level processes, with Vub is the “reference clock”

To be compared with constraints from loop processes:

γ = 70.9 +7.1- 8.5 56

Page 57: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Rare decays

Rare decays:

• Processes very suppressed, go through loop diagrams

• Branching fractions 10-5 – 10-10

• Highly sensitive to New Physics: if one finds more events than expected → new particles in the loop

• If leptons or photons in the final states, very clear experimental signatures

u,c,t

H-, χ-,g, χ0…

~

γ

u,c,t

W

b s,d b s,d

57

Page 58: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Rare decaysOne of the most relevant channels:

→ FCNC + helicity supressed → Very Rare decay:

→ Standard Model prediction:

→ First evidence by LHCb in 2012!

→ Enhanced by New Physics models(e.g. SUSY ~ tg6β/m4

A)

[PRL 112 101801 (2014)]

Bs →µ+µ-

FIRST EVIDENCE(3.5σ)[LHCb, PRL110 (2013)021801] (2fb-1)

58

Page 59: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Rare decaysBs →µ+µ- event

µ+

µ-

59

Signal BackgroundPV PV

Page 60: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Rare decays

• Known as “the New Physics killer”:

6.2σ

3.2σ

Nature 522, 68–72 (2015)

[D.M. Straub, arXiv:1205.6094,arXiv:1308.1501]

CMS + LHCb

60

Page 61: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Rare decaysProbing the spin structure of the photon:

- In the Standard Model photons emitted in b → sγ transitions are left-handed polarized

- New particles in the loop could add right-handed contributions

Bs →φγ

- The polarization of the photon can be inferred from the time evolution of the Bs decay

Related to the ratio of right to left handed amplitudes

61

Page 62: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Rare decays

Use a control channel with no sensitivity to the photon polarization (ex: a flavor specific channel B →K*γ , with K*→K-π+)

This sensitivity comes from the effect of the mixing of Bs →φγ and Bs →φγwith φ→K+K-

62

[LHCb, arXiv:1609.02032]

Page 63: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

63

Rare decays

P’5

Some tensions / anomalies with the SM:

JHEP 02 (2016) 104

!?

P’5 : an angular observable in the B→K*µ+µ- decay channel

SM NP

P’5= S5 /√FL(1-FL)

?

Page 64: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

64

Rare decays

• RK : in the SM all leptons are expected to behave in the same way. For instance,

= 1.000 + O(mµ2/mb

2) (SM)

New Z’ bosons??

→ Consistent (but lower) than the SM at 2.6σ [PRL 113 (2014) 151601]

!?

Page 65: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

65

Rare decays

• RD* : Other test with leptons, theory precise (Vcb and form factors cancel)

!?

mmiss2=(PB-PD*-Pµ)2

signalnormalization

[PRL 115 (2015) 111803]

??

Page 66: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

66

Pseudoscalar (spin=0) Vector (spin=1)Meson multiplets:

Baryon multiplets:

Baryon multiplets:

Octet (spin=1/2)Decuplet (spin=3/2)

PentaquarksThe Quark Model

Page 67: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

67

Pentaquarks• There are several possibilities for combining quarks with color into colorless hadrons, as predicted from the origin of the Quark Model[M. Gell-Mann, PL8 (1964) 214]

qqqq and qqqqq states predicted

Several of these states have been announced since 1970, but have disappeared with time and new data analysis…

Page 68: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

68

?

Λb→J/ψ p K observed for first time at LHCb: very clear signal

26000 Λb signal

Dalitz plot:

Pentaquarks

Page 69: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

69

Page 70: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

70

PentaquarksConsidering a pentaquark Pc

+, and two interfering processes:

5 angles: fit θΛb, φK, θJ/ψ, θΛ* , φµ distributions

Page 71: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

71

Pentaquarks

Angular analysis: Fit in different Λ* regions:

Page 72: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

72

Pentaquarks

State Mass (MeV) Width (MeV) JP

Pc(4380)+ 4380 ± 8 ± 29 205 ± 18 ± 86 3/2-

Pc(4450)+ 4449.8 ± 1.7 ± 2.5 39 ± 5 ± 19 5/2+

PRL 115, 072001

Page 73: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

73

Is it a resonance? (change phase over the mass distribution?)

Yes ! ?

250 citations!, many models trying to explain it:

Pentaquarks

Argand diagram

Page 74: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

Future plans

74

The LHCb Upgrade:- At present we did not find evidence for New Phyiscs, but a few anomalies:

Standard Model deviations are expected to be small- Most of the measurements are limited by the statisticall precision

Increase the luminosity from 4x1032 up to 2×1033cm-2s-1

Fully flexible & efficient software trigger up to 40 MHz input Record 20 –100 kHz data Upgrade VELO and Tracker (adapt to higher occupancy and radiation load)

Remember that we have 1011 bb pairs/fb !(At Belle II: 109 BB pairs/ab)

Page 75: Taller de Altas Energías (TAE 2016) 2016, 04 -17 September ...benasque.org/2016tae/talks_contr/144_LHCb-Physics.pdfTaller de Altas Energías (TAE 2016) 2016, 04 -17 September, Benasque,

75

Future plans