Tables of Mellin Transforms

283

Transcript of Tables of Mellin Transforms

Page 1: Tables of Mellin Transforms
Page 2: Tables of Mellin Transforms

Fritz Oberhettinger

Tables of Mellin Transforms

Springer-Verlag Berlin Heidelberg New York 1974

Page 3: Tables of Mellin Transforms

Fritz Oberhettinger Professor of Mathematics, Oregon State University, Corvallis, Oregon, U,S,A.

AMS Subject Classification (1970): 44-02, 44A10, 44A15

ISBN-13: 978-3-540-06942-3 e-ISBN-13: 978-3-642-65975-1 001: 10,1007/978-3-642-65975-1

Library of Congress Cataloging in Publication Data

Oberhettinger, Fritz, Tables of Mellin transforms, Bibliography: p, 1. Mellin transform-Tables, I. Title, QA432,024 515',723 74-16456

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks, Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin' Heidelberg 1974,

Page 4: Tables of Mellin Transforms

Preface

This book contains tables of integrals of the Mellin

transform type

(a) 1> (z) J z-l q,(x)x dx o

Since the substitution x = e- t transforms (a) into

(b) 1> (z)

the Mellin transform is sometimes referred to as the two sided

Laplace transform. The use of the Mellin transform in various

problems in mathematical analysis is well established. Parti­

cularly widespread and effective is its application to problems

arising in analytic number theory. This is partially due to

the fact that if ¢(z) corresponding to a given q,(x) by (a)

is known, then ¢(z) belonging to xaq,(x) or more general to

xaq,(xP ) (p real) is likewise known. (See particularly the

rules in sections 1.1 and 2.1 of this book.)

A list of major contributions conce~ning Mellin trans­

forms is added at the end of the introduction. Latin letters

(unless otherwise stated) denote real positive numbers while

Greek letters denote complex parameters within the given range

of validity. The author is indebted to Mrs. Jolan Eross for

her tireless effort and patience while typing this manuscript.

Oregon State University

Corvallis, Oregon

May 1974

Fritz Oberhettinger

Page 5: Tables of Mellin Transforms

Contents

Part I. Mellin Transforms

Introduction. . . • . • • • . • . . . . . . . . . . . . • • • • . . . • . • . . • • • . • . 1

Some Applications of the Mellin Transform Analysis. ••. •••...•. •.... •• .• . ... ..••. .. .. •• 6

1.1 General Formulas.................................... 11

1.2 Algebraic Functions and Powers of Arbitrary Order ... 13

1.3 Exponential Functions............................... 25

1.4 Logarithmic Functions............................... 34

1.5 Trigonometric Functions ..••. .....•......•...•.•...•. 42

1.6 Hyperbolic Functions. . . • . . . . . • . . . . . . • . . . . . . . . . • . . . . . 61

1.7 The Gamma Function and Related Functions ....•.•...•• 68

1.8 Legendre Functions.................................. 69

1.9 Orthogonal Polynomials.............................. 83

1.10 Bessel Functions.................................... 93

1.11 Modified Bessel Function .....•...........•....••.... 115

1.12 Functions Related to Bessel Function ....•...•.•..... 133

1.13 Whittaker Functions and Special Cases •••.•.•••• ..... 138

1.14 Elliptic Integrals and Elliptic Functions .....•..... 155

1.15 Hypergeometric Functions ............................ 160

Page 6: Tables of Mellin Transforms

Part II. Inverse Mellin Transforms

2.1 General Formulas..................................... 163

2.2 Algebraic Functions and Powers of Arbitrary Order •... 164

2.3 Exponential and Logarithmic Functions ..•.........•... 173

2.4 Trigonometric and Hyperbolic Functions ...•........... 182

2.5 The Gamma Function and Related Functions .....•....... 191

2.6 Orthogonal Polynomials and Legendre Functions ...•.•.. 205

2.7 Bessel Functions and Related Functions ..........•.... 216

2.8 Whittaker Functions and Special Cases .••........•...• 244

Appendix ..•...•.....•.•.•.•.................•...•.• " 259

Page 7: Tables of Mellin Transforms

Part I. Mellin Transforms

Introduction

The integral

(1) M[cjJ(x),z] = <I>(z) = J x z - l cjJ(x)dx

is called the Mellin transform of the function cjJ(x) with res­

pect to the complex parameter

(2) z = a+i-r

The substitution

Laplace integral

(3) <I> (z)

-t x = e transforms (1) into a two-sided

Dr into the sum of two one-sided Laplace integrals of parameter

z and -z

(3' ) <I> (z)

Denote the abscissas of absolute and ordinary convergence by 6

and a respectively for the first integral in (3) and by 6'

and a' for the second integral. Then it is evident that the

domains of absolute and ordinary convergence of the integral (1)

consist of the respective strips.

S < Re z < -6'; a < Re z < -a'

For the inversion of the integral (1)

Page 8: Tables of Mellin Transforms

2 I. Mellin Transforms

(4) -1

¢(x) = M [<!l(z) ;xl

exists the following theorem.

Let <!l(z) be a function of the complex variable z = a+iT,

regular in the strip S = {z:a < a < b} such that <!l(z) + 0 as

uniformly in the strip a+n ~ a < b-n for any arbitrary

small n > o.

Then if

for each a in the open interval (a,b) and if a function ¢(x)

is defined by

(5) ¢ (x) I c+ioo

2'Tfi J c-ico

-z x CI!(z)dz

for x > 0 and a fixed cs(a,b) then

<!liz) J ¢(x)x Z- 1 dx

Some relation between the Mellin transform and other integral

transform ~.

Consider the following integral transforms of a given function

¢ (x) •

(a) Fs[¢(t);xl = (2/rr)J, J ¢(t)sin(xt)dt

Fourier sine transform

(b) Fc[¢(t);xl = (2/rr);' f ¢(t)cos(xt)dt

Page 9: Tables of Mellin Transforms

Introduction

(c) L [<P (t) ;xl

(d) hv [¢ (t) ;xl

(e) kV[<P(t) ;xl

(f)

Fourier cosine transform

J <P(t)e-xt dt

Laplace transform

Hankel transform

K transform v

7 <P(t) (xt)~Y (xt)dt v

Y transform v

(g) hv[<P(t) ;xl J <P(t) (xt)~~(xt)dt

Generalized Stieltjes transform

(1' ) 1 ooJ v-I Wv[<P(t) ;xl = f(v) ¢(t) (t-x) dt x

Weyl's fractional integral.

Then the corresponding relations are valid.

(b')

(c' )

(d' )

I:; (2/'1l) f(z)sin(~'1lz)M[<P(x) ;l-z]

~ M{Fc[<P(t);x];z} = (2/'1l) r(.z)cos(I:;'1lz)M[<p(x);l-z]

M{L[<P(t) ;x] ;z} = f(z)M[¢(x) ;l-z]

M{hv [<P (t) ;x]; z} = 2 z-1:; f (J..,+l:;v+l:;z) M[<P (x) ; l-z] f (3/4 +l:;v-l:;z)

3

Page 10: Tables of Mellin Transforms

4 I. Mellin Transforms

(e' ) z- 3,.....

M{kv [<jl(t);x];z}=2 2r('a+J,v+J,z)r(\,-J,v+J,z)M[<jl(x);I-z]

(f' ) M{YV[<jl(t);X];z}

2 z-"rr -lsin (J,rr (v-z- 3/2) ] r (HJ,z+J,v) r (\,+J,z- J,v)

M[<jl(x) ;l-z]

(g , ) M {hv [ <jl (t) ; x] ; z}

= 2 z-J,tan(J,rr(J,+z+v)] r(\,+J,v+J,z) M[<jl(x) ;l-z] r (3,i,+"V-J,z)

B(z,v-z)M(<jl(x) ;l-v+z]

r (Z) r (v+z) M [<jl (x) ; v+zJ

If, for instance <jl(x) is such that both, its Hankel transform

(d) and its Mellin transform (1) is known, then the relation

listed under (d') gives an additional result. For tables of

integral transforms of the types (a) - (i) see list of references

at the end of this introduction.

Laplace and finite Mellin transforms.

Tables of Laplace and inverse Laplace transforms (see list of re-

ferences at the end of this introduction) can be used to obtain

additions to the transform tables presented here. Let

'" (6) <!> (z) f f(t)e-tzdt

o

Then the substitution t - log x transfol":as (6) into a finite

Mellin transform

Page 11: Tables of Mellin Transforms

Introduction

(7) 1> (z) 1 z-l f x ¢(x)dx with ¢(x) o

For instance, the Laplace transform pair

fit) J v (a sinht)

leads to the Mellin transform pair

-1 ¢(x) = Jv[~a(x -x)], x < 1

Ox> 1

f (log .:h.) • x

1> (z)

5

whi'ch is listed in Part I, under 10.77. Vice versa, the pair of

the inverse Laplace transform type

1> (z) I (bz~) K (az~), v v fIt)

yields the inverse Mellin transform type pair

1> (z) I (bz~)K (az~), v v ¢(x)

x < 1

o x > 1

with y 1

log (x) . This result is listed in Part II under 7.85.

Page 12: Tables of Mellin Transforms

6

Some Applications of the

Mellin Transform Analysis.

I. Mellin Transforms

Only a few examples will be singled out.

(A) Application to certain integral equations (Sneddon, p. 277,

Titchmarsh, p. 303). Solutions of the following integral

equations can be given in the form of the inverse Mellin

Transform.

(a)

(b)

(c)

g(y) J f(x)K(xy)dx, y > 0, with

M[f (t) ; z] M[g(t) ;z] M[K(t) ;z]

g(y) + J f(x)K(xy)dx = f(y), y > 0, with

M[f(t);z] M[g(t) ;z]+M[K(t) ;z]M[g(t) ;l-z] I-M[K(t) ;z]M(K(t) ;l-z]

g(y) J K(y/x)dx, y > 0, with

M[f(t) ;z] M[g(t) ;z-l] M[K(t) ;z-l]

where in (a) and (b) the kernel function K depends on the

product xy and in (c) on the quotient x/yo

(B) A summation formula. An infinite series of the form

I f(n+a) can be transformed into an integral expression n=O

Page 13: Tables of Mellin Transforms

Introduction

of the inverse Mellin type (Sneddon, p. 283).

I n=O

-1 f (n+a) = (2Tfi) o+ioo f z;(z,a)~(z)dz

a-ioo

[z;(z,a) is the Hurwitz zeta function] with max(l,o)<o<y

where ° and yare the abscissas of absolute convergence

of the Mellin transform of the function f(x) involved in

the above infinite sum. Hence

z-l ~(z) = f f(x)x dx

(e) An asymptotic expansion theorem (Doetsch, Vol.2, p. 115).

This theorem is widely used in problems of analytic number

theory.

c+ioo Theorem 1 Let CP(x) = f -z x ~(z)dz such that

c-ioo

7

(a) ~(z) is analytic in a left half plane Re z ~ c except

for singular points of one-calued character (poles or

essential singularities) >.. , >.. , >.. , ••• ; o 1 2

c > Re >.. > Re >.. > ••• + o 1

The principle part of the Laurent expansion of ~(z) at

(b) In every strip of finite width Co ~ 0 < c, CP(O+iT) + 0

as ITI + 00 uniformly in o.

Page 14: Tables of Mellin Transforms

8 I. Mellin Tranforms

(c) Between two singularities AV and AV+l there exists a

f\ (real) with Re(AV+l ) < S < Re(A), (v=O,1,2,"')

such that the integral

converges uniformly for O<x<X. = v [This is the case,

for example, if w(z) = w(a+iT) = O(ITl a ) for fixed a

wi th Re a < O. J

Then

(2d) -1 c+ioo J -z x w(z)dz ¢(x)

c-ioo

converges for 0 < x ~ Xo and

n ¢(x) L

v=O

b(V) [b(v) + 2 (-log x) + •••

1 11

r -1 -A (- log x) v + .•• J x v

Sn+ioo

J + (27Ti)-1 -z x w(z)dz Sn-ioo

as x + 0 (through positive values) , where the last -S

term (the integral) is o(x n).

Similarly

Theorem 2

(a) The function w(z) be analytic ~n a right half plane

Re z ~ a except for singular points of one valued

character A, A , with a<Re A <Re A < ••• + + 00.

o 1 o 1

Page 15: Tables of Mellin Transforms

Introduction 9

(b)

The principal part of the Laurent expansion of ¢(z)

at Z = A be v

-r b (v) (Z-A ) -1 + b (v) (Z-A ) -2 + •.• + b (v) (Z-A) v+

1 V 2 V rv v

In every strip of finite width

¢(o+iT) + 0 as ITI + 00 uniformly in o.

a , o

(c) Between two singularities Av and Av+l there exists

a f\ (real) with Re Av<Sv<Re Av+l ' (v=0,1,2,"') such

that the integral

f

converges uniformly for

a+ioo

x > X > O. v

Then (211i) -1 f -Z x ¢(z)dz converges for a-ioo

b (v)

¢(x) - ¥ [b(v) - -IT- log x + ..• v=O 1

as

r -1 + (-1) v

+ (211i)-1

(rv -1) !

r -1 (log x) v

S +ioo n f

Sn-ioo x-Z¢(z)dz

x + + 00 where the last term is

-A + •. "jx V

-Sn a (x ) •

x > X

These theorems can be applied as follows: If the

and o

asymptotic behavior for x + 0 or x + +00 of a given

function ¢(x) is to be investigated one forms its

Page 16: Tables of Mellin Transforms

10 I. Mellin Transforms

Mellin transform 4(Z) by (1) and represents ¢(x) by

the Mellin inversion formula (5) in the form required

in the above theorems 1 and 2.

References

Churchill, R. V., 1958: Operational Mathematics, McGraw-Hill, New York.

Doetsch, G., 1950-1956: Handbuch der Laplace Transformation, 3 vols. Birkhauser Verlag, Basel.

Erdelyi, A. et.al., 1954: Tables of Integral Transforms, 2 vols. McGraw-Hill, New York.

Oberhettinger, F., 1957: Tabellen zur Fourier Transformation, Springer Verlag, Berlin.

Oberhettinger, F., 1972: Tables of Bessel Transforms, Springer Verlag, Berlin.

Oberhettinger, F. and Badii, L., 1973: Tables of Laplace Trans­forms, Springer Verlag, Berlin.

Van der Pol, B. and Bremmer, H., 1950: Operational Calculus based on the Two-Sided Laplace Integral, Cambridge Univer­sity Press, London.

Sneddon, I. N., 1972: The Use of Integral Transforms, McGraw-Hill, New York.

Titchmarsh, E. C., 1948: Theory of Fourier Integrals, Oxford University Press.

Widder, D. V., 1971: An Instroduction to Transform Theory, Academic Press, New York.

Page 17: Tables of Mellin Transforms

1.1 General Formulas 11

1.1 General Formulas

00

z-l q, (x) <I> (z) = f q,(x)x dx 0

(21Ti)-1 c+ico

1.1 f -z <I>(z) <I>(z)x dz c-ioo

1.2 q,(ax) a > 0 -z a <I>(z)

1.3 xaq,(x) <I> (z+a)

1.4 q,(xP ) p > 0 -1 p <I> (z/p)

1.5 q,(x-p ) P > 0 -1 p <I> (-z/p)

1.6 x v q, (axP ) a,p > 0 p-la-(z+V)/P<l>[(z+v)/pl

1.7 xVq,(ax-p ) a,p > 0 p-la(z+V)/P<l>[_(z+v)/pl

1.8 q, (x) (log x) n <I> (n) (z)

1.9 q,(n) (x) (-1) n f{z) <I> (z-n) r(z-n) provided that

r (n+l-z) = r (l-z) <I> (z-n) lim xz-k-lq, (k) (x) = 0 x-'-O

k = 0,1, ••• n-l

Page 18: Tables of Mellin Transforms

12 I. Mellin Transforms

00

q, (x) <jl{z) J z-l = q,{x)x dx

0

d n

1.10 (x dx) q,{x) (-z) n<jl{z)

(~ x) n

1.11 q, (x) (l-z) n<jl (z) dx

I-a d n (-a)nr{z/a)

1.12 (x dx) q,{x) r (-n+z/a)

<jl (z-na)

a t 0 n r (n+l-z/a) <jl (z-na) = a r (l-z/a)

(21Ti) -1 c+ico

1.13 q, (x) q, (x) J <jl (s) <jl {z-s)ds 1 2 c-ioo 1 2

co tBq, 1.14

a J (xt) q, {t)dt <jl (z+a) <jl (l-z-a+B) x 1 2 1 2

0

co

tBq, {x/t)q, (t)dt 1.15 a J <jl (z+a) <jl (z+a+S+l) x

1 2 1 2 0

x -1 1.16 J q,{t)dt -z <jl (z+l)

0

00

1.17 J q,{t)dt -1

z <jl (z+l) x

Page 19: Tables of Mellin Transforms

1.2 Algebraic Functions and Powers of Arbitrary Order 13

1.2 Algebraic Functions and Powers of Arbitrary Order

00

z-l <P(x) 1> (z) = f <P(x)x dx

0

2.1 v

x x < a (v+z) -la v+z

0 x > a Re z > - Re v

2.2 0 x < a _(v+z)-lav+ l

v x x > a Re z < -Re v

2.3 x x < a (Z+l)-l(l+az+l_bz+l)+bz-l(bz_az)

b-x a<x<b Re z > -1

0 x > b = l+a-b+b log (bfa) for z = 0

2.4 -1 z-l CSC(1TZ) (a + x) 1Ta O<Re z < 1

2.5 (a + x) -n ( -1 ) n +l1T [ (n -1) ! 1 -1 ( z -1) (z - 2) ••• (z -n + 1 )

n = 2,3,4,'·· z-n °a esc (1TZ)

O<Re z < n

2.6 (a + x)-J, -J, z (1Ta) a f(z)f(J,-z)

O<Re z < "

Page 20: Tables of Mellin Transforms

14 I. Mellin Transforms

q, (x) <jJ (x) = 7 z-l q,(x)x dx 0

(a + -1 z-l 2.7 x) x < a >,a [\)I(>,+>,z)-\)I(':;z)

0 x > a Re z > 0

2.8 (a + -1 < b -1 z x) x a b Y(-b/a,l,z)

0 x > b Re z > 0

2.9 0 -1 z -1 a ZY(-a/c,l,z) x < a c b Y(-b/c,l,z)-c

(c + -1 a<x<b Re 0 x) z >

0 x > b

2.10 [(c+bx) (d+ax) J -1 -1 l-z rr(ac-bd) (ab) csc(rrz)

• [(bd) z-l_ (ac) z-l J , O<Re z < 2

2.11 (x + a) [(x +b) (x +c)J-1 rrcsc(rrz) [(b-a)b z- 1+(c-a)cz- 1 ] b-c c-b

0 < Re z < 1

2.12 -1 z-l cot(rrz) (a-x) rra

Principal value 0 < Re z < 1

2.13 [(a+ x) (b-x) 1 -1 -1 z-l z-l rr(a+b) [a csc(rrz)+b cot(rrz)]

Principal value 0 < Re z < 2

Page 21: Tables of Mellin Transforms

1.2 Algebraic Functions and Powers of Arbitrary Order 15

00

<p(x) <l>(Z) f z-l = <p(x) x dx 0

2.14 [ (a-x) (b-x) ] -1 TIcot(TIz) (az-l_bz-l)/(b_a)

Principal value O<Re z<2

2.15 [(x+a) (x2+b2) ]-1 ~TI(a2+b2)-1[2az-lcsc(TIz)

-bz-lsec(~TIz)+abz-2csc(~TIz)]

O<Re z<3

2.16 (x2+a 2+b 2) "TICSC (~TIz)

• ([x2+(a+b) 2] [x 2+(a_b)2]}-1 I Iz - 2 • [ b-a + (b+a)z-2]

O<Re z<2

2.17 (x 2_b 2+a 2) "TIa -1

csc(~TIz)

'{[x 2+(a+b)2] [x 2 +(a_b)2]}-1 z-l I Iz- l • [ (a+b) +sgn (a-b) a-b ]

O<Re z<2

2.18 (l-xo.) (l_xn o.)-l -1 TI (no.) sin (TI/n)

n = 2,3,'" ·csc[TIz/(no.)]csc(TIz+TIo.) no.

O<Re z«n-l)o.

2 .19 (b+ax) -v z -v

(b/a) b B(z,v-z)

O<Re z<\)

Page 22: Tables of Mellin Transforms

16

2.20

2.21

2.22

2.23

2.24

q,(x)

(a_x)v

o

Re v > -1

0

(x-a) v

Re v

0

(c+ax) -v

-v (c+ax)

o

> -1

x < a

x > a

x < a

x > a

x < b

x > b

x < b

x > b

[(c+bx) (d+ax) I v

I. Mellin Transforms

00

¢(z) = f q,(x)xZ- 1 dx o

a v+zB (v+l, z)

Re z > 0

Re z<-Re v

-v z -1 (ab) b (v-z)

F [v,v-z;l+v-z;-c/(ab)] 2 1

-1 F [l,v;l+v-z; (ab) (c+ab) ]

2 1

Rez<Rev

-v -1 -z c z b F (l,z;l+z;-ab/c)

2 1

Re z > 0

• (cd) ,>v+,>z-"B (z -2v-z) 1

O<Re z<-2Re v

Page 23: Tables of Mellin Transforms

1.2 Algebraic Functions and Powers of Arbitrary Order 17

00

¢ (x) ~(Z) = J ¢(x)xz - 1 dx

2.25

ac < bd 'f(l+v)f(z)sec(TIz)

O<Rez<1,

2.26

ac > bd

O<Rez<1,

2.27

ac < bd 'c1,z+1,vd 1,z-1,V-1 f (1+v)f(z)sec(TIz)

1, 1, .{p- v - z [(1- ac) l_P-v - z [-(1- ac) J}

l+v-z bd l+v-z bd

o < Re z < 3-'2

2.28 v -v- 3"

(c+bx) (d+ax) 2

ac > bd

'f(-v-1,)f(z)sec(TIz)

• [p3/2+v-z[(1_ bd) 1,l_p3-'2+v-z[_(1_bd) 1,l} v+z-1, ac v+z-1, ac

o < Re z < 3/2

Page 24: Tables of Mellin Transforms

18 I. Mellin Transforms

00

¢ (x) <P (Z) f z-l = ¢(x)x dx

0

2.29 (c+bx) v (d+ax) 11 d l1 c V+ zb- zB(Z,-l1-V_z)

ac • 2Fl (-l1,Z;-l1-V;l-bd)

= c Va- Zd l1+ ZB(Z,_l1_V_Z)

· F (-v z'-l1-v'l_bd) O<Re z<-Re (V+l1) 2 1 ' I I ac

2.30 [(a-x) (c+bx)]v x<a r(l+v) (c+ab)v(ac/b)~V+~z

0 x>a -V-Z 'r(z)Pv [(c-ab)/(c+ab)]

Re v > -1 Re z > 0

2.31 (a-x)v(c+bx)-v-~ x<a r(1+V)2v+zr(z)c~z-~v-~

0 x>a • (a/b)~v+~zp-v-z[(l+ab/c)~J v-z

Re v > -1 Re z > 0

2.32 v -v- 3/.

(a-x) (c+bx) 2x<a r(1+V)2v+z(c+ab)-~r(z)

0 x>a 'c~z-~v-1(a/b)~v+~z

Re v > -1 -v-z ~ 'Pv-z+1 [(l+ab/c) ]

Re z > 0

Page 25: Tables of Mellin Transforms

1.2 Algebraic Functions and Powers of Arbitrary Order 19

<p (x)

2.33 (a-x)v(c+bx»)l x < a

o x > a

Re v > -1, b > -cia

2.34 o x < a

[ (x-a) (c+bx) ] v x > a

Re v > -1

2.35 o x < a

Re v > -1

2.36 o x < a

v -v- 3/ (x-a) (c+bx) 2X > a

Re v > -1

ro

~(z) = J <P(x)xz-ldx o

F (-)l,Z;v+l+z;-ab/C) 2 1

• F (-)l,l+v;l+v+z; ab) 2 1 c+ab

Re z > 0

r(l+v) (c+ab)V(ac/b)~V+~Z

or(-2v-z)pv+z[(ab-c)/(ab+c)] v

Re z < -2 Re v

r(1+V)r(~_z)2~+v-za~z+~v-~

• z-v-1'[(1+ C )~] Pv+z-~ ab

Re z < ~

r (l+v) r (3-Z- Z) (c+ab)-~

Page 26: Tables of Mellin Transforms

20 I. Mellin Transforms

= z-l <P(x) <!> (z) = f <P(x)x dx

0

2.37 0 x < a (c+ab)~az+vB(l+v,-~-v-z)

(x-a) v (c+bx) ~ x > a F [-~,l+v;l-~-z;c/(c+ab)l 2 1

Re v > -1 = b~az+v+~B(l+V;-~-v-z)

F [-~,-v-~-z;l-~-z;-c/(ab)l 2 1

Re z<-Re (v+~)

2.38 [x+(a2+x2) l,]-v -1 -v z v(v+z) a (l,a) B(z,,>V-'>z)

0 < Re z < Re v

2.39 (a 2+x2)-'>[(a 2+x2)'>+a]V (2a)v+z-1B (,>z,1-v-z)

0 < Re z<l-Re v

2.40 (a2+x2)-~[(a2+x2)'>+x]V -z v+z-l 2 a B(z,,>-,>z-,>v)

0 < Re z<l-Re v

2.41 (a 2+x2)-'>[(a 2+x2) '>-x] v 2- z a v+ z- 1B(Z,,>_,>z+,>v)

2.42 (b-x) v-l r (V)kAbV+l+Z r (z) [r (v+z) ]-1

• (xk+ak) A z z+l z+k-l x < b . k+1Fk(-A'k'~""'--k---;

0 x > b z+v z+v+l z+v+k-l ;_bk/ak ) k=1,2,3,"'; Re(v,z»O

~'--k---"" , k

Page 27: Tables of Mellin Transforms

1.2 Algebraic Functions and Powers of Arbitrary Order 21

¢(x)

2.43

2.44

2.45 o x < a

2.46

x < a

o x > a

00

~(z) = f ¢(x)xz-ldx o

(2a)~z-lr(~z)r(1-v-z)

v+z-l -1 = (2a) [r (l-v-~z) 1

F (-~v-~z,1-3~v-~z;1-v-~z;~-~b/a) 2 1

O<Re z<l-Re v

2-~-~v-~zaV+z-lr(z)r(~_~v_~z)

• (b2_1)~+~V-~Z ~+~V-~Z(b) P~v-l

O<Re z<l-Re v

Re z<l±Re v

Re z>Max(O,-2 Re v)

Page 28: Tables of Mellin Transforms

22 I. Mellin Transforms

00

z-l ¢(x) <P (x) = f ¢(x)x dx

0

2.47 [x+a+(x2+2ax)~]-V -v z -1 2va (~a) [r(l+v+z)] r(2z)r(v-z)

0 <Re z < v

2.48 (x+a) [(x+a)2+b2 ]-1 7fcsc(7fz) (a 2+b 2) ~z-~

'cos[(l-z)arctan(b/a)]

0 < Re z < 1

3 ~ (z-l) (2a) z-2v-2 [r (3/2 +V ) ]-1 2.49 (x+a) (x 2+2ax)-v- ~

·r (Z-V- 3/2) r (2+2v-z)

3/2 +Re v < Re z < 2+2Re v

2.50 [(x+a) 2_b2]-V-~ 7f~(2b)-v[r(~+v)]-1(a2_b2)~z-~v-~

a > b .r(z)r(1+2V-z)p-v [a(a2-b2)-~] v-z

0 < Re z < 1+2 Re v

2.51 (x+a) [(x+a)2_b 2]-V- 3-'2 (~b)-vr(1+v)B(z,2v+2-z)

a > b • (a 2_b 2) ~z-~V-lp -v [a (a 2_b2)-~ l+v-z

0 < Re z < 2+2 Re v

Page 29: Tables of Mellin Transforms

1.2 Algebraic Functions and Powers of Arbitrary Order 23

00

z-l ¢ (xl 1>(zl = I ¢(xlx dx

0

2.52 {x+a+[(x+al2-b2]~}-v vb -vr (z) r (v-z)

a > b .(a2_b2)~zp-v[a(a2_b2)-~1 z

0 < Re z < v

2.53 (x2+2ax)-~ -~ -v z-l 11 a (2a) r(~-z)r(z)

• [x+a+(x2+2ax)~]-v . r (1+ v- z) [r ( z+ v) ] -1

~ < Re z<l+Re v

2.54 (x 2+2axcosS+a 2)-1 1IcscSa z-2 csc(1Iz)sin[(1-z) S]

-11 < S < 11 0 < Re z < 2

2.55 (x 2+2axcoshy+a 2)-1 'ITcschy z-2 csc(1Iz)sinh[(1-z)y] a

0 < Re z < 2

2.56 (x 2+2ax cos8+a 2) -~ z-l csc(1Iz)Pz_1 (cosS) 1Ia

-11 < S < 11 0 < Re z < 1

2.57 (x2+2axcoshy+a2)-~ z-l csc(1Iz)Pz_1(coshy) 1Ia

0 <Re z < 1

Page 30: Tables of Mellin Transforms

24 I. Mellin Transforms

<X>

cp(x) cjl (z) = f cp(x)xz-ldx 0

2.58 (x 2 +2axcos e + 2 -v a ) 2v-~r (~+v) (sin e)~-va z-2v

e ~-v e) -7f < < 1T "B(z,2v-z)P ~(cos z-v-

0 < Re z < 2Re v

2.59 (x 2 +2ax co shy + 2 -v a ) 2v-~r(~+v) (sinhy)~-va z-2v

~-v oB(z,2v-z)p ~(coshy) z-v-

0 < Re z < 2 Re v

2.60 x sin e z-l CSC(1TZ) sin(ze) 7fa

o (x 2+2ax cose+a 2 )-1 -1 < Re z < 1

-1T < e < 1T

2.61 sinhy z-l esc (1TZ) sinh (yz) x 1Ta

o (x 2+2ax coshy+a 2 )-1 -1 < Re z < 1

2.62 (a+xcose) z-l 1Ta CSC(1TZ)COS(ze)

o (x 2+2 ax cose+a 2 )-1 0 <Re z < 1

-7f < e < 1T

Page 31: Tables of Mellin Transforms

1.2 Algebraic Functions and Powers of Arbitrary Order 25

'" z-l cj>(x) <!>(z) = f qdx) x dx 0

2.63 (a+x coshy) 7fa z-l csc(7fz)cosh(zy)

• (x 2+2ax coshy + 2 -1 a ) 0 < Be z < 1

2.64 (x2+2al;x+a 2) -v v-~ z-2v 2 r(~+v)a B(z,2v-z)

I; not on the real '(1;2_l)I;,-~vp~-v (1;) z-v-~

axis between -1 and z-2v = a B(z,2v-z)

_00

• F (z,2v-z;~+v; ~-~1;) 2 1

0 < Be z < 2 Re v

1.3 Exponential Functions

3.1 -ax -z 0 e a r (z) Be z >

3.2 -bx -z 0 e x < a b y(z,ab) Be z >

0 x > a

3.3 0 x < a -z b r(z ,ab)

-bx x > e a

3.4 (b+x)-le-ax eabbz-lr(z)r(l_z,ab) Be z > 0

Page 32: Tables of Mellin Transforms

26 I. Mellin Transforms

'" z-l <P(x) q, (z) = f <p(x)x dx

0

3.5 (b+x)ve-ax e~abb~z+~v-~a-~-~v-~z

.r(z)W~+~v_~z,~v+~z(ab)

Rez > 0

3.6 (b 2+x 2)-le-ax a~bZ_3/2r(Z)S~ ~(ab) -z,

Re z > 0

3.7 (b-x) veax x < b b v+zB (z, l+v)

0 x > b · F (z;z+v+l;ab) 1 1

Re v > -1 Re z > 0

3.8 (b2-x2)-~exp[-a(b2-x2)~] ~rr~(2b/a)~z-~r(~z)

x < b • [I~z_~(ab)-L~z_~(ab)]

0 x > b Re z > 0

3.9 0 x < b ~ ~z (ab) (b/a) S~z-l-v,l:iZ+V(ab)

exp[_a(x2_b 2)l:i]x > b

3.10 0 x < b l:i rr l:i(2b/a) l:iz-l:i r (l:iz)

(x2_b2)-~exp[_a(x2_b2)l:i] • ()I~z-l:i (ab) -Yl:iz-l:i (ab)]

x > b

Page 33: Tables of Mellin Transforms

1.3 Exponential Functions 27

00

z-l q,(x) <P(z) = f q,(x)x dx 0

3.11 (a 2+x 2 )-" n-"(2a/b) "Z-"r("Z)K"_"Z(ab)

'exp[-b(a 2+x 2 )"l Re z > 0

3.12 exp[-b(a 2+x 2 ) "1 n-"a(2a/b) "z-"r("Z)K"+,,z(ab)

Re z > 0

3.13 e -ax 2 -bx -"z 1 2 (2a) r(z)exp(~ la)

on [b(2a)-"1 -z Re z > 0

3.14 exp (-axP ) p > 0 p-la-z/Pr(z/p) Re z > 0

3.15 exp (-ax -p) p > 0 -1 zip par (-zip) Re z < 0

3.16 exp(-axP-bx-P ) 2p-l (b/a) "z/PK I [2 (ab) "1 z p

p > O·

3.17 l-exp(-axp)p > 0 -1 -zip -p a r (zip) -p < Re z < 0

3.18 l-exp(-ax-p)p > 0 -1 zip -p a r(-z/p) O<Rez<p

Page 34: Tables of Mellin Transforms

28 I. Mellin Transforms

00

<p (x) 1> (z) = f z-l <P(x)x dx

0

3.19 (eax_l) -1 -z a r(z)1;(z) Re z > 1

3.20 (e ax_l) -Ie -bx -z a r(z) 1; (z,l+b/a) Re z > 1

3.21 e-px (eax+l)-l (2a) -zr (z) [1; (z ,lz+Jw/a) -1; (z ,l+Jw/a) ]

Re z>O, p>-a

3.22 -ax -1 -z -1 1-z

e [J.,-x r(z) [1;(z,a)-J.,a +(l-z) a 1

+ (eX_I) -1] Re z > - 1

3.23 (eX_I) -2 r(z) [1;(z-l)-1;(Z)] Re z > 2

3.24 -ax -x -2

e (l-e) r(z) [1;(z-l,a-l)-(a-l)1;(z,a-l)]

Re z > 2

3.25 (ex _1;) -Ie -ax r(z)Y(1;,z,a+l)

larg 1;1 < 1T Re z > 0

3.26 (eax+l) -1 -z 1-z a r(z)(1-2 )1;(Z) Re z > 0

Page 35: Tables of Mellin Transforms

1.3 Exponential Functions 29

= cjl (x) <P (z) f z-l

= cjl (x) x dx 0

3.27 0 x < 1 3/ ~

~1f 2a [J~_~z (a)Y_,>z (a)

(x 2-1) -'> -J_,>z(a)Y,>_,>z(a»)

-1 'exp[-a(x-x »)x > 1

3.28 (1-t2 ) -~ x < 1 3/. '>

'>1f 2a [J,>z (a)Yl,z-l, (a)

'exp[-a(x -1

-x) ) -Jl,z_,>(a)Yl,z(a»)

0 x >1

3.29 e-ax [(ex _l)-l_x -l) -1 r(z) [I;(z,a)+(l-z) a l-z -z -a )

Re z > 0

3.30 (1+x2) -v-l ~(2a)-~v-~[r(1+v»)-lr(~z)

oexp[_a(1-x 2») .r(1+V-~Z)M~_~z+~v,~v(2a) 1+x2

0 < Re z < 2+2 Re v

3.31 (l+x 2) -v-l ~(2a)-~v-~e-a[r(1+v»)-lr(~z)

'exp(- ~) .r(1+v-~Z)M~_~z+~v,~v(2a) 1+x2

0 < Re z < 2+2 Re v

Page 36: Tables of Mellin Transforms

30 I. Mellin Transforms

w

<P(x) <I>(z) ! z-l = (x)x dx

0

3.32 (l_x 2 )-v-1 -kv-~ ~(2a) 2 r(~Z)W, +" , (2a)

--iV ''2-;:..zZ I ~\)

l+x 2 I Re 0 'exp [-a (--) ], x < z >

l-x 2

0 X > I

(l_x 2)-V-1 -kv-!:: a 3.33 ~(2a) 2 2e r(~z)W, +" , (2a)

~\) Yz- YzZ , ~\)

'exp (- 2ax 2 < I Re 0 --) x z > l-x 2

0 X > I

3.34 (l-x 2 ) -~ r(z)D 2 [(2a)~] -z

l+x I 'exp[-a(I_X)]' x < Re z > 0

0 x > I

3.35 (l-x 2) -~ e a r(Z)D 2 [(2a)~] -z

'exp (- 2ax) I-x '

x < I Re z > 0

0 x > I

3.36 (l-x2)-~ r(z)D {2~[b+(b2-a2)~]~} -z

'exp[_(2ax+b+bx 2)] l-x 2

'D {2~[b-(b2-a2)~]~} -z

x < I Re z > 0

0 x > I

Page 37: Tables of Mellin Transforms

1.3 Exponential Functions

3.37

3.38

3.39

3,40

q,(x)

ax+bx2 'exp [-2 (---) 1

l-x 2

x < 1

o x > 1

(b-x) v-l

o x > b

k = 2,3,4,,"

(b-x) v-1

'exp[a(b-x)k 1 x < b

o x > b

k = 2,3,4,-"

(b-x) v-l x < b

o x > b

Re (v, z) > 0

= ~(z) = f q,(x)x Z- 1 dX

o

Re z > 0

31

• F (~z+l ••• z+k-l,z+v z+v+l kkk' k' , k ' k' k '

Re (v, z) > 0

• F (~v+l ••• v+k-l z+v z+v+l kkk' k' , k ' k' k '

Re (v, z) > 0

• F (z;~,v+z;~a2b)+ar(~+z)r(v) 1 2

• F (!.2+Zi~2,!z+v+z;~a2b) 1 2

Page 38: Tables of Mellin Transforms

32 I. Mellin Transforms

00

z-l ¢(x) q,(z) = J ¢(x)x dx

0

h 3.41 0 x < 1 D~_1 [(2a) 2] r (l-z)

(X 2 -1)-!, Re z < 1

oexp[_a(x+l)] x-I

x > 1

3.42 0 x < I ear(I-Z)D~_1[(2a)!'1

(x 2 -1)-!, Re z < 1

oexp(- 2a) x-I x > 1

3.43 0 x < 1 r(l-z)D {2!,[b+(b 2 -a 2 )!,1!,} z-l

(x 2 -1) -!:z 0D {2!,[b-(b 2 -a 2 )!,1!,} z-1

2 oexp[_(2aX+b+bx )] Re z < 1

x 2 -1

x > I

3.44 0 x < I e b r(l-z)D {2!,[b+(b 2 -a 2 )!,1!,} z-1

(x 2 -1)-!, 'D {2!,[b-(b 2 -a 2 )!,]}

z-1

°exp [-2 (ax+b) 1 x 2 -1 Re z < 1

x > 1

Page 39: Tables of Mellin Transforms

1.3 Exponential Functions 33

00

z-l <jJ (x) <!>( z) = f <jJ(x)x dx 0

3.45 (1+x2)-V-1 ~(2a)-~v-~[r(1+v)]-lr(1+v-~z)

1-x2 .r(~Z)M~_~z+~v,~ (2a) 'exp [-a (--) ]

1+x2

0 < Re z < 2+2 Re v

3.46 (1+x2) -v-1 ~(2a)-~V-~e-a[r(1+v)]-lr(1+v-~z)

'exp(- ~) .r(~z)M~_~z+~v,~v(2a) 1+x2

0 < Re z < 2+2 Re v

3.47 _l--V- k

0 x < 1 ~(2a) '2 2r(1+v-~z)W, 1 1 1 (2a) ~Z-~\)-"2,YzV

(x 2_1)-v-1

x 2+1 Re z < 2+2 Re v 'exp[-a(--)]

x 2-1

x > 1

3.48 0 x < 1 -!zv-!z a ~(2a) e r(l+v-~z)

(x 2_1)-V-1 .W!zz-~v_!z,!zv(2a)

'exp(- ~) Re z < 2+2 Re v x 2-1

x > 1

Page 40: Tables of Mellin Transforms

34 I. Mellin Transfonns

1.4 Logarithmic Functions

00

z-l 4> (x) .p (z) = J .p(x)x dx

0

-1 a Z -1 Re z > 0 4.1 log x x < a z (loga-z )

0 x > a

4.2 0 x < a z -2 a z Re z < 0

log (x/a) x > a

4.3 -1 (x+a) logx waz-lcsc(wz) [loga-wcot(wz)]

0 < Re z < 1

4.4 -1 -1 0 <Re < 1 x log (l+x) wcsc(n) (l-z) z

4.5 log (l+a/x) -1 z wz a csc (wz) 0 <Re z < 1

4.6 log (l+ax) -1 -z wz a csc (wz) -1 < Re z < 0

4.7 -1 (b+ax) log (b+ax) _bl - V a -zwcsc (owz)

0 <Re z < 1 • [y+1j!(l-z)"';logb]

4.8 log[(a+cx)/(b+cx)] -1 -z Z Z WZ C csc (wz) (a -b )

0 < Re z < 1

Page 41: Tables of Mellin Transforms

1.4 Logarithmit Functions 35

00

z-l cjJ(x) <I>( x) = J <l>(x)x dx 0

4.9 10g11-axl -1 -z cot ('ITz) -l<Re z<O 'ITZ a

4.10 10 111+xl g l-x -1 'ITZ tan (~'ITz) -l<Re z<l

4.11 log I~I -1 csc ('ITz) [a 2 -b 2 cos ('ITz)] 'ITZ b-x

O<Re z<l

4.12 -1

"[\)I' (H~z) -\)I' (~z)] > 0 (x+l) 10gx x < 1 Re z

0 x > 1

4.13 -1

\)I' (z) (x-l) 10gx x < 1 Re z > 0

0 x > 1

4.14 -1 (a-x) 10gx z-l

'ITa [loga cot('ITz)-'ITcsc 2 ('ITz)]

Principal value O<Re z<l

4.15 -1 -1 (a+x) (b+x) 10gx -1 z-l 'IT (b-a) csc('ITz) [a 10ga

0 < Re z < 1 z-l z-l z-l -b 10gb-'ITcot('ITz) (a -b )]

4.16 log (l+x) x < 1 -1 z [10g2-~\)I (l+~z)

0 x > 1 + ~\)I(~+~z)]

Re z > -1

Page 42: Tables of Mellin Transforms

36 I. Mellin Transforms

00

</> (x) <l> (z) f z-l = </>(x)x dx

0

4.17 0 x < 1 rrz -1

cot ('rrz)

log (l+x) x > 1 -1 < Re z < 0

4.18 log (l-x) x < 1 -1 -z [y+1jJ(z+l)] Re z > -1

0 x > 1

4.19 0 x < 1 -1 -1 z [z +1jJ(l-z)+y]

log (x-1) x > 1 Re z < 0

4.20 -1 2 rr3 csc 3 (rrz) [2-sin 2 (rrz)] 0 (l+x) (logx) < Re z < 1

4.21 (l+x) -11og(1+x 2 ) ~rrcsc(rrz){log4+(1-z)sin(~rrz)

-2 <Re z < 1 • [1jJ ( 3/4 - .. z) -1jJ ( .. - .. z) ]

- (2-z) cos (~rrz) [1jJ (l-"z) -1jJ (~-"z)]}

4.22 log (1+2x cos8+x 2 ) 2rrz-1cos(z8)csc(rrz)

-rr < 8 < rr -1 < Re z < 0

4.23 log[x+(a 2 +x 2 ) ~] -(~a)zz-lB(Z,~V-~z) -1 < Re z < 0

Page 43: Tables of Mellin Transforms

1.4 Logarithmic Functions 37

00

z-l CP(x) q. (z) '" J cp(x)x dx

0

4.24 (a 2+X2)-~ 2-zaz-1B(z,~-~z) [loga-~1Ttan(l~1Tz)]

·log[(a 2+x2) ~-x] 0 < Re z < 1

4.25 (a 2+X 2)-l:! 2- z a z - 1 B (z, ~-l:!z) [loga+l:!1Ttan (~1TZ)]

.log[(a2+x2)~+x] 0 < Re z < 1

4.26 log[l+(1-x 2)l:!] x < 1 z-l[~1T~ r (l:!z) -1 r(l:!+~z) - z ]

0 x > 1 Re z > 0

4.27 0 x < 1 ~ -1 -1 -l:!1T z f(-l:!z) [r(~-~z)]

log [x+ (x 2_1 ) ~] x > 1 Re z < 0

4.28 0 x < a ~ -1 z -1 -1T z a f(-~z) [f(~-~z)]

log x+ (x 2-a 2) ~

X > a Re z < 0 [ l:!] x- (x 2-a 2)

4.29 (y2_1)-~ 3" 3/ 2 2a 2b 2r(l:!z) [f( 3/2-~Z)]

·log[y+(y2-1) ~] • [r (l-l:!z) ]-1 (lb2-a2 1) -~Zq ~ 1 (b 2+a2 ) - z- Ib2-a21

y '" (2ab) -1(a 2+b 2+x2) 0 < Re z < 1

Page 44: Tables of Mellin Transforms

38 I. Mellin Transforms

00

q, (x) <p(z) f z-l = q,(x)x dx

0

4.30 log[x+(1+x 2 ) 1,] -1 -J,z B (J,+J,z ,-~z) -l<Re z<O

4.31 (a 2+x 2+2ascos8)-1 -rrcos 8 dn [a z-2 csc(rrz)sin(z-l)8] --

dzn

o (logx)n O<Re z<2

-rr<8<rr

4.32 -x n dn r (z) > 0 e (logx)

dzn Re z

4.33 -ax -z -z > 0 log (l+e ) a (1-2 ) r (z) I;; (l+z) Re z

4.34 -ax -a-zf(z) I;; (l+z) > 0 log(l-e ) Re z

4.35 log [tanh (ax) ] - (2a) -zr (z) I;; (l+z) (2_2- z ) Re z > 0

00

4.36 log (1-2ae-xcos8+a 2e-2x) -2r (z) L -1 n (n+ 1) a cos (n 8)

1

0 < a < 1, -rr<8<rr Re z > 0

4.37 (log l/x)v x < 1 Z-v-lr(V+l)

0 x > 1 Re v > -1 Re z > 0

Page 45: Tables of Mellin Transforms

1.4 Logarithmic Functions 39

00

q, (x) 1> (Z) = f <jJ(x)xz-ldx

0

4.38 (a-x) v log (a-x) x < a a v+zB (v+l, z)

0 x > a • [loga+ljJ (1+v) -ljJ (1+v+z) )

Re v > -1 Re z > 0

4.39 0 x < a aV+ZB(v+l,-v-z)

(x-a) v log (x-a) x > a • [loga+ljJ(1+v)-ljJ(-v-z»)

Re v > -1 Re z < -Re v

4.40 (b+ax) -v b-v(b/a)zB(z,V-z)

-log (b+ax) • [logb+ljJ (v) -ljJ (v-z) )

0 < Re z < Re v

4.41 (l-x)vlogx x < 1 B(v+l,z) [ljJ(z)-ljJ(v+1+z)]

0 x > 1 Re z > 0

Re v > -2

4.42 (l-x)V(logx)2 x < 1 B (v+l, z) {[ljJ (z) -ljJ (V+1+z»)2

0 x > 1 +ljJ' (z) -ljJ' (v+1+z)}

Re v > -1 Re z > 0

4.43 e -at (logt) 2 r (z) a -z { [ljJ (z) -loga) 2 +ljJ I (z) }

Re z > 0

Page 46: Tables of Mellin Transforms

40

q, (x)

4.44 -at e logt

4.45

For a=l, -l<Re z<Re v

4.46

O<Re z<l+Re v

4.47

O<Re z<l-Re v

4.48

• {[a+ (a 2_X 2 ) ~l v log (a+ (a 2_X 2 ) ~l

~ v I~ +[a-(a 2-x 2 ) 1 log[a-(a 2 -x 2 ) 1

x < a

o x > a

I. Mellin Transforms

'" w(z) = f q,(x)xz-ldx o

r(z)a-z[~(z)-logal Re z > 0

-v -1 z -a (v+z) (~a) B (z, ~v-~z)

o <Re z<Re v

• [loga+~~{~-~z+~v)

-~~(~+~z+~v) 1

• [loga-~~(~-~z-~v)

+~~(~+~z-~v) 1

• [log (2a) +~ (v+~z)

Re z>Max(O,-2 Re v)

Page 47: Tables of Mellin Transforms

1.4 Logarithmic Functions

¢ (xl

4.49 0 x < a

[x+(x2_a2)~]V

'log[x+(x2-a2)~]

_[x_(x2_a2)~]V

'log[x-(x2-a2)~] x > a

4.50 o x < a

4.51 2 2

log [c + (x+a) 2] c 2+(x+b)

O<Re z<l

00

f z-l W(zl = ¢(xlx dx o

~av[r(l_z)]-l(~a)z

r(~v-~z)r(-~v-~z)

Rez<±Rev

41

Rez<l±Rev

Page 48: Tables of Mellin Transforms

42 I. Mellin Transforms

1.5 Trigonometric Functions

00

z-l ¢(x) <jJ( z) = f ¢(x)x dx

0

5.1 sin (ax) -z

a r(z)sin(~7fz)

-1 < Re z < 1

5.2 cos (ax) -z

a r(z)cos(~7fz)

0 < Re z < 1

5.3 sin (bx) < ~iz -1

a Z [ F (z; l+z; -iab) x a 1 1

0 X > a - F (z;l+z;iab) 1 Re z > -1 1 1

5.4 cos (bx) < ~z -1

a Z [ F (z;l+z;iab) x a 1 1

0 X > a + F (2; l+z;-iab) 1 1 1

Re z > 0

5.5 -1 (7fab)~(2a)z-1[r(~+~z) (a+x) sin (bx)

r (l-~z)

-1 < Re z < 2 2r (l+~z)

'S~_z,~(ab)- r (l,-l,z) s_~_z,~(ab) 1

5.6 -1 (a+x) cos (bx) ~ z-l r(~z)

(7fab) (2a) [r (~-~z) S~_z, ~ (ab)

0 < Re z < 2 - 2 r (~+~z)

S_~_z,~(ab) 1 r (-~z)

Page 49: Tables of Mellin Transforms

1.5 Trigonometric Functions

¢(x)

5.7

• sin (bx)

-1 < Re z < 3

5.8

• cos (bx)

0<Rez<3

5.9

• sin (bx)

-l<Re z<1+2 Re v

5.10

• cos (bx)

O<Re z<1+2 Re v

'" ~(z) = f ¢(x)x Z- 1 dx o

F (1;2-!;zz,3/2 -!;zz;!oa 2 b 2 ) 1 2

+!;zrra z - 2sec(!;zrrz)sinh(ab)

z-2 +!;zrra csc(!;zrrz)cosh(ab)

F (~+~Zi 3/2+~Z-V, 3/2 ;~a2.b2) 1 2

43

+2 z-2v-l rr !;zr (3/2 -!;zZ-v) [r (l+v-!;zz) rl

• F (!;zz;1+!;zz-v,!;z;!oa 2b 2 ) 1 2

!;z z-2v-l 2v-z -1 +rr 2 b [r (!;z+v-!;zz) 1 r (!;zz-v)

Page 50: Tables of Mellin Transforms

44

5.11

5.12

5.13

5.14

5.15

¢ (x)

v-I (a-x)

• sin (bx)

x < a

Ox> a

Rev>O

v-I (a-x)

• cos (bx)

o

Rev>O

'sin (bx)

o

'cos (bx)

o

• sin (bx)

x < a

x > a

x < a

x > a

x < a

x > a

(Principal value)

I. Mellin Transforms

'" W(z) = J ¢(x)xz-ldX

o

\iB(z,v)az+ v- l [ F (z,v+z;-i ab) 1 1

- F (z, v+ z; iab 1 1 1

Re z > -1

\B(z,v)az+ V- l [ F (z,v+z;iab) 1 1

+ F (z,v+z;-iab)] 1 1

z+2v+ 1_ \a oB(v+l,\+\z)

Re z > -1,

Re z > 0

Re v > -1

\aZ+ 2VB(\Z,V+l) F (\z;\,l+v+\z; 1 2

Re z > 0, Re v > 1

z-2 k z-l -\1fa cos (ab) + (1fb/a) 2 (2a)

-1 . r (\+\z) [r (l-\z) 1 8\_z, \ (ab)

-1 < Re z < 3

Page 51: Tables of Mellin Transforms

1.5 Trigonometric Functions 45

00

<j> (x) <!J{z) = f <j> (x) x z - 1 dx 0

5.16 {a 2_x 2)-1 ~7fsin (ab) a z - 2 + (2 7fb) ~ (2a) z- 3/2

'cos (bx) -1

·r (~z) [r (~-"z)] S,,+z,~{ab)

Principal value 0 < Re z < 3

5.17 (a+x) -1 7f csc{7fz)az{l-~7fa~b

k k k k k • cos [b (a+x) 2] • [J, {ba 2)H 1 (ba 2) -H, (ba 2) J , (ba 2) ]

~-z -~-z ~-z -~-z

O<Re z < 31'2

5.18 (a-x) v x < a a V+1B{z,V+l)

'cos [b (a-x)~] . F (V+l;1+v+z,~;-~ab2) 1 2

0 X > a Re z > 0, Re v > -1

5.19 -bx sin (ax) f{z) (b 2+a 2) -~zsin [z arctan{a/b)] e

Re z > -1

5.20 -bx

cos (ax) r{z) (b2+a2)-~Zcos[z arctan (alb) ] e

5.21 -bx sin (ax) < c ~i(b+ia)-Zy[z,c{b+ia)] e x

0 x > c -~i(b-ia)-Zy[z,c{b-ia)]

Re z > -1

Page 52: Tables of Mellin Transforms

46 I. Mellin Transforms

co z-l cp(x) <l> (z) = J cp(x)x dx

0

5.22 -bx cos (ax) e x < c ~(b+ia)-Zy[z,c(b+ia)l

0 x > c +~(b-ia)-Zy[z,c(b-ia)l

Re z > 0

5.23 0 x < c ~i(b+ia)-zr[z,c(b+ia)l

-bx sin (ax) e x > c -~i(b-ia)-zr[z,c(b-ia)l

5.24 0 x < c ~(b+ia)-zr[z,c(b+ia)]

-bx cos (ax) e x > c +~(b-ia)-zr[z,c(b-ia)]

5.25 (eax_l) -1 ~ia-zr(z) [l;(z,l+ibja)-l;(z,l-ibja)]

'sin (bx) Re z > 0

5.26 (eax_l) -1 ~a-zr(z) [l;(z,l+ibja)+l;(z,l-ibja)]

'cos (bx) Re z > 1

5.27 (eax+l) -1 r(z) {b-zsin(~wz)+~i(2a)-z

'sin (bx) • [l;(z,~+~ibja)-l;(z,~-~ibja)

Re z > -1 -l;(z,~ibja)+l;(z,-~ibja)]}

Page 53: Tables of Mellin Transforms

1.5 Trigonometric Functions 47

co z-l CP(x) <I>(z) = f CP(x)x dx

0

5.28 (eax+l) -1 r (z) {b -zcos (J,1TZ) +lz (2a)-z

'cos (bx) • [1;(z,J,+lzib/a)+1;(z,lz-lzib/a)

Re z > 0 -1;(z,J,ib/a) -1;(z,-lzib/a»)

5.29 -ax 2

sin(bx) lzba -lz- lzz r (lz+lzz) exp (-!'<b 2/ a) e

Re z > -1 F (-lzz; 'Y2 ;!.<b2/a ) 1 1

5.30 -ax 2

cos (bx) lza- lzz r(lzz)exp(-!.<b 2/a) e

Re z > 0 F (-~Z+~i~i~b2/a) 1 1

5.31 -ax 2-bx -kz 1 -1 2 2 e -lzir(z) (2a) 2 exp[ /sa (b -c »)

o sin (cx) -k o {exp(-!.<ibc/a)D_ z [(2a) 2(b-ic»)

Re z > -1 -k -exp (!.<ibc/a) D_z [(2a) 2 (b+ic) ) }

-ax 2-bx -J,z 1 -1 2 2 5.32 e lz (2a) r( z) exp [/sa (b -c »)

'cos (cx) -~ • {exp (-!.<ibc/a) D_z [(2a) (b-ic»)

Re z > 0 _k +exp (!.<ibc/a)D_ z [(2a) 2(b+ic»)}

5.33 e-ax-b2/x ibz{(a+ic)-lzzK [2b(a+ic)lz) z

'sin (cx) -(a-ic)-lzzK [2b(a-ic)lz)} z

Page 54: Tables of Mellin Transforms

48 I. Mellin Transforms

co

CP(x) <!>(z) = f CP(x)xz-ldx 0

5.34 -ax-b 2/x bZ{(a+ic)-~zK [2b(a+ic)~1 e z

'cos(cx) -~z ~ + (a-ic) K [2b (a+c) l} z

5.35 -ax~

sin (bx) i(2b)-zr(2z){exp[-i(~uz+Y8a2/b)1 e

Re z > -1 "D 2 [~ab-~(1-il-exp[i(~uz+l/8a2/b)1 - z

'D_2Z[~ab-~(1+i)1}

5.36 -ax~

e cos (bx) (2b)-zr(2z) {exp[-i(~uz+l/8a2/b) 1

Re z > 0 "D 2 [~ab-~(1-i)1+exp[i(~uz+l/8a2/b)1 - z

"D [~ab-~(l+i)l} -2z

5.37 sin [b (a 2+X2) ~l 1 ~ 1 -~u~a(2a/b) z-~r(~z)

0 <Rez<l "[Y~+~z(ab)sin(~uz)

-J~+~z(ab)cos(~uz)l

5.38 cos[b(a2+x2)~1 -~u~a(2a/b)~z-~r(~z)

0 <Rez<l • [J~+~z(ab)sin(~uz)+Y~+~z(ab)cos(~uz)l

Page 55: Tables of Mellin Transforms

1.5 Trigonometric Functions 49

ro z-l q,(x) <l> (z) = f q,(x) x dx

0

5.39 (a 2+x 2)-1; Y- ~z 1; (1;rrb/a) 2 (2a/b) r (1;z) J, , (ab) ~-~Z

.sin [b (a 2+x2) 1;] 0 < Re z < 2

(a2+x2) -1; ;." 1::z 5.40 -1;(1;rrb/a) 2(2a/b) 2 r(1;z)Y, , (ab)

~-~z

.cos [b (a 2+x2) 1;] 0 < Re z < 2

sin [b (a 2_x 2) 1;] 1.::: kz 5.41 x < a 1; ( 1;rr ab) 2 ( 2 a/b) 2 J, + ' ( ab )

~ ~z

0 x > a Re z > 0

5.42 cos [b (a 2_X 2) 1;] x < a ~z-!:z

-a (a/b) s 1;z- 3/2 , 1;z+1; (ab)

0 x > a Re z > 0

(a 2_x 2)-1; 1.: 1,,:z 3/ 5.43 1;rr 2(2a/b) 2 - 2r (1;z)H, , (ab)

;.zz-::-z

>< .sin[b(a2-x2) 2] x < a Re z > 0

0 x > a

(a 2_x 2)-1; k !'::;z 5.44 1;(1;rrb/a) 2(2a/b) 2 J, , (ab)

::-ZZ-Yz

.cos [(a 2_x 2) 1;] x < a Re z > 0

0 x > a

Page 56: Tables of Mellin Transforms

50

<jl (x)

5.45 o x < a

x > a

5.46 o x < a

Re z < 1

5.47 o x < a

x > a

5.48 o x < a

x > a

5.49 -u e cos v

I. Mellin Transforms

00

~(z) = f <jl(x)xz-ldx o

·K~Z+~ (ab) Re z < 1

(kab) ~ (a/b) ~z [2~z-lr (kz) I (ab) 2 2 -~-~z

, -i2!:(z-l) +2':2e 4 s, 3 , +' (iab) J

~z- ;/2, ~z Yz

!-,; ~z-!-.. ~7f 2(~a/b) 2r (~z) [I, L (ab) -L, ,(ab) J

~-'"2Z ~z-~

Re z < 2

(~7fb/a) ~ (2a/b) ~z [r (l-~z) J -lK, ,(ab) ;.zZ-Yz

Re z < 2

Re z > 0

Page 57: Tables of Mellin Transforms

1.5 Trigonometric Functions

¢ (xl

5.50 -u . e Sln v

5.51 sin(a/x)sin(bx)

-2 < Re z < 2

5.52 sin (a/x) cos (bx)

-1 < Re z < 2

5.53 cos (a/x) sin (bx)

-1 < Re Z < 2

5.54 cos (a/x) cos (bx)

-1 < Re z < 1

q, (z) z-l = f <j>(x)x dx

o

k z-k -1 (2a) 22 2r (':;+':;z) [r (l-':;z) ]

• (a/b)-,:;z-~KLi [2(ab)':;] "2' z

Re z > -1

kZ ~ 1r(a/b) 2 csc(':;1rZ)

• {J [2 (ab) ':;-J [2 (ab) ':;] Z -z

~1r(a/b),:;zsec(':;1rz)

• {J [2 (ab) ':;]+J [2 (ab) ':;] Z -z

kZ ~1r(a/b) 2 sec(':;1rz)

• {J [2 (ab) ':;]+J [2 (ab) lz] z -z

kZ ~1r(a/b) 2 csc (lz1rz)

~ k • {J [2 (ab) 2]_J [2 (ab) 2] . -z Z

+21r- l sin(1rz)K [2 (ab) lz]} z

51

Page 58: Tables of Mellin Transforms

52 I. Mellin Transforms

'" ¢(x) <!>(Z) = f ¢(x)xz-ldx

0

5.55 sin [a(x-b 2 Ix) ] 2bzsin(y,~Z)Kz(2ab)

-l<Re Z < 1

5.56 sin[a(x+b 2/x)] y,TTbzsec (Y,TTZ) [J (2ab) +J (2ab)] Z -z

-1 < Re Z < 1 -l<Re Z < 1

5.57 cos [a(x-b 2 /x)] 2bzcoS(Y,TTZ)K (2ab) Z

-l<Re Z < 1

5.58 cos[a(x+b 2/x)] y,TTbzcsc(Y,TTZ) [J (2ab) -J (2ab) 1 -z Z

-l<Re Z < 1

5.59 (l+x2) -Y, 3/ 1

- (Y,TT) 2 a'i [J -\-Y,Z (a)Y 3/4+y,Z (a)

-1 'sin[a(x+x )] +J 3,"4+y,Z (a) Y -\-y,z (a) ]

-l<Re Z < 2 0/ k:

= (Y,TT) 2a '[J _ 3/4-y,Z (a) J\+y,z (a)

-Y_3/4-y,Z (a)Y\+y,z (a)]

Page 59: Tables of Mellin Transforms

1.5 Trigonometric Functions

5.60

5.61

5.62

5.63

5.64

<P{x)

-1 'cos[a{x+x l]

-1 < Re z < 2

2 } -~ {l-X x <

-1 ·sin[a{x-x }]

0 x >

{1-x 2 } -~ x <

-1 'cos[a{x-x }]

1

1

1

o x > 1

o x < 1

'sin[a{x-x-1 }] x > 1

o x < 1

'cos[a(x-x-1 }] x > 1

00

¢(z) = f <jJ{x) x z - 1dx o

Re z > -1

h {~1Ta} 211 1 {a}K 1 {a}

~z-Yz ~z

Re z > -1

h {~1Ta} '1 1 1 {a}K 1 {a}

~-~z '"2Z

Re z < 2

h {~1Ta} 'I 1 {a}K 1 1 {a}

-;;zz Yzz-~

Re z < 2

53

Page 60: Tables of Mellin Transforms

54

5.65

5.66

5.67

5.68

q,(x)

(1+X2)-~sin(2ax ) 1+x2

'exp(- ~) 1+x2

-1 < Re z < 2

(1+x 2) -~cos (2ax ) 1+x2

'exp(- ~) 1+x2

O<Rez<l

0, x < 1

(x2_1)-~sin(2ax x 2 -1

0, x < 1

2 1 -~ 2ax (x -) cos (----) x 2 -1

x > 1

I. Mellin Transforms

00

~(z) = ! q,(X)Xz-ldx o

-~ -b 2 (lTa) e r (l-~z)f (~+~z)

-~ -b ~(lTa) e r(~-~z)r(~z)

Re z < 2

Re z < 1

Page 61: Tables of Mellin Transforms

1.5 Trigonometric Functions

5.69

5.70

5.71

5.72

</>(x)

(1+x2) -~cos ( 2ax) 1+x2

1-x 2 'exp [-b (--) ]

1+x2

O<Rez<l

1-x 2 'exp [-b (--)]

1+x2

-1 < Re z < 2

o x < 1

(x 2-1) -lzcos( 2ax) x 2 -1

x 2+1 ·exp[-b(----)], x > 1 x 2 -1

o x < 1

x > 1

00

$(Z) = f </>(x)x Z- 1dx o

.n {2~[(a2+b2) lz+b]lz} z-l

'M [(a 2+b 2) lz_b] ~-~z,-~

Re z < 1

55

Page 62: Tables of Mellin Transforms

56

5.73

5.74

5.75

5.76

<p (x)

l-x 2 'exp [b (--) ]

1+x 2

O<Rez<l

l-x 2 • exp [b (--) ]

1+x 2

-1 < Re z < 2

1+x2 'exp[-b(----)], x < 1

l-x 2

o , x > 1

1+x 2 ·exp[-b(----)], x < 1

l-x 2

o x > 1

I. Mellin Transforms

00

~(z) = f <P(x)xz-ldx o

Re z > 0

Re z > -1

Page 63: Tables of Mellin Transforms

1.5 Trigonometric Functions 57

00

<P(x) <P (z) = f <P(x)xz-ldx 0

5.77 log x sin (ax) -z a r (z) sin (J,rrz) [1jJ(z) -log a

-1 < Re z < 1 +J,rrcot (J,rrz)]

5.78 cos (ax) log x -z a r(z)cos(J,rrz) [1jJ(z)-log a

0 < Re z < 1 -J,rrtan (J,rrz) ]

5.79 -bx sin (ax) r (z) (a 2 +b 2 ) -J,zsin (z arctan (a/b)] e

·log x • {1jJ(z)-J,log(a 2+b 2)+arctan(a/b)

Re z > -1 • cot [z arctan(a/b)]}

5.80 e -bx cos (ax) r (z) (a 2 +b 2) -J,zcos [z arctan (a/b) ]

·log x • {1jJ(z)-J,log(a 2+b 2)-arctan(a/b)

Re z > 0 ·tan[z arctan (a/b) ] }

5.81 -x

sin (x+ax2) (2a)-J,zr(z)e-2/asin(~rrz) e

Re z > -1 .D (a-J,) -z

5.82 sin(a log x) x < 1 -a(a 2 +z 2 ) -1

0 x > 1 Re z > 0

5.83 -x

sin(a log x) I r (z+ia) I sin [argr (z+ia) 1 e

Re z > 0

Page 64: Tables of Mellin Transforms

58 I. Mellin Transforms

00

z-l ¢ (x) <l> (z) = f ¢(x)x dx 0

5.84 -x

cos (x+ax 2 , (2a)-~zr(z)e-2/acOs(~TIz) e

Re z > 0 °D (a-~) -z

5.85 costa log xl x < 1 z(a 2 +z 2 )-1

0 x > 1 Re z > 0

5.86 -x cos (a log xl I r (z+ia) Icos [argr (z+ia) 1 e

Re z > 0

5.87 arcsin (x/a) x < a ~TIZ -laz{I_TI-~r (~+~z) [f(l+~z) ]-l}

0 x > a Re z > -1

5.88 arccos (x/a) ~ -1 z -1 x < a ~TI z a r (~+~z) [r (l+~z) ]

0 x > a Re z > -1

5.89 arctan (ax) -~TIz-la-zsec(~TIz) -1 <Re z < 0

5.90 arccot(ax) ~TIz-1a-zsec(~TIz) 0 < Re z < 1

5.91 arctan (x/a) x < a ~z-laz[TI+1J!(~+~z) -1J!( 3/4+~Z)]

0 X > a Re z > -1

Page 65: Tables of Mellin Transforms

1.5 Trigonometric Functions 59

00

z-l <jl (xl <P (z l = f <jl(xlx dx 0

5.92 arccot(x/al x < a \z -1 a Z [1f-1)i (\+\z) +1)i ( 3/4 + 3/4Z ) ]

0 x > a Re Z > 0

5.93 -x arctan(ae ) Re Z > 0 2-z-1r(z)aY(-a2,z+1,~)

5.94 (a2+x2)-~V z-v -1 . 1f) a [r(v)] r(z)r(v-z)sln(Iz

osin[v arctan (x/a) ] -1 < Re z < Re v

5.95 (a2+x2)-~V z-v -1 1f a [rev)] r(z)r(v-z)cos(Iz)

'cos[varctan(x/a)] 0 < Re Z < Re v

5.96 (a2_x2)-~ 1f2-z a z - 1 r (z)

·cos[v arccos (x/a) ] .[r(~+~z-~V)r(~+~z+~V)]-l

x < a Re z > 0

0 x > a

5.97 0 x < a 1f2 z-la z-l r (l-z)

(x 2_a 2) -~ • [r(l-~z-~V)r(l-~z+~V)]-l

'cos[v arccos(a/x)] Re z < 1

x > a

Page 66: Tables of Mellin Transforms

60 I. Mellin Transforms

00

z-l <jJ (x) <I>(z) = ! <jJ(x)x dx 0

5.98 arcsin[a(a2+x2)~] -1 z sin (~7fz) z a

0 < Re z < 1

5.99 arccos[x(a2+x2l-~] -1 z sin(~7fzl z a

0 < Re z < 1

5.100 (a2_x2)-~ 7f2- za z- l r (zl

cos [\I arccos(x 2ja 2-ll] . [r (~+\I+~zl r (~-\l+~zl ]-1

x < a Re z > 0

0 x > a

Page 67: Tables of Mellin Transforms

1.6 Hyperbolic Functions 61

1.6 Hyperbolic Functions

00

<jl (x) <I>(z) J z-l = <jl(x)x dx

0

6.1 sech(ax) a-z21-zr(z)Y(_1,z,~)

= a- z 21 - 2z r(z)

• [r;(z,,.)-r;(z,~")l Re z > 0

6.2 csch(ax) -z -z 2a (1-2 )r(z)r;(z) Re z > 1

6.3 tanh (ax) 21-za-z(21-z_1)r(z)1;(z)

-1 < Re z < 0

6.4 I-tanh (ax) 2 (2a) -zr (z) (1_2 1 - 2 ) 1; (z)

Re z > 0

6.5 coth(bx)-l 2 (2b) -zr (z) 1; (z) Re z > 1

6.6 -1 -csch x -z -1 1 x 2(2 -l)r(z)(;(z) < Re z <

6.7 sech 2 (ax) 2-z -z 2-z 2 a (1-2 )r(z)(;(z-l)

Re z > 0

6.8 CSCh2 (ax) 2-z -z Re z 2 2 a r(z);:;(z-l) >

Page 68: Tables of Mellin Transforms

62 I. Mellin Transforms

00

z-l ¢ (x) <P (z) = f ¢(x)x dx 0

6.9 -ax sech(bx) 21-2zb -zr (z) e

-a > b • [~(z,~+~a/b)-~(z,3~+~a/b)1

Re z > 0

6.10 -ax csch (bx) -z e 2(2b) r(z)~(z,~+~a/b)

-a > b Re z > 1

6.11 -ax e tanh (ax) 21-2zb-z r (z)

• [~(z,~a/b)-~(z,~+~a/b)l

-a-zr(z) Re z > -1

6.12 -ax coth(bx) b -zr (z) [21-z~ (z ,~a/b) - (b/a) zl e

Re z > 1

6.13 [coth(bx)-l]e -ax 2(2b)-zr(z)~(z,1+~a/b) Re z > 1

6.14 sinh(ax)csch(bx) (2b) -zr (z)

a < b • [~ (z , ~-~a/b) - ~ (z , ~+~a/b) ]

Re z > 0

Page 69: Tables of Mellin Transforms

1.6 Hyperbolic Functions 63

00

z-l <P (xl <P (z) = f <P(x)x dx 0

6.15 cosh(ax)csch(bx) (2b) -zr (z)

a < b • [;;: (z,lz-lza/b)+;;: (z,lz+lza/b)]

Re z > 1

6.16 sinh (ax) sech (bx) -2z -z 2 b r(z) [;;:(z,lo-loa/b)

a < b -1; (z, lo+loa/b) +1; (z, 3'4 +loa/b) -1; (z, 3.-" -loa/b) ]

Re z > -1

6.17 cosh(ax)sech(bx) -2z -z 2 b r(z) [1; (lo+loa/b)

a < b +1; (lo-loa/b) -I:; (:j.4+loa/b) -I:; (3"-4 -\a/b)]

Re z > 0

6.18 [cosh (ax) +cos e] -1

lz(2n/a)zcsc6csc(lznz)

-n < 6 < n 6 6 • [I:; (l-z ,J.;-2n) -I:; (l-z ,lz+2n)]

Re z > 0

6.19 cosh (lzax) [cosh(ax)+cos6] -1 nZ22z-3a-zsec(lz8)csc(lznz)

-n < 6 < n • [I:; (1-z,lo+\8/n) +1:; (1-z,lo-lo6/n)

-I:; (l-z, 3 .... 4 +lo6/n) -I:; (l-z, 3"-4-\6/n)]

Re z > 0

Page 70: Tables of Mellin Transforms

64

6.20

6.21

6.22

6.23

6.24

¢ (x)

-1 sinh (~ax) [cosh (ax) +cos8]

-7f < 8 < 7f

-ax -1 e [cosh(ax)+cos8]

-7f < 8 < 7f

a > b

log [tanh (ax)]

arctan[sinh(ax)]

I. Mellin Transforms

'" ~(z) = J ¢(x)xz-ldx o

• [<; (l-z, ' .... ,+\6/7f) -<; (l-z, ~,-\8/7f)

+<;(1-z,\-\8/7f)-<;(1-z,\+\8/7f)]

Re z > 0

(27f/a)zcsc8CsC(7fZ)

• [cos (8+~7fz)] (l-z ,~+~8/7f)

Re z > 0

o [<;(-z,\-\a/b)-<;(-z,\+\a/b)

+r; (-z, ~,+\a/b) -<; (-z, ~-\a/b) ]

Re z > 0

-1 z 7fZ csc(~7fz) (~7f/a)

Re z > '0

-7fz-lsec(~7fz) (27f/a)z

• [<; (-z, ~,) -<; (-z,\)]

-1 < Re z < 0

Page 71: Tables of Mellin Transforms

1.6 Hyperbolic Functions

6.25

6.26

6.27

6.28

<jl (xl

(l+x2) -~sinh (2ax ) 1+x2

'exp(- ~) 1+x2

-1 < Re z < 2

(1+x2)-~COSh(2ax ) 1+x2

.exp(-~) 1+x2

O<Rez<l

0, x < 1

(x2_1)-~sinh(2ax ) x 2 -1

b > a

0, x < 1

(x2_1)-~cosh(2ax ) x 2 -1

b > a

x > 1

x > 1

00

~(z) = f <jl(x)x z - 1 dX o

-!z -b 2 (1Ta) e r(l-~z) r(~+~z)

Re z < 2

Re z < 1

65

Page 72: Tables of Mellin Transforms

66

6.29

6.30

6.31

6.32

<P(x)

(1+x2) -lzcosh (2ax ) 1+x 2

l-x2 'exp [-b (--) 1

1+x2

O<Rez<l

(1+x2) -lzsinh ( 2ax) 1+x 2

l-x 2 'exp[-b(--) 1

1+x 2

-1 < Re z < 2

o x < 1

(x 2_l)-lzcosh(2ax) x 2 -1

b > a

o x < 1

(x 2_l)- lzsinh(2ax) x 2 -l

x 2+l 'exp [-b (--) 1 x 2 -1

b > a

I. Mellin Transforms

<!>(z) z-l

= f <p(x)x dx o

Re z < 1

Re z < 2

Page 73: Tables of Mellin Transforms

1.6 Hyperbolic Functions

6.33

6.34

6.35

6.36

<jl(x)

(1+x2)-~cosh( 2aX) 1+x 2

l-x 2 'exp [b (--) 1

1+x2

O<Rez<l

(1+x2)-~sinh( 2ax) 1+x 2

l-x 2 °exp [b (--) 1

1+x2

-1 < Re z < 2

(l-x 2) -~cosh( 2ax) l-x 2

l+x2 "exp [-b (--) 1,

l-x 2

0

b > a, Re z

(l-x 2 ) -\inh( 2ax) l-x 2

l+x2 "exp [-b (--) 1

l-x 2

0

b > a

x <

X >

> 0

x <

X >

1

1

1

1

00

~(z) = f <jl(x)xZ-ldx o

67

"D {2~[b+(b2-a2)~1~} -z

oM" ,[b- (b 2 _a 2 ) ~l ~-~z,~

Re z > -1

Page 74: Tables of Mellin Transforms

68 I. Mellin Transforms

1.7 The Gamma Function and Related Functions

00

z-l cjJ (x) <P (z) = f cjJ(x)x dx

0

7.1 y+\jJ (x+l) -TrCSC (Trz) ;;; (l-z) -l<Re z<O

7.2 \jJ' (l+z) Tr(1-z)csc(Trz);;;(2-z) O<Re z<l

7.3 .\jJ(l+x)-log x -Trcse (Trz) i',; (l-z) O<Re z<l

7.4 \jJ' (l+x) - (l+x)-l -1 -Tr(l-z)cse(Trz) [(z-l) -;;;(2-z)]

O<Re z<2

7.5 log (l+x) -\jJ (l+x) -1

Trese (Trz) [;;; (l-z) +z ] O<Re z<l

7.6 \jJ h+~x) -log (~x) z-l

2csc (Trz) (2 -1) ;;; (z) O<Re z<l

7.7 \jJ (a+x) -\jJ (b+x) TrCSC (Trz) [;;; (l-z,b) -;;; (l-z,a)]

O<Re z<l

7.8 log[x ~ f (x)

f (~+x)] -z -2z

~Tr 2 see(~Trz)f(z)

• (2 1 + z _1) I:; (l+z) O<Re z<l

7.9 ;;;(v,a+ax) -1 -z

[f(v)] a f(z)f(v-z)l:;(v-z,a)

Re a > 0, Re v > 1 0 < Re z < -1 + Re v

Page 75: Tables of Mellin Transforms

1.8 Legendre Functions

1.8 Legendre Functions

CP(x)

8.1 x < 1

x > 1

8.2 P v (a+x) x<l-a

o x>l-a

-1 < a < 1

8.3 qv (a+x)

a > 1

o < Re z < l+Re v

8.4 pv (a-x) x < a-I

o x > a-I

a > 1

8.5

larg(a-l) I < n

00

~(z) = f CP(x)x Z- 1dx o

69

n~2-zr(z) [r(~-~v+~z)r(l+~v+~z)l-l

Re z > 0

Re z > 0

r(z) (a2_1)~ZeinZq~z(a)

= (~n)~r(z)r(V+l-z) (a2_1)~z-'"

2 ~z -z (a -1) r (z)pv (a)

= (~n) -~r (z) (a 2_1) ~z-'"

in(v+~) -v-~[ ( 2 1)-~1 ·e qz-~ a a -

Re z > 0

o < Re z < l+Re v

Page 76: Tables of Mellin Transforms

70

$(x)

8.6 pv (x+a)

a > 1

-Re v O<Rez<{

l+Re v

8.7 o x < l+a

o <Re z < { Re (ll-V)

8.8 (a2_x2)-~1l

opll(x/a) v x < a

0 x > a

8.9 Pv(2x 2 /a 2 -l) x < a

0 x > a

I. Mellin Transforms

00

~(z) = f $(X)Xz-ldx o

:k _ 3,." = _22TI 2s in(TIv)r(z)r(1+v-z)

f(ll-V-Z) r (l+ll+V-Z) [r(l-z) ]-1

Re z > 0

-1 • [r (l+v+~z) r (~z-v)]

Re z > 0

Page 77: Tables of Mellin Transforms

1.8 Legendre Functions

<j,(x)

8.10 {a2_x2)-~]l

.p]l (2x2/a2-1) x < \I

0 X >

8.11 {a 2+x2)\1

]l a 2-x 2 .p (--)

\I a2+x2

Re ]l<Re z < Re (2\1±]l)

8.12 {a2+x2)~\1

2a 2+x 2 .p ( J)

\I 2a (a 2+X2) 2

8.13 P (l+!;;x 2/a 2) \I

1+\1 0 < Re z <Re {

-\I

8.14 q (l+~x 2/a 2) \I

0 <Re z < 1+2 Re \I

a

a

co

~(z) = f ¢{x)xz - 1 dx o

71

Re z > -Re ]l

• r (~]l-\l-~z)

-2 Re \I

O<Rez<{ 1+2 Re \I

·r{~z)r{l+\1-!;;z)r{-\l-~z)

• [r{l+V+~z) ]-1

Page 78: Tables of Mellin Transforms

72

8.15

8.16

8.17

8.18

q, (x)

-2 Re v O<Rez<{

2+2 Re v

o < Re z < 2+2 Re v

-l-Re v < Re z < l+Re v

o x < a+b

-1 2 2 2 pv[(2ab) (x -a -b )]

x > a+b

I. Mellin Transforms

1>(z) z-l

= f q,(x)x dx o

-1 -~n sin(nv)r(~z)r(l+v-~z)

-~,., k = -n "sin(nv) (ab) 2r (y,z)

-1 y,[r(l-y,z)] r(l+v-y,z)r(-v-Y,z)

k -1 = (ab/n) 2[r(1-y,z)] r(l+v-Y,z)

Page 79: Tables of Mellin Transforms

1.8 Legendre Functions

8.19

8.20

8.21

<I> (x)

(A2-1) J,J.lpJ.l(A) v

A = (2ab)-1(a 2+b 2+x 2)

O<Rez<{ 2+2 Re (v-J.l)

-2Re (v+J.l)

e-inJ.l(A2_1)-J,J.lq J.l(A) v

A = (2ab)-1(a 2+b 2+x 2)

o < Re z < l+Re (v+J.l)

-Re v O<Rez<{

l+Re v

<I>(z)

• -v-J, (a 2+b 2 ) PI I

'iZ-J.l-'i I a 2_b 2 1

= J,(2ab) J.ll a 2_b 2 1J,z-J.lr (J,z)

r (l+v-z) r ( -v-z)

• F (l+v-z,-v-z;l-].l-Z;J,) 2 I

73

Page 80: Tables of Mellin Transforms

74

8.22

8.23

8.24

8.25

q, (x)

.p~(~+x/a)

o < Re Z < l-Re ~

-Re (2\J+~) Re~<Rez<{

2+Re (2\J-~)

I. Mellin Transforms

00

~(z) = f q,{x)xZ-ldX o

F (1- z+!zv- ~ll, !z-z- !z'J- !zl1i 1-z -11 r-1 2 1

Re{~-2\J) Re~<Rez<{

2+Re (~+2\J)

± Re ~ < Re z < 2+Re{~+2\J)

Page 81: Tables of Mellin Transforms

1.8 Legendre Functions

<P(x)

8.26 o x < a

Re]1<l

8.27 0 x < a

(x 2_a 2)-Y,]1

.p]1 (2x 2 /a 2_1) x > a v

Re ]1 < 1

8.28 0 x < a

(x 2_a 2 )-Y,

op]1 [(x2/a2_1) y,] v

x > a

8.29 o x < a

x > a

00

W(z) = ! <P(X)xz- 1dx o

75

Re z < Re (]1-V, ]1+v+ 1)

o [r (l+Y,]1-y,z) r (l-y,]1_y,z)]-l

Re (]1-2v) Re z > {

Re (]1+2 v+ 2)

l-Re v -Re ]1 < Re z < {

2+Re v

± Re ]1 < Re z < 2+Re v

Page 82: Tables of Mellin Transforms

76

8.30

8.31

8.32

</lex)

.p]l (l+x) v

• (a+x) -Pp]l (l+x) v

Re (p-]l-v) O<Re z<{

l+Re (v+P-]l)

X-~]l(2+x)-~]l

• (a+x) -Pp]l (l+x) v

Re (P+]l-v) Re ]l<Re z<{

l+Re (P+]l+v)

I. Mellin Transforms

00

~(z) = f </l(x)xz-ldX o

2 ]l+zr (z) r (-]l-V-z) r(l+v-]l-z)

• [r(l-]l+v) r(-]l-v) r(l-]l-z) ]-1

-Re (]l+v) O<Rez<{

l-Re (]l-v)

2]l-P+Z r (z-p) r (p-V-]l-z) r (l+P-]l+v-z). r(l+v-]l)r(-v-]l)r(l+p-]l-z)

p,P-V-]l-z,l+p+v-]l-Z; • F ( ~a)

3 2 p+l-z,l+p-]l-Z;

Z,-]l-v,l+v-]l; • F ( ~a)

3 2 l-p+z, l-]l;

[r (p) r (l-]l) ]-lr (z-]l) r (P+]l-z) aZ-]l-P

Z-]l,-v,l+v; • F ( ~a)

3 2 l-]l-p+z,l-]l;

-TI- l sin(TIv)2 Z- P-]l[r(1+p_z)]-1

'r(z-]l-p)r(p+]l-V-z)r(p+]l+v+l-z)

P,P+]l-V-Z,p+]l+v+l-z; • F ( ~a)

3 2 l+p-z,l+p+]l-Z;

Page 83: Tables of Mellin Transforms

1.8 Legendre Functions

8.33

8.34

8.35

8.36

8.37

¢(x)

Xlz11(2+X)lzl1

'e -axp 11 (l+x) v

Re z > 0

x- lz11 (2+x)-lzl1

'e -axp 11 (l+x) v

Re z > Re

xlz11(2+x)lzl1

-ax q11(l+x) 'e v

x- lz11 (2+x)-lzl1

·e-aXq 11 (l+x) v

o Re z > {

Re 11

11

'pA(l+ax) x < b v

Ox> b

Re 11 > 0, ab < 1

00

~(z) = f ¢(x)xz - 1dx o

[r(-l1-V)r(l-11+V)]-l a - 11 -ze -a

31 I 1+11, 1 'G23 (2a )

l1+ Z ,-v,l+v

31 I 1, 1-11 'G23 (2a

z-l1,l+v,-v

22 I 1+11, 1 • G2 3 (2 a )

z+l1,l+v,-v

'G22 (2a 23 I 1-11, 1

Z-l1,l+V,-V)

77

.r(z_lzA)b11 - lzA -l+z F (-v,l+v, 3 2

z-lzA;l-A,l1-lzA+z;-lzab)

Re z > lz Re A

Page 84: Tables of Mellin Transforms

78 I. Mellin Transforms

<P (x) <!>(z) z-l

= f <p(x) x dx o

8.38 (1-x 2 ) -~j.l

apj.l (x) \)

x < 1

0 x > 1 Re z > 0,

8.39 (1_x 2 )K

apj.l (x) \)

x < 1 . [r (1-j.l) r (l+K-~j.l+~z) ]-1

0 x > 1

Re(K-~j.l»-l, Re z > 0

~+~v-~~,-~v-~~,l+K-~~i • F ( 1)

3 2 I-j.l,l+K-~j.l+~z;

8.40 (1-x 2 ) -~j.lsin (ax)

.p j.l (x) \)

x < 1

0 x > 1

Re z > -I, Re j.l < 1

~+!zz,l+~z; a F ( -loa 2

2 3 3/2,1-~\)-~1l+~Z, 3/2+~V-!2'\.1+~Zi

8.41 ~ j.l-z -1 1T 2 r (z) [r (l+~\)-~11+~Z) r (~-~\)-~11+~Z)]

1

(1-x 2 ) -Yz11cos (ax)

x < 1

o x > 1

~z, ~+!zZ; a F ( -loa 2)

2 3 ~,~-~\)-~ll+~z,l+~v-~ll+~Zi

Re z > 0, Re 11 < 1

Page 85: Tables of Mellin Transforms

1.8 Legendre Functions

q, (x)

x < 2

x > 2

8.43 (I-x) -~

-+ P~[-(I-x)~l}x < 1

o x > 1

1 1

8.44 (1-x)-~(I-a2+a2x)~lJ

• {p v [a (l-x) ~l

+Pv [-a(l-x) ~l}x < 1

0 x > 1

8.45 P~(x) x < 1

0 x > 1

Re lJ < 2, Re z < 2

8.46 [ (b+x)2_11~lJ

'q-lJ (b+x) v

79

'" ~(z) = f q,(x)x z- 1 dX o

2 Zr 2 (Z) [r (Z-V) r (l+v+z)]-l

Re z > 0

• [r (~+~v+z) r (z-~v) r (1-~lJ+~v)

.r(~-~lJ-~v)l-1

Rez>~IRelJl

• F (-~V-~lJ,~+~v-~lJ;~+z;a2) 2 I

-1 < a < I, Re z > 0

• F 3 2

o < Re z < I+Re(v-lJ)

Page 86: Tables of Mellin Transforms

80

8.47

8.48

8.49

8.50

q, (x)

.pll [a(1+x) l-z] v

1+l-zRe (V-Il) O<Re z<{

l-z-l-zRe (V+Il)

-i1T1l Jl k .e q [a(1+x) 2] v

O<Re z<l+l-zRe(v+jl)

Re z > 0

.pA(1-2x) \!

o

x < b

x > b

ReJl>O, b<l

I. Mellin Transforms

'" ~(z) = f q,(x)xz-ldx o

F (l-z+l-zV-l-z1l,1+l-zv-l-zIl-Z;1-Jl-z;1-a-2 ) 2 1

-1 [r(l-A)r(jl-l-zA+z)] r(jl)

·r (Z_l-zA)bjl-l-l-zA+z. F (-v,1+v, 3 2

Re z > -l-z Re A

Page 87: Tables of Mellin Transforms

1.8 Legendre Functions

8.51

8.52

8.53

8.54

8.55

q, (x)

e-i7f)lq)l[(1+x 2/a 2 ) ~l v

±2Re )l < Re z < ~+Re v

-i7f)l )l 2 2 ~ 'e q [(l+x/a) 1 v

±Re )l < Re z < 3-1+Re v

00

¢(z) = f q,(x)x Z- 1dx o

o < Re z < l+Re (v+)l)

Re )l < Re z <f-Re v b+ Re v

81

2)l-laz-1r(~z-~)l)r(1-~z+~v)r(~-~z-~v)

·[r(l-~)l-~z)r(l-~)l+~v)r(~-~)l-~v)l-l

(l-Re v

Re)l<Rez< 2+Re v

'r(-~)l-~z) r(~)l-~z) [r(l+~v+~z)

.r(~+~v-~)l)r(~+~v+~)l)l-l

Page 88: Tables of Mellin Transforms

82

8.56

8.57

8.58

8.59

8.60

¢ (x)

<{-2 Re v 2Re II < Re z

2+2 Re v

ei2rrll{qll[(1+x2/a2)~1}2 v

±2Re II < Re z < 2+2Re v

(a2+x2)-~pll[(1+x2/a2)~1 v

.pll [(l+x2/a2)~1 -v

2Re II < Re z < 2±2 Re v

p~ [(l+x2 /a 2) ~l

'eirrllq-ll[(1+x2/a2)~1 v

1+2Re II < Re z < 2+2Re v

o }< Re z <

2Re II

1 {

2+2Re v

I. Mellin Transforms

<!> (z)

-1 • [r (~+~z) r (l+v+ll) r (l+v+~z) 1

-1 • [r(l-~z)r(l-Il-~Z)r(l-Il+V)r(l-Il-V)l

-1 • [r(l-ll-~Z)r(l+v+~z)l

• r(l+v-~z)r(l+v+ll)

• [r(l+V-ll)r(l+v+~z)r(l-~Z-Il)]-l

Page 89: Tables of Mellin Transforms

1.9 Orthogonal Polynomials

1.9 Orthogonal Polynomials

<P(x)

9.1 e-~en(x)

Re z > 0 if n even

Re z > -1 if n odd

9.2 e -a~e [(2x) lz] n

Re z > 1 if n even

Re z > lz if n odd

9.3 e-ax[He (xlz)]2 n

Re z > 0

9.4

·Hen (Sx)Hen (yx) •••

co

~(z) = f <P(x)xz-ldx o

[!zn] n! L

m=O

-1 [m! (n-2m) !]

hZ(a)n!r(z) where

co

= L h~(a)tn n=O

See Appel, P. and

83

M.J. Kampe de Feriet,

1926: Fonctions hypergeo­

mitriques et hyperspheri-

ques. Polynomes

d'Hermite. Gauthiers-

Villars, p. 343.

Erdelyi, A., 1936: Math.

z. 40, 693-702.

Page 90: Tables of Mellin Transforms

84 I. Mellin Transforms

00

z-l ¢ (x) $(z) = f ¢(x)x dx 0

9.5 -k

(1-x 2 ) 2Tn (x) x < 1 Il2- z r (z) [r (l~+~z+lm) r (~+~z-lm) ]-1

0 x > 1 Re z > 0

9.6 (1-x2 ) -~T (l/x) x n < 1 2z-2[r(z)]-lr(~n+~z)r(~z-lm)

0 x > 1 Re z > 0

-k Il2~+2n-z(n!)2r(2z) 9.7 (2-x) 2Tn (x-I) x < 2

0 x > 2 • [(2n) ! r (~+z+n) r (~+z-n) ] -1

Re z > 0

9.8 k 1T2~+2n-z[(n+l) !]2 r (2z-1) (2-x) 'Un (x-I) x < 2

0 x > 2 [(2n+2) !f(Z+3/2+n ) r(z-~-n) ]-1

Re z > -~

9.9 (2-x) vT (I-x) x < 2 22n+v+z(n!)2 r (1+V)r(z)

n (2n) !r(l+v+z)

0 x > 2 • F (-n,n,z;~,l+v+z;l) 3 2

Re z > 0, Re v > -1

9.10 (2-x) Vu (I-x) x < 2 2l+2n+v+z [(n+l) ! ]2r (l+v) r (z)

n (2n+2) !f (l+v+z)

0 x > 2 • F (-n,n+l,z; o/2,1+v+z;1) 3 2

Page 91: Tables of Mellin Transforms

1.9 Orthogonal Polynomials 85

00

z-l <jJ (x) <l> (z) = f <jJ(x)x dx 0

9.11 (2-x) \)T (x-l) x < 2 22n+\)+z (n!) 2 r (1+\) r (z)

n (2n) !r(1+\)+z)

0 x > 2 F ( -n, n, 1 + \) ; J" 1+ \)+ Z ; 1) 3 2

Re \) > -1, Re z > 0

9.12 (2-x) \)U (x-l) < 2 22n+1+\)+z [(n+l) !]2 r (1+\) r (z)

x (2n+2) ! r (l+\)+z) n

0 x > 2

Re \) > -1, Re z > 0 F (-n,n+l,l+\); %,l+\)+z;l) 3 2

9.13 (2-x) -~ rrJ,2 z -J,r(z)r(J,+n-z) [r (J,-z) r (J,+n+z) 1 -1

Tm (l-x) Tn (l-x) . F (-m/m,z/~+zi~,~+n+z,~-n+zil) ~ 3

Re z > 0

( -1) n ( J,- J,z) 9.14 P 2n (x) < 1 n

Re > 0 x 2 (i,z)n+l

z

0 x > 1

(-1) n (l-J,z) n

Re > -1 9.15 P2n+l (x) < 1 z x 2 (J,+J,z) n+l

0 x > 1

9.16 (2-x) \)p (x-l) x < 2 [f(1+\)+z)]-12 \)+zr(\)+1)r(z) n

0 x > 2 F (-n,l+n,\)+l;l;\)+l+z;l) 3 2

Re \) > -1, Re z > 0

Page 92: Tables of Mellin Transforms

86 I. Mellin Transforms

00

z-l ¢(x) <I>(z) = f ¢(x)x dx 0

9.17 (2-x) vp (I-x) x < 2 [r (l+v+z) ]-12 v+zr (v+ 1) r (z) n

0 x > 2 . F (-n,l+n,z,l,l+v+z,l) 3 2

Re v > -1, Re z > 0

9.18 P (1-2x 2) n x < 1 ~(_1)nr2(~z) [r(~z+n)r(~z-n)]-l

0 x > 1 Re z > 0

9.19 Pn (I-x) x < 2 z -1 2 r (z) r (l+n-z) [r (l-z) r (l+n+z)]

.Pm (l-z) F (-m,m+l, z, z, 1 ,1+n+z, I-n+z, 1) 4 3

0 X > 2 Re z > 0

9.20 (1_x2)v-~ x < 1 2 2v- 1 - z r(n+2V)r(z)

ocv (x) -1 n • in! r (v) r (~+~n+v+~z) r (~+~z-~)]

0 x > 1 Re v > -!z , Re z > 0

9.21 (1_x2)v-~ x < 1 2 z - 1 r(n+2v) r (~z-~n) r (~z+v+~n)

'Cv (l/x) -1 n • in! r (v) r (z+2v)]

0 x > 1 Re v > -!z, Re z > 0

Page 93: Tables of Mellin Transforms

1.9 Orthogonal Polynomials

9.22

9.23

9.24

9.25

9.26

<P(x)

Pn(l-yb+yx) x < b

o

(b-x) ]J-l

.p n (l-yx)

0

(2_x)V-J,

'Cv(x-l) n

0

(2-x) 13

'Cv (l-x) n

0

He z > 0,

(2-x) V-J,

·cv (l-x) n

o

x > b

x < b

x > b

x < 2

x > 2

x < 2

x > 2

Re 13 > -1

x < 2

x > 2

'" r z-l <P(z) = , tj>(x)x dx o

-1 z n! [r(n+1+z) 1 r(z)b

p(z,-z) (l-yb) n

Re z > 0

• F (-n,n+l,z;l,]J+z;J,yb) 3 2

He(]J,z) > 0

87

• [nlf(2V)f(J,-V-n+z)f(J,+V+n+z)]-1

He v > - J" He z > 0

f(1+S)2 13+z f(n+2v)f(z)

• [n! f (2v) r (1+13+z) ]-1

• F (-n,n+2v,z;J,+V,1+13+z;1) 3 2

v+z-~ 2 'f (y,-I-V) r (m+2]J) r (n+2v) r (z) r (J,+v+n-z) mlnlr(2v)r(2]J)r(J,+v-z)r(5~+v+n z) .

-IlI,m+2]J,z, J,-v+z; • F ( 1)

~ 3 J,+v+n+z,J,+]J,J,-v-n+z;

He z > 0, Re v > -J,

Page 94: Tables of Mellin Transforms

88

¢ (x)

9.27 (b-x) \1-1

A • Cn (l-yx) x < b

0 x > b

2A+O,-1,-2,'"

9.28 (b-x) \1-1

'C A (yx'-Z) 2n x < b

0 x > b

9.29 (b-x) \1-1

A " 'C2n+l (yx 2) x < b

0 x > b

Re \1 > 0

9.30 (b-x) A-l:;

A • Cn (l-yb+yx)

x < b

0 x > b

Re A > -1, 2A+0,-1,-2," •

I. Mellin Transforms

00

¢(z) = f ¢(x)xz-ldx o

F (-n,n+2A,z;l:;+A,\1+z;l:;yb) 3 2

Re(\1,z) > 0

F (-n,n+A,z;l:;,\1+Z;y2b ) 3 2

Re (\1,Z) > 0

Re z > -rz

(2A) r (l:;H) [r (l:;H+n+z) ]-1 n

r (z) bA-l:;+zP (a, S) (l-yb) n

a = A-l:;+z, S = A-l:;-z, Re z > 0

Page 95: Tables of Mellin Transforms

1.9 Orthogonal Polynomials

9.31

9.32

9.33

9.34

9.35

<p (x)

e -xLa (x) n

(b-x) 11-1

o

(b-x) 1..-1

o

(b-x) a

a 'Ln [S (b-x) 1

o

e -axL v (bx) n

Re z > 0

x < b

x > b

x < b

x > b

x < b

x > b

00

~(z) = f <P(x)xz-ldx o

[n!f(l+a-z)]-lf(a+n+l-z)f(Z)

Re z > 0

-1 [(11) [n!f(l+a)f(l1+z)] f(z)

f(a+n+l)b z + I1 - 1 F (-n,z;a+l, 2 2

l1+z;Sb)

89

Re(I1,Z) > 0

-1 f (l+a+n) [nlf (l+a) f (Hz)]

'f(A)f(z)bHz- l

• F (-n,A;l+a,A+Z;Sb) 2 2

Re(A,z) > 0

r (l+a+n) [f (l+a+n+z) ]-lba + z

Re a > -1, Re z > 0

-1 • F [-n,l+v-z;l-n-z;a(a-b) ] 2 1

Page 96: Tables of Mellin Transforms

90

9.36

9.37

9.38

9.39

9.40

<jJ (xl

L~(SX)

o

'L~[S(b-X) ]

o

-x a e L 1 (A xl

m I 1

a "'L n (A xl

In n n

(2-x) S

.p (a, S) (l-x) n

0

x < b

x > b

x < b

x > b

x < 2

x > 2

I. Mellin Transforms

00

f z-l ~(z) = <jJ(xlx dx

o

-1 r(l+a+n) [n!r(l+a)r(I1+Z)]

F (a+n+l,z;a+l,I1+Z;-Sb) 2 2

Re(I1,z) > 0

r (l+a+n) [n!f (l+a) r (Hz) ]-1

• F ( 1 + a+n , A ; a+ 1 , A + z ; - Sb ) 2 2

Re(A,Z) > 0

Buchholz, H., 1953:

Die konfluente hypergeometrische

Funktion. Springer Verlag.

Erdelyi, A., 1936:

Math. Z. 40, 693-702.

[n!r(1+a-zlr(1+S+n+z)]-12 S+ z

·r(z)r(l+S+n)r(l+a+n-z)

Re S > -1, Re z > 0

Page 97: Tables of Mellin Transforms

1.9 Orthogonal Polynomials

9.41

9.42

9.43

9.44

¢ (xl

(b-x) 13

.p(a,S) (yb-l-yx) n

x < b

o x > b

(b-x) a

.p (a,S) (l-yb+yx) n

x < b

o x > b

(b-x) ]l-l

.p (a,i3) (l-yx) x < b n

o x > b

(b-x) ]l-l

.p(a,i3) (yx-l) x < b n

Ox> b

00

w(z) = f ¢(x)xz-ldx o

[f(S+n+l+z)]-lf(S+n+l)f(z)

Re 13 > -1, Re z > 0

-1 [f(a+n+l+z)] f(a+n+l)f(z)

'ba+zP (a+z, i3-z) (l-yb) n

Re a > -1, Re z > 0

-1 [n If (l+a) f (]l+z) ] f (a+n+l)

91

'f(]l)f(z)bz+]l-l F (-n,l+n+a+i3, 3 2

z; l+a,li+Z; lzyb)

Re(]l,z) > 0

'f(]l)f(z)bz+]l-l F (-n,l+n+a+i3, 3 2

z;l+i3,]l+z;lzyb)

Re(]l,z) > 0

Page 98: Tables of Mellin Transforms

92

9.45

<jl(x)

(b-x) ]1-1 (l-\zyx) 13

p (a, 13) (l-yx) x < b n

o x > b

I. Mellin Transforms

<l> (z) f z-l <jl(x)x dx o

-1 [n!f(l+a)f(]1+z)] f(l+a+n)

'f(]1)f(z)b z+ ll - l F (l+a+n,-n-S, 3 2

z;l+a,ll+z;\zyb)

Re(ll,z) > 0

Page 99: Tables of Mellin Transforms

1.10 Bessel Functions 93

1.10 Bessel Functions

co

4> (x) 4J(z) = f 4>(X)xz- l dx 0

10.1 J v (ax) 1:!(l:!a)-zr(l:!v+l:!z) [r(l+l:!v-l:!z)]-l

-Re v < Re z < ~2

10.2 Yv (ax) -n-12z-la-zcos[l:!n(z_v)]

± Rev <Re z < 3-'2 ·r(l:!z-l:!v)r(l:!v+l:!z)

10.3 -1 (2 ) z-l [r(l:!z+l:!v) Sl_z,v(ab) (a+x) J v (bx) a r (l+z+l:!v)

-Re < Re z < 5/2 -2 r (1:!+l:!z+l:!v) S_z,v(ab)] v r 11:!+l:!v-l:!zj

10.4 (x2-a2) -lJ (bx) z-2 v -I:!na Yv (ab)

Principal value _2(2a)z-2 r (I:!v+l:!z) Sl_z,v(ab) r 11+I:!v-l:!z)

Rev <Re z < ~2

10.5 (x 2_a 2) -ly (bx) I:!naz- 2J (ab)+2z-ln-lcos[l:!n(z-v)] v v Principal value .r(l:!z-l:!v)r(l:!z+l:!v)Sl_z,v(ab)

~2 <Re z <±Rev

10.6 Jv(ax) x < 1 (I:!a)v[(z+v)r(l+v)]-l

0 x > 1 . F (~v+l:!z;v+l,1+~v+l:!z;-~a2) 1 2

Re z > -Re v

Page 100: Tables of Mellin Transforms

94 I. Mellin Transforms

00

cjl{x) <l> (z) f z-l = cjl{x) x dx

0

10.7 e-axJ (bx) (a 2 +b 2 ) -,>zf{v+z) v

Re z > - Re V .p-v [a{a 2+b 2 ) -'>1 z-l

v -1 -z = ('>b/a) [f (l+v)] a f (z+v)

. F (,>z+,>v,,>+,,,z+"'v;v+1;-b 2 /a 2 ) 2 1

10.8 exp (_b 2 x 2 ) J)ax) -1 1-z [ar(l+v)] b r(",v+",z)

Re z > -Re v 'exp (_1/0 a 2 /b 2 ) M (laa 2 /b 2 ) 8 ",z-"',"'v

v-1 -z 10.9 sin(ax)Jv(ax) 2 a r("'-z)r(,>+",v+'>z)

r(l+v-z)r(l-",v-,>z)

-l-Re v < Re z < ",

v-1 -z 10.10 cos (ax)Jv(ax) 2 a r(",-z)f(,>v+",z)

r(",-,>v-",z)r(l+v-z)

-Re v < Re z < ",

10.11 sin (ax) Y v (ax) 2z-1TI-~a-zsin[~TI(z-v)]

-l±Re v < Re z < ~ . r(~+~z+~v)r(~+~z-~v) f(l-~z+~v)r(l-~z-~v)

10.12 cos (ax) Y v (ax) 2z-1TI-~a-zcos[~TI{z-v)l

±Re v < Re z < ~ r(~z+~v)r{~z-~v)

r(~-~z+~v)r(~-~z-~v)

Page 101: Tables of Mellin Transforms

+.10 Bessel Function

4>(X)

10.13 cos (ax) J v (bx)

10.14 cos (ax)Jv(bx)

10.15 cos (a-x)Jv(x)

x < a

o x > a

Re z > -Re v

95

00

f z-l ~(z) = 4>(x)x dx

o

= (~TIb)-~cos[~TI(v+z)] (a2_b2)~-~Z

.e-iTI(z-~)qZ-~(a/b) v-~

= cos[~TI(v+z)]r(v+z)

.(a2_b2)-~Zp-V[a(a2_b2)-~] -z

a > b

• F (~v+~z,~z-~v;~;a2/b2) 2 1

= b -~2Z-V-~2r (v+z) r (~+~z-~v)

.[r(1+~v_~Z)]-1(b2_a2)~-~z

• [p~:~(a/b)+p~:~(-a/b)]

a < b

-1 z z (v+z) a J v (a)+2a

~ n -1 • L (-1) [(v+z) 2n+l] (v+l-z) 2n-l n=l

• (v+2n) J v + 2n (a)

Page 102: Tables of Mellin Transforms

96

10.16

10.17

10.18

<P(x)

sin (ax) J v (bx)

sin (ax) J v (bx)

sin(a-x)Jv(x) x < a

Ox> a

I. Mellin Transforms

00

¢(z) = J <P(x)x z - 1 dx o

v -z (J,b/a) a sin [J,'Jf (v+z) 1

-1 r (v+ z) [r ( 1+ v) ] F (J,+ J, v+ J, z ,

2 1

= sin[J,'Jf(v+z)]f(v+z)

a > b

F (J,+J,v+J,z,J,-J,v+~z;3/2;a2/b2) 2 1

= -b -J,2 z - v - 3/2r (v+z) r (~z-J,v)

a < b

00

Z \ n -1 2a L (-1) [(v+z) 2n+2]

n=O

Re z > -Re v • (v+2n+l) (v+1-z) 2nJ v+2n+l (a)

Page 103: Tables of Mellin Transforms

1.10 Bessel Function

cp (x)

10.19 (b-x) ),

'Jv [a (b-x)] x < b

0 x > b

Re (Hv) > -1

10.20 e±iaz(b_x)]l-l

'Jv(ax) x < b

0 x > b

Re ]l > 0

10.21 (b-x) Ae ±iax

'Jv [a (b-x) ] x < b

0 x > b

Re (V+A) > -1

10.22 (b-x) A

k 'J2v [a(b-x) 2] x < b

0 x > b

Re (A+V) > -1

97

'" ~(z) = f CP(X)Xz- 1dx o

.[r(l+v)r(l+v+]l+z)]-l F (~+~A+~V, 2 3

Re z > 0

.[r(l+v)r(v+]l+z)]-l F (v+z,~+V; 2 2

v+]l+z,2v+1;±i2ab)

Re z > -Re v

.[r(l+v)r(l+v+Hz)]-l F (l+v+A, 2 2

~+v;1+v+A+z,2v+l;±2iab)

Re z > 0

.[r(l+2v)r(1+A+v+z)]-1

F (A+l+v;1+2v,1+A+v+z;-~a2b) I 2

Re z > 0

Page 104: Tables of Mellin Transforms

98 I. Mellin Transforms

'" <P( z) f z-l

q, (x) = q,(x)x dx 0

10.23 J~ (ax) ~(~a)-zr(l-z)r(v+~z)

-2Re v<Rez<l -2 -1

• [r (l-~z) 1 [r (l+V-~z) 1

10.24 J ll (ax) J v (ax) -z

~(~a) r(l-z)r(~V+~ll+~z)

-Re (V+ll) < Re z < 1 [r(l+~V-~ll-~Z)r(l+~v+~ll-~Z)

.r(l+~ll-~V-~z)l-l

10.25 Jv(ax)Jv(bx) 2z-1[r(1-~z)1-lr(v+~z)

-2Re v < Re z < 2 '(la2_b21)-~zp-v (a2+b 2 ) -~z la2-b 2 1

5 10.26 J2 (ax) +y2 (ax) 7r - -'icos (7rv) a -zr (~z) r (~-~z)

v v

±2Re v < Re z < 1 ·r (v+~z)

10.27 J v (ax)Yll (ax) -z

~sin [7r (V-ll) 1 (~a) r (l-z)

-Yv (ax) J ll (ax) ·r(~z+~V+~ll)r(~z-~V+~ll)

Re(±ll±V) <Re z < 1 ·r (~z+~V-~ll) [r (l-~zHv+~ll) 1 -1

Page 105: Tables of Mellin Transforms

1.10 Bessel Function

$(x)

O<Rez<l

0<Rez<2

10.30

Re z < 1

10.31

Re(±~-v)<Re z < 1

10.32

+J -v (ax) Y v (bx)

±2 Re v<Re z<2

00

J z-l ~(z) = $(x}x dx

o

-1 . Ir (l+v-l,z) r (l-v-l,z)]

_ 3/, -z -l,~ 2a cos[~(v+l,z)l

-1 • [r (l+v-l,z) ]

-1 z-l -z -~ 2 a cos[l,~(v-~+z)l

99

Page 106: Tables of Mellin Transforms

100

¢ (x)

10.33 Yv(ax)Jv(bx)

-2 He 0 V} <He z<2

-2 He 0 v} <He z<2

OJjl (ax) J v (ax)

Re z > -Re (jl+v)

I. Mellin Transforms

co

<!> (z) f z-l = ¢(x)x dx o

-v b 2+a 2 '{COS(l,1TZ)p L (--)

-..,z b 2 _a 2

+ 21T- l e -i 1Tvsin [1T(v+l,Z) ]

b 2 2 • V (~)}, q-l,z 2 2

b -a

-v b 2+a 2 • {cos [IT(v+l,z)]p L (--) -.,z 2 2

b -a

a < b

-1 -ilTV +2lT e cos (lTv) sin [IT(v+l,z)]

a < b

°r(l,z+l,jl+l,v) F (l,+l,jl+l,v,l+l,jl+l,v, 3 3

l,z+l,jl+l,v;jl+l,v+l,]l+v+l;-a 2/b2)

Page 107: Tables of Mellin Transforms

1.10 Bessel Function

tjl (x)

10.36 Jjl (ax) J v (bx)

-Re(jl+V) < Re z < 2

10.37

10.38

00

~(z) = f tjl(x)XZ- 1 dx o

101

a < b

bV2z-1a-v-zr(~v+~jl+~z)

-1 . [r (1+v) r (1+~jl-~V-~z) 1

• F (~v+~jl+~z,~V-~jl+~z;v+l;b2/a2) 2 1

a > b

Eason, G. Noble, B.

and Sneddon, I.N., 1955:

Phil. Trans. ROy. Soc.

London (Al, 247, 529-

Bailey, W. N., 1936:

Proc. London Math. Soc.

40, 37-49. J. London Math.

Soc. 11, 16-20.

Page 108: Tables of Mellin Transforms

102

q, (x)

10.39 J v (bx)Yjl (ax)

Re(-V±jl) Re z < 2

10.40 Y (ax)Y (bx) jl .... c~ v

IRe(jl±v) I < Re z < 2

10.41 H(2) (ax)H(2) (bx) jl v

IRe jll+IRe vl<Re z<l

F H(l)H(l) or v jl

change i into -i

I. Mellin Transforms

00

J z-l ~(z) = q,(x)z dx

o

-1 -1 -v -z -'"I [f (l+v) J a (1,a)

00

cos[1,rr(jl-v-z)]f(1,z+1,jl+1,v)

'f(1,z-1,jl+1,v) F (1,z+1,jl+1,v, 2 I

- J o

{J (ax)Y (bx)+4rr- 2 jl v

b < a

'sin[1,rr(z-V-jll]K (bx)K (ax)}x-zdx v jl

a < b

J {J (ax)J (bx)+4rr-2cos[1,rr(z-v-jl)] o jl v

• F (1,z+1,jl+1,v,1,z-1,jl+1,v;z;1-b 2 ja2 ) 2 I

Page 109: Tables of Mellin Transforms

1.10 Bessel Function

q, (x)

10.42 (1_x 2 )aJ (ax)J (bx) ]1 v

o

10.43 (1_x 2 )a J (ax) ]1

x < 1

x > 1

.J [b(1-x 2 )!;;] v

x < 1

o x > 1

·Yv (x)

I Re v I <Re z<2 Re ]1+ 3/2

00

~(z) = f q,(X)Xz - 1 dX o

Bailey, W. N., 1938:

Quart. J. Math., Oxford

Ser. 9, 141-14 7

as before

Watson, G. N., 1922:

103

A treatise on the theory of

Bessel functions, Cambridge,

p. 436

Page 110: Tables of Mellin Transforms

104 I. Mellin Transforms

00

<p (z) J z-l <j> (x) = <j>(x)x dx 0

00

n -1 10.46 J~(x)Jv(a-x) x < a 2 z L (-1) [n!r(~+n+l)J

n=O

0 x > a • r (~+n+z) (z)nJ~+v+2n+z (a)

Re z >-Re ~, Re v > -1

10.47 (a-x) -1 (va) -1 2 z

00

L n -1 (-1) [n!r(~+n+l)J

n=O J v (x) J v (a-x) x < a

• (z)nr (n+~+z) (z+~+v+2n) 0 x > a

Re v > 0, Re z > -Re v 'Jz+~+v+2n(a)

10.48 0-1 (a-x) J~ (x) Bailey, W. N. , 1930:

'Jv (a-x) x < a Proe. London Ma th. Soc. (2)

0 x > a 30, 422-421 and 31, 200-208.

10.49 0-1 (a-x) JA(bx)

'J~(ex)Jv(a-x) as before

x < a

0 x > a

Page 111: Tables of Mellin Transforms

1.10 Bessel Function

rp(x)

10.50

10.51

10.52

a < Re z < ~2 - Re v

10.53 (a2+x2)-~V

.y [b (a 2+X2) ~l v

10.54 (a 2_X 2) ~v

'J [b (a 2_X 2) ~l V

x < 0.

a x > a

Re v > -1

00

f z-l ~(z) = ~(x)x dx

a

• [Jv+~z(ab)cos(~nz)

-v ~z ~a (2a/b) r (~z) J 1.. (ab) v--,z

105

Re z > a

Page 112: Tables of Mellin Transforms

106

<P (xl

10.55 (a2_x2)-l:iV

J V[b(a 2-x 2)l:i] x < a

0 x > a

10.56 0 x < a

(x2_a 2)l:iV

.J [b(x2-a2)~] v x >

Re v > -1

10.57 0 x < a

(x2_a2)-~V

.J [b (x 2_a 2) l:i] v x > a

10.58

Ox> a

Re v > -1

a

I. Mellin Transforms

<jl (z)

Re z > 0

Rez<3/2 - Rev

al:iz+vb -l:iZ[2l:iZ-l r (l:iZ)Yl:iz+v(ab)

+~-laV+lr(l+V)SL 1 L + (ab)] -,z- -v,-,z v

Re z > 0

Page 113: Tables of Mellin Transforms

1.10 Bessel Function

10.59

10.60

10.61

10.62

10.63

¢ (x)

Ox> a

Re v < 1

Jv(aX)J~[b(l-x2)~] x < 1

Ox> 1

o x > 1

Re ~ > -1, Re z > -Re v

J v (u) J v (v)

+ Yv(u)yv(v)

u = b [(a 2+x 2) lz±a] v

-Jv (u) Yv (v)

u = b [(a2+x2) lz±a] v

00

¢(z) = I ¢(x)Xz-ldx o

'S (ab) ~z+v-l, ~z-v

107

-2~z-lr(~z)csc(TIv)J,- (ab)] .,z-v

Re z > 0

Bailey, W. N. 1938:

Quart. Journal of Math.

9, 141-147.

"B (~+1, ~z+~v)

_ 3/ kz -TI 2COS (TIv) (a/b) 2

• r (lz-lzz) Y 1 (2ab) ':!z

± 2 Re v < Re z < 1

r (lz-lzz)J (2ab) ~z

±2Rev<Rez<1

Page 114: Tables of Mellin Transforms

108 I. Mellin Transforms

00

¢ (x) <I> (z) J z-l = ¢(x)x dx 0

10.64 JV(v)J_V(u) ~TI~r (v+~z) r Ui-!,Z) [r (l+v-~z) ]-1

u = b[(a2+x2)~±a] (a/b)~Z[J 1 (2ab) COS (TIV) v -~z

-2 Re v < Re Z < 1 - Y_~z(2ab)sin(TIv)]

10.65 J v (u) J v (v) ~TI -~r (v+!,z) r (~-!,z) [r (l+v-~z) ]-1

u = b [(a 2+X2) !,±a] (a/bl~zJ 1 (2ab) v -~z

-2 Re v < Re z < 1

10.66 J v (v)Y_ v (u) ~TI~r (v+~z) r (~-~z) [r (l+v-!iZ) ]-1

u = b [(a 2+x2) ~±a] hz v (a/b) 2 [J_~z(2ab)sin(TIv)

-2 Re v < Re z < 1 + Y_!,z(2ab)cos(TIV1]

10.67 J v (v)Y v (u) ~TI-!'r (v+~z) r (!'-!,z) [r (l+v-!,z) ]-1

u h (a/b) !'zY = b [(a 2+x2) 2±a] .

1 (2ab) v -~z

-2 Re v < Re z < 1

Page 115: Tables of Mellin Transforms

1.10 Bessel Function

cjl (x)

10.68 (b_x))l-l

Ox> b

Re )l >0

10.69 (b-x) A

'J2[a(b-x)~] x < b v

Ox> b

Re (A+V) > -1

10.70 (b_x))l-l

10.71

J (ax~)J (ax~) x < b v -v

o x > b

A-I k (b-x) J v [a (b-x) 2]

oJ [a(b-x)~] x < b -v

o x > b

00

~(z) = J cjl(x)xz- 1dx o

109

F (Z+V,~+V;Z+v+)l,v+1,2v+1;-a2b) 2 3

Re z > -Re v

(~a)2vr(1+A+v)r(z)bA+V+z

• [r 2 (l+V) r (Hv+l+z) ]-1

F (A+v+1,~+v;A+v+1+z,v+1,2v+1;-a2b 2 3

Re z > 0

-1 ['lTVr(z+)l)] F (~,z;l+v, 2 3

Re ()l ,z) > 0

r (A) sin ('lTv)r (z )bA-l+Z

['lTVr (v+z)]-l F (~,A;l+v, 2 3

Re(A,z) > 0

Page 116: Tables of Mellin Transforms

110

4> (x)

-Re v<Re z<~2+2Re P

10.74 (b 2+X2)A

.J [a(b2+x2)~] v

oJll (ax)Jv (ax)

10.76 (b_x)ll-l

o

x < b

x > b

Re 11 > 0, Re z > -Re v

I. Mellin Transforms

'" ~(z) = f 4> (x)xz - 1dx o

v-z • (2a) r (~+v-z) F (~+V-z; 1+2v-z; 2iab)

1 1

o < Re z < ~+Re v

o < Re z < ~-2Re A

r (z+v) r (11) (~a) Vb ll+v-1+z

o [r(1+v)r(V+ll+Z)]-l F (~v+~z, 2 3

~+~v+~z;v+1,~Il+~V+~Z,~+~V+~Il+~Z;

Page 117: Tables of Mellin Transforms

1.10 Bessel Function III

ex> z-l .p (x) q, (z) = J .p(x)x dx

0

10.77 Jv[a(x -1 -x) ] x < 1 K (a)I 1 (a)

~V-~Z ~V+==jZ

0 x > 1 Re v > -1, Re z > - 3-'2

10.78 0 x < 1 K (a)I (a) ~\)+~z ~v-~z

-1 Jv[a(x-x )] x > 1 Re v > -1, Re z < ~2

10.79 -1 Jv[a[x-x [] I~v_~z(a)K~v+~z(a)

Re v > -1 + I~v+~z(a)K~v_~z(a)

Pricipal value -~2 < Re z < l--2

10.80 (x+x-1) -1 a-1[r(1+v)]-2r(~+~v+~z)

-1 ·r(~+~V-~z)M, 1 (~a)M 1 1 (~a) 'Jv[a(x+x )]

~Z/~\) -~v,~z

-l-Re v < Re z < l+Re v

10.81 -1 J 2v [a(x+x l] -~TI[Jv_~z(a)Yv+~z(a)

_3/2 < Re z < 3/2 + Jv+~z(alYv_~z(a)]

10.82 -1 Y2v [a(x+x l] ~TI[Jv_~z(alJv+~z(al

- 3/2 < Re z < 3/2 -Yv_~z(a)Yv+~z(al]

Page 118: Tables of Mellin Transforms

112

(jl(x)

Principal value

10.84 v -v (a+bx) (b+ax)

10.85 v -v (a+bx) (b+ax)

10.86 (1+x2)-lJ (2ax) v 1+x 2

l-x2 ·exp [-b (--) 1

1+x2

-Re v < Re z < 2+Re v

10.87 (1+x2)-lJ (2ax) v 1+x 2

°exp[- ~) 1+x 2

-Re v < Re z < 2+Re v

I. Mellin Transforms

co

~(z) = J (jl(x)xz-ldx o

-~2 < Re z < ~2

Page 119: Tables of Mellin Transforms

1.10 Bessel Function

¢(x)

l-x 2 'exp [b (--) 1

1+x2

-Re v<Re z<2+Re v

2bx 2 'exp(- --)

1+x2

-Re V<Re z<2+Re v

1+x2 'exp [-b (--) 1 ,

l-x 2

x < 1

o x > 1

Re z > -Re v

2bx 2 'exp(- ---) x < 1

l-x 2

Ox> 1

Re z > -Re v

00

~(z) = f ~(x)xz-ldx o

113

Page 120: Tables of Mellin Transforms

114

<j> (x)

10.92 a x < 1

Re z < 2+Re v

10.93 a x < 1

(x2-1) -lJ (2ax ) v x 2-1

°exp(- ~), x 2-1

Re z < 2+Re v

10.94 J]1 (ax) J v (b/x)

x > 1

I. Mellin Transforms

<I> (z) z-l = f <j>(x)x dx

a

-1 -1 ~a [f(l+v)] f(l+~v-~z}

1 1 -z 20 1 2 21' 1 1 1 1 • 1 ) ~(~a) G (-- a b Yzv,Yzz+~~,YzZ-Yz~/-YzV 04 16

- 3/2 -Re ]1 Re z > }

3/2 + Re \!

Page 121: Tables of Mellin Transforms

1.11 Modified Bessel Function 115

1.11 Modified Bessel Function

00

z-l <jl(x) <l>(z) = f <jl(x) x dx 0

11.1 Kv (ax) z-2 -z 2 a r(~z+~v)r(~z-~v)

Re z > ± Re v

11. 2 (b 2+X2) -IK (ax) (2b)z-2r(~z-~v)r(~z+~v) v

Re z > ± Re v -Sl-z,v (ab)

11. 3 -bx v (ax) r(v+z) (b2_a2)-~Zp-v [b(b2-a2)-~1 e I

z-l

b > a Re z >-Re v

11.4 eaxK v (ax) rr-~cos(rrv) (2a)-zr(~-z)

±Re v < Re z < ~ ·r (z+v) r (z-v)

1l.S e-a~ v (ax) rr~(2a)-z[r(~+z)1-1

Re z > ± Re v • r (z-v) r (z+v)

11.6 -b~ e v(ax) k

(~rr/a) 'r(z-v)r(z+v)

k !':z k z (a 2 _b 2) 4-, p'- (b/a) -a<b<a v-~

k (~rr/a) 'r(z-v)r(z+v)

(b2_a2)~-~Zp~-~(b/a) b > a v-~

Page 122: Tables of Mellin Transforms

116 I. Mellin Transform?

00

z-l <p<x) 1> (z) = J ¢(x)x dx 0

11. 7 -bx 2 2 a-lb~-~Z[r(l+v)l-lr(~Z+~V) e I (ax) v

Re z > -Re v oexp (l/ea 2/b) M" , ('.!a 2/b) ~-~z,~v

-b 2 -1 1:-1:z 11. 8 e x K (ax 2) ~a b 2 2 f(~z+~v)r (~z-~v) v

Re z > ± Re v exp ( 1,.. a 2/b) W ('.!a 2/b) 8 ~-~z, ~v

11. 9 (l+x2) -II (~) a-l[r(1+v)1-2r(~z+~v)r(1-~z+~v) v 1+x 2

-Re v<Re z<2+Re v ·M~z_~,~v(a)M~_~z,~v(a)

11.10 sin(ax)Kv(ax) 2z-2a-zr(~+~z+~v)r(~+~z-~v)

Re z > -1 . F (~+!:zz+!:2v,~+~z-!zv; ~ ;-1) 2 1

11.11 cos (ax)Kv(ax) 2z-2a-zr(~z+~v)r(~z-~v)

Re z > 0 • F (~z+!zv,!zz-!zv;~;-l) 2 1

11.12 sin (bx) Kv (ax) -krrsee [~Tr (z-v) 1 r (v+z) (a 2+b 2) -~z

Re z>-l ± Re v o{p-v [b(a2+b2)-~1_P-v [-b(a2+b2)-~1} z-l z-l

11.13 cos (bx) Kv (ax) '.!Trese [~Tr(z-v) 1 r (v+z) (a 2+b 2) -~z

o{p-v [b(a2+b2)-~1+P-v [-b(a2+b2)-~1} z-l z-l

Page 123: Tables of Mellin Transforms

1.11 Modified Bessel Function 117

00

<j> (xl <l> (z) I z-l = <j>(xlx dx

0

11.14 -v

(a+x) e -bx (2TIab)-~a-v(2b/a)-~zr(z)

• Iv [b (a+x) ] • [r (l+2v-z) ]-lM 1 1 (2ab) -;.zZ,V-~Z

0 < Re z < ~ +Re v

11.15 -v (a+x) e

-bx (2ab/TI)-~a-V(2b/a)-~Zr(Z)

oKV [b (a+x) ] 'W_~Z,V_~Z(2ab) Re z > 0

11.16 (a+x)-vebx (2ab/TI) -~a -v r (z) [r (~+v) ]-1 (2b/a) -~z

'Kv [b (a+x) ] ·r(~+V-Z)W, 1 (2ab) ~Z ,V-;.zZ

0 <Re z < ~ +Re v

11.17 -x ~ e sin (ax ) Kv (x) (~TI) ~a2-Zr (~+V+Z) r (~-V+Z) [f(l+z) ]-1

Re z > I Re v I-~ • F (~+v+z,~-v+z; 3/z,1+z;_1/eaZ) z z

11.18 -x ~ e cos (ax 2) Kv (x) ~ -z -1

TI 2 [r(~+z)] r(z+v)r(z-v)

Re z > IRe vi · F (v+z, z-v; ~, ~+z; -l/aa Z) Z Z

Page 124: Tables of Mellin Transforms

118 I. Mellin Transforms

00

z-l <p (x) ¢ (z) = J <P(x)x dx 0

1 22 11-Z'~ 11.19 (b+x) -p rr-~[r(p)]-lbz-PG (2ab ) 23 P-Z,\),-V

-ax (ax) -Re v < Re < ~+Re e I Z P v

11.20 (b+x) - P e -ax 1 1 31 11-Z'~ rr"[r(p)]- bZ-PG (ab ) 23 p-z,v,-v

oK\) (ax) Re Z > ± Re v

11. 21 (b+x) -P 1 1 32 11-Z'~ rr-~[r(p)J- cos(rr\))bz-PG (2ab )

23 p-z,v,-v

eaxK v (ax) ± Re v < Re Z < ~+Re p

11. 22 (b+x)-Ae-ax rr-~(2a)Ar(z)bzeab

21 I~-A'O oIv[a(b+x)] °G (2ab )

23 -Z,V-A,-V-A

0 < Re Z < ~+Re A

11.23 (b+x) - Ae -ax rr~(2a)Ar(z)bzeab

30 10'~-A I Kv[a(b+x)] °G (2ab ) 23 -Z,V-A,-V-A

Re Z > 0

Page 125: Tables of Mellin Transforms

1.11 Modofied Bessel Function

<jl (x)

11.24 (b+x) -Ae ax

Kv[a(b+x)]

0 <Re z <

11.25 (b 2+X2) A

'K [a(b 2+x2) ~l v

Re z > 0

11.26 (b2_X2) ]1-1 x < b

'Iv (ax)

0 x > b

Re ]1>O,Re z>-Re v

11.27 x < b

x > b

Re ]1>0, Re z>±Re v

co

~(z) = f <jl(x)xz-ldX o

119

~-~(2a)Acos(~V)bzr(z)e-ab

31 I~-A'O • G23 (2ab -Z,V-A,-V-A)

o < Re z < ~+Re A

-1 • [r(l+v)r(~z+~v+]1)]

• F (~z+~v;1+v,~z+~v+]1;~a2b2) 1 2

f (v) = (~ab) -V r (v) r (~z-~v) [r (~z+]1-~v) ]-1

Page 126: Tables of Mellin Transforms

120

¢ (x)

11. 28 x < b

o x > b

Re A>-l-lzRe v;Re z>O

11.29 (b-x) \1-1 x < b

±ax 'e I V<~ax)

0 x > b

11. 30 0 x < b

(x_b)ve-ax

'Iv[a(x-b)] x > b

Re v > -~

11.31 (b_x)A-le ±ax

'Iv[a(b-x)] x < b

0 x > b

Re (A+V) > 0

I. Mellin Transforms

<l>( Z) z-l

= f ¢(x)x dx o

v -1 lz (lza) [r (l+v) r(l+ Hlzv+lzz) ]

or(lzz)r(1+A+lzv)b2A+ z+ v

v -1 (lza) [r(l+v)r(z+)1+v)] r(\1)r(z+\1)

ob Z+\1+v-l F (lz+v,z+v;2v+l,\1+v+z;±2ab) 2 2

Re \1 > 0, Re z > -Re v

o (2a) -lz-lzzb -lz+v+lzzW, (2ab) YzZ, V+!;zZ

Re z < lz-Re v

(lza) Vr(Hv) [r(l+V) r(Hv+z) ]-1

A+v-l+z "b F (!;z+v,A+v;2v+l,A+v+z,±2ab) 2 2

Re z > 0

Page 127: Tables of Mellin Transforms

1.11 Modified Bessel Function 121

co

<j> (x) ~(Z) = J <j>(x)xz - 1dx

°

11. 32 ° x < b 'IT -~)1r()1) (2a) l-z

(x-b) )1-1 21 IZ-lz,O "G (2ab )

23 -)1,v-l+z,-v-l+z

Re z > 'l.-2-Re )1

11.33 ° x < b

(x_b))1-1 30 10,Z-lz

"G (2ab ) 23 -)1,v-l+z,-v-l+z

11. 34 ° x < b

(x_b))1-1 31 l-lz+Z,O

'G (2ab ) 23 -ll,v-l+z,-v-l+z

Re z < 'l--2-Re )1 Re )1 > °

11.35 ° x < b

(x-b) )1-1

x > b 30 I ° "G (\a 2b ) 13 -ll,lzv-l+z,z-l-lzv

Page 128: Tables of Mellin Transforms

122

11.36

11. 37

11.38

11.39

q,(x)

o x < b

(x-b) I.e -ax

Re (A+v) > -1

o (x-b) I.e -ax

KV[a(x-b)]

Re(Hv) > -1

o

(x-b) A ax e

"KV[a(x-b)]

Re(Hv) > -1

o

(x-b) A

x < b

x > b

x < b

x > b

x < b

'" 'Kv [a (x-b) 2] x > b

Re(Hv) > -1

I. Mellin Transforms

00

~(Z) = f q,(x)x z- 1 dX o

22 I-A,l:! 'G (2ab )

23 -z-A,v,-v

Re Z < l:!-Re A

31 I-A,l:! 'G (2ab )

23 -z-A,v,-v

22 I-A,l:! 'G (2ab )

23 -z-A,v,-v

Re Z > l:!-Re A

Page 129: Tables of Mellin Transforms

1.11 Modified Bessel Function 123

00 z-l

¢ (x) <I>( z) = f ¢(x)x dx 0

11. 40 J (ax) K (ax) z-3 -zr r -1 v v 2 a (J,z) (J,v+\iz) [r(l-\iz+J,V)]

Re z (:2 Re v

11. 41 J)bx)Kv(ax) 2 z -2 r (J,z)r(v+J,z) (a 2+b 2)-J,z

>t 2 b 2

Re z p-v (~)

-2 Re v -J,z a2+b2

11.42 Y v (ax) Kv (ax) _~-12z-3a-zr(J,z)r(\iz+~v)

Re z >t ·r("z-~v)cos[~~(~z-v)]

±2 Re v

11.43 Iv(ax)Kv(ax) \i~-~a-zr(J,z) r(J,-J,z) r(v+J,z)

o } <Re z<1 -1 -2 Re v

• [r (1-J,z+v) ]

2z-2a-zr(J,z+J,~+J,V) [r (1-~z+~VI-~~)] -11.44 K~(ax)Iv(ax) 1

Re (-V±~) < Re z < 1 "B (l-z, ~z-J,~+ ~v)

11. 45 K~(ax) \i~~a-zr(~z+v)r(J,z-v)r(J,z)

Re z >C 0 • [r(J,+~z) ]-1 ±2 Re v

11.46 K~ (ax) Kv (ax) a-z2z-3[r(z)]-lr(~v+J,~+~z)

Re z > Re(±~±v) ·r(~v-~~+~z)r(~~-~v+~z)

• r (~z-~v-~~)

Page 130: Tables of Mellin Transforms

124

<j>(x)

a>b, Re z >f \-2Re v

11.48 KV(aX)KV(bX)

{o

Re z > ±2 Re v

11. 49 Kj.l (ax) J v (bx)

Re (a±ib) > 0

Re z > Re(-V±j.l)

11. 50 Kj.l (ax) Iv (bx)

b < a, Re z > Re(-V±j.l)

I. Mellin Transforms

00

W(z) = J <j>(x)xz-ldx o

-v a 2+b 2 'p (--)

-l,z a2_b2

=(~ab)-1,2z-2(a2_b2)1,-I,Zr(I,Z)

'e-il,~(z-l) I,z-l,(a 2+b 2 ) qv-l, 2ab

z-2 = 2 r(l,z)r(v+l,z)

·r (l,v-l,j.l+l,z) F (l,v+l,j.l+l,z, 2 1

Page 131: Tables of Mellin Transforms

1.11 Modified Bessel Function

11.51

11.52

11.53

¢ (x)

Kj.l(ax)KV(bx)

Re(a+b) > 0

Re z > Re(±j.l±V)

±2 Re v < Re z < 1

J (ax)K (bx)K (cx) v j.l p

00

¢(z) = f ¢(x)Xz-ldx o

125

F (~v+~~+~z,~v-~~+~ziz;1-b2/a2) 2 I

• r (y,z+v)r (y,z-v)

-1 • [1' (l-v-y,z) l' (l+v-y,z) 1

Bailey, W. N., 1936:

Proc. London Math. Soc.

40, 37-48.

Journal London Math. Soc.

11, 16-20.

Page 132: Tables of Mellin Transforms

126

cjl(x)

11.54

o x > a

Re v > -1

11.55

11. 56

11. 57

x < a

o x > a

Re z > Max(O,Re v )

11.58 o x < a

x > a

I. Mellin Transforms

co

¢(z) = J cjl(x)xz-ldx o

Re z > 0

-\} 1.:z ~b (2b/a) 2 r (~z) KV_~Z (ab)

Re z > 0

~bv(2b/a)~zr(~Z)K +' (ab) v '2Z

Re z > 0

.r(~Z)I~Z_V(ab)

\} !':z (2b) r (l+V) (b/a) 2 5, 1 '+ (a b)

~z- -\}, ~z V

Re v > -1

Page 133: Tables of Mellin Transforms

1.11 Modified Bessel Function 127

co

¢ (x) <jl (z) = J z-1 ¢(x)x dx 0

11.59 J v (v) Kv (u) 2 z - 1 r (1:2v+1:2z) [r (1+1:2v-1:2z) J-1

u (2b)1:2[(a 2+x2)1:2±a]1:2 (a/b)1:2z k = · K z [2 (ab) 2] v

Re z >-Re v

11. 60 Yv(V)Kv(u) _~-12z-1cos[1:2~(v-z)]r(1:2z+1:2v)

u (2b)1:2[(a 2+x2)1:2±a]1:2 kz K [2 (ab) 1:2] = · r (1:2z-1:2v) (a/b) 2 v z

Re z > ± Re v

11.61 Iv(V)Kv(u) 1:2~ -1:2 r (v+1:2z) r (1:2-1:2z) [r (1+v-1:2z) ]-1

u k (ajb) 1:2zK , (2ab) = b [(a 2+x2) '±a] · v 'iZ

-Re v < Re z < 1

11.62 Kv (v) Kv (u) k -1

1:2~'r (1:2z-v) r (1:2z+v) [r (1:2+1:2z)]

u k (a/b) 1:2zK, (2ab) = b [ (a 2+X 2) '±a] v 'iZ

Re z > ± 2 Re v

Page 134: Tables of Mellin Transforms

128 I. Mellin Transforms

00

z-l q,(x) cp (z) = J q,(x)x dx 0

11. 63 K (a I x-x -11 ) 0

\1T2(J 2 (a)+y 2 (a)] !.zz !2Z

Principal value

11. 64 Kv[a(x -1

-x) ] < 1 \1T l CSC (1TV) [J, +' (a) Y , +' (a) x ~\) ~z -~\):::2Z

0 x > 1 -J_~v+~z(a)Y~v+~z(a)]

-1 < Re v < 1

11.65 0 x < 1 '41TlCSC(1TV) [J, , (a)Y, , (a) ~\.l-~Z -7zV-:-ZZ

-1 1 -J_~v_~z(a)Y~v_~z(a)] Kv[a(x-x )] x >

-1 < Re v < 1

11. 66 -1 K2v [a (x+x )] Kv+~z(a)Kv_~z(a)

11. 67 v -v (a+bx) (b+ax) 2Kv+z (a) Kv_z (b)

oK2V{[al+bl+ab(x+x-1)]~}

11. 68 (l+xl) -II ( 2ax) ~a-1[r(1+v)]-2r(1+~V-~z)r(~v+~z) v l+xl

I-xl '-< oexp (-b(--)] oM" , [(bl+al ) "+b] l+xl 7z- ~z ,7z\.l

-Re v < Re z < 2+Re v oM [(bl+a l ) ~-b] ~Z-!:2/!.zV

Page 135: Tables of Mellin Transforms

1.11 Modified Bessel Function

rjl(x)

l-x 2 'exp [b (--) 1

1+x2

-Re v<Re z<2+Re v

2bx2 'exp(- --)

1+x2

-Re v<Re z<2+Re v

1+x2 'exp [-b (--) ],

l-x 2

x < 1

Ox> 1

b > a, Re z>-Re v

2bx 2 'exp(- ----), x < 1

l-x2

o x > 1

b > a, Re z>-Re v

DO

w(z) = f rjl(x)xz - 1dx o

129

Page 136: Tables of Mellin Transforms

130

11. 73

11. 74

11.75

11. 76

1> (xl

'exp(- ~) 1+x 2

- Re v < Re 2 < 2+ Re V

o x < 1

x 2+1 'exp [-b (--)], x > 1 x 2-1

b > a, Re 2 < 2+Re v

o x < 1

x > 1

Re 2 < 2+Re v, b > a

o x < 1

Re 2 < 2 ±Re v

I. Mellin Transforms

00

f 2-1 <!> (2) = 1> (xl x dx

o

-1 -1 b lza [r (1+v) 1 r (1+lzV-~22) e

Page 137: Tables of Mellin Transforms

1.11 Modified Bessel Function 131

'" cj>(x) 4>(z) = f cj>(x)x z- 1dx 0

11. 77 (1-x2) -lK (~) ~a-lr(~z-~v)r(~z+~V) v l-x 2

1+x2 1 .W~ ~ ~ [b-(b2-a2)~1 ·exp [-b (--) 1 , x <

l-x2 - z, V

0 X > 1 ·W [b+(b2-a2)~1 ~-~z,~v

Re z > ±Re v

11. 78 (1-x2) -lK ( 2ax) v l-x2

~a-lebr(~z-~v)r(~z+~v)

2bx 2 .W~_~z,~v[b-(b2-a2)~1

·exp (- --), x < 1 l-x 2

·W [b+(b2-a2)~1 ~-~z,~v

0 x > 1 Re z > ± Re v

Page 138: Tables of Mellin Transforms

132 I. Mellin Transforms

'" z-l q, (x) <jJ (z) = f q,(x)x dx 0

11. 79 0 x < 1 -1 b

~a e r(I-~v-~z)r(I+~v-~z)

(x2-1) -IK ( 2ax) v x 2-1

oW, " [b-(b2-a2)~1 ~z-~,~v

'exp(- ~), x > 1 'W, " [b+ (b 2_a 2) ~l x 2-1 '2Z-~,:-zv

Re z < 2±Re v

11. 80 K Il(ax) J )b/x) ~(~~-zG:~ (i6 a2b21~v,~z+~Il,~Z-~Il,-~v)

Re z > IRe 11 I - 3/2

11.81 K (ax) Y (b/x) ~(_I)m+lU2a)-z 11 v

I ~-~v-m 0G'o (~2b2 )

15 16 ~V,-~V,~Z+~~,Yzz-~~,~-~v,m

m integer, Re Z > - 3/2+ IRe III

11.82 KIl(ax)Kv(b/x) !.(~a) -zG'o (L 8 04 16

a2b21~v,-~v,~z+~~/~z-~~)

Page 139: Tables of Mellin Transforms

1.12 Functions Related to Bessel Function 133

1.12 Functions Related to Bessel Function

co

q,{x) <!J (z) = [ q,(x)xz - 1dx 0

12.1 Rv (ax) z-l -z -1

2 a r (lzz+lzv) [r (1+lzv-lzz) ]

-l-Re v < Re z < { 3/2 ·tan [lz'1T(z+v) 1 l-Re v

12.2 IIv (ax) -Yv (ax) 2 za -zr (lzz-lzv) [r (l-lzz-lzv) ]-1

±Re v < Re z < l-Re v cos('1Tv)csc['1T(v+z)]

12.3 Iv(ax)-Lv(ax) z-l -z

2 a sec[lz'1T(v+z)]

-Re Re l-Re -1

v < z < v • r(lzz+lzv) [r (1+lzv-lzz)]

12.4 Iv(ax)-L_v(ax) z-l -z 2 a cos('1Tv)sec[lz'1T(v-z)]

-Re v < Re z < l+Re v • r(lzz+lzv) [r (1+lzv-lzz) J -1

2 2 '1T-lz2-v-1a-lzv-lz-lzz[r(~+v)]-1 12.5 e -a x H (bx)

v

Re z > -l-Re v 'b v+l r (lz+lzv+lzz)

· F (l,lz+lzv+lzz; '!.-2, 3/2+V ;-\b 2ja 2) 2 2

12.6 H [a(b 2 +x2) lz] 1:zz 0

lz(2bja) r(lzz)

0 < Re z < 1 • [Hlzz (ab) sec (lz'1Tz)

+J_lzz(ab) tan (lz'1Tz)

Page 140: Tables of Mellin Transforms

134

12.7

12.8

12.9

$ (x)

'{I [a(b 2+x2)lz] -v

_[, [a (b 2+X2) lz] } v

Re v < ~

I. Mellin Transforms

00

<I>(z) = f $(X) x z - 1dx o

'r(lzz) r(lz-v-lzz) r(lz+v+lzz)

[Hlzz+v (ab) -Ylzz+ v (ab) ]

o < Re z < 1-2 Re v

O<Rez<l

V :kz lzcos (7fv)b (2b/a) 2 f(lzz)

'sec [7f (v+lzz)]

Re z > 0

Page 141: Tables of Mellin Transforms

1.12 Functions Related to Bessel Function

12.11

12.12

12.13

12.14

q, (x)

1-2Re v O<Rez<{

o

o

o

i-Rev 2

x > b

x > b

x > b

12.15 s (ax) \l,V

00

~(z) = J q,(x)xZ- 1 dx o

v ~z !:ib sec [1f(v+!:iz) 1 (2b/a) 2 f(!:iz)

-hZ v+hz...._ !:i(!:ia) 2 f(!:iz)b 2 H. +' (ab) v :.zz

-v -1 (2b) r(!:i+v) [f(!:i+!:iz)] f(!:iz)

kZ (b/a) 2 s +' ,(ab)

'J ~Z,V-::-.2Z

-hZ v+kZ-!:i(!:ia) 2 f(!:iz)b 2"" +' (ab) v YzZ

-l-Re \l < Re z < l-Re \l

-1 • [f(l-!:iv-!:iz)f(l+!:iv-!:iz)]

135

Re z > 0

Re z > 0

Re z > 0

Page 142: Tables of Mellin Transforms

136 I. Mellin Transforms

00

z-l rjl (x) 1> (z) = f rjl(x)x dx 0

12.16 (b 2+X2) \V v kz \r(\z)b (bja) 2

• s [a (b 2+X2) l;;] · { r (~-~\)-~1l-~2Z) S\z+\l,\z+v (ab) \l,V r (\-\v-\\l)

3-Re v _2\l-1+\zr (l;;+\\l+\v) r(\+\\l-l;;v) O<Re z < {

_3/2-Re(v+\l) (sin[\rr(\l+v}]J_v_\(ab)

-cos[\rr(\l+v}]Y_v_\(ab}}}

12.17 (b2+X2) l;;v \b v (bja) \zr (\z) r (~-~Z-~lJ-~\) r (lz-!,v-!'\l)

'S [a(b 2+x2} \] \l,V • S\z+\l, \z+v (ab)

O<Re z<l-Re (v+\l)

12.18 Jv (ax) -Jv (ax) -z l;;sin(rrv} (\a) csc(rrz}

0 < Re z < 1 • r (l;;v+\z) [r (l+\v-\z) ] -1

12.19 J (ax) +17 (ax) -z v -v rrcos(\rrv} (\a) csc(\rrz}

0 < Re z < 2 • [r (l-l;;z+\v) r (l-\z-\v) ] -1

12.20 J v (ax) -iT-v (ax) -z rrsin (\rrv) (\a) sec (\rrz)

-1 < Re z < 1 • [r (l-\v-\z) r (l+\v-\z) ]-1

Page 143: Tables of Mellin Transforms

1.12 Functions Related to Bessel Function 137

12.21

12.22

12.23

12.24

¢ (xl

o < Re z < 1- Re v

'{J [b(a2+x2)~] v

+iJ [b (a 2+x2) ~J} -v o < Re z < 3/2 - Re v

'{J [b(a2+x2)~ v

-J [b(a2+x2)~} -v o < Re z < l-Re v

ker 2 (ax)+kei 2 (ax) v v

00

~(z) = f ¢(x)xz - 1 dx o

-1 v ~z n sin(nv)a r(~z) (a/b)

kZ -~ncsc(~nv)2 2 [cos(~nv)J 1 (ab)

-v-~

+ sin(~nv)Y 1 (ab)]} -\)-='2Z

n -lsin (nv) a vr (~z) (a/b) ~z

k Z -~n2 2 sec (~nv) [sin (~nv) J 1 (ab)

-v-~

-cos(~nv)Y 1 (ab)]} -:.oz-'J

Re z > ±2 Re v

Page 144: Tables of Mellin Transforms

138 I. Mellin Transforms

1.13 Whittaker Functions and Special Cases*

00

¢(x) <I>(z) f z-l = ¢(x)x dx

0

Erf (ax) -., -1 -z

13.1 -rr z a r(.,+.,z)

-1 < Re z < 0

13.2 exp(-a 2 x 2 )Erf(iax) .,irr 2 a- z [r(1-.,z)]-lsec(.,rrz)

-1 < Re z < 1

13.3 Erfc(ax) rr-.,z-la-zr(.,+.,z)

Re z > 0

13.4 exp(a 2 x 2 )Erfc(ax) -z .,a sec(.,rrz)r(.,z)

0 < Re z < 1

13.5 exp(b 2 x 2 )Erfc(ax) rr-.,z-la-zr(.,+.,z)

b < a, Re z > 0 • F (.,z,.,z+.,;1+.,z;b 2 /a 2 ) 2 1

13.6 sin (bx) Erfc (ax) rr-"(z+l)-lba-z-lr(l+.,z)

Re z > -1 • F ("+"z,l+.,z; 3/2 ;.,z+3/z;-lob 2 /a 2 ) 2 2

13.7 cos (bx) Erfc (ax) -., -1 -z rr z a r (.,+I,z)

Re z > 0 . F (.,z,.,+l,z;.,;1+.,z;-lob 2/a 2 ) 2 2

* The Fresnel, exponential, sine, cosine and error-integrals; incomplete gamma and parabolic cylinder functions.

Page 145: Tables of Mellin Transforms

1.13 Whittaker Functions and Special Cases 139

co z-l q,(x) iP (z) = f q,(x)x dx

0

13.8 exp(a2x 2 )Erfc(ax+b) ~-~(2a)-zr(z)r(~-~z,b2)

0 < Re z < 1

13.9 Ei (-ax) -1 -z -z a r(z) Re z > 0

13.10 eaxEi (-ax) -~a-zr(z)csc(~z)

0 < Re z < 1

13.11 Ei[-b(a+x)] -azr(z)r(-z,ab) Re z > 0

13.12 e-a~i (ax) -z -~a r(z)cot(~z)

0 < Re z < 1

13.13 e ax [Ei(-2ax) -z ~a r (z) [1jJ (l-~z) -1jJ (~-~z)]

-Ei(-ax)] 0 < Re z < 1

13.14 e ax [Ei (-ax-bx) -1 l-z b (alb) b r (z)Y (-a,l,l-z)

-Ei (-ax) ] 0 < Re z < 1

13.15 e ax [Ei(_ax)]2 r (z) [2~csc (~z) cot(~z)

Re z > 0 -~1jJ' (l-~z)+~1jJ' (~-~z)]

Page 146: Tables of Mellin Transforms

140 I. Mellin Transforms

co z-l q, (x) <P (z) = f q,(x)x dx

0

13.16 Ei (-ax) Ei (ax) -1 -z 'lTZ a r(z)cot(1,'lTZ)

0 < Re z < 2

13.17 Si (ax) -1 -z sin(1,'lTz)r(z) -z a

-1 < Re z < 0

13.18 si (ax) -1 -z sin (l~'lTz) r (z) -z a

0 < Re z < 2

13.19 Ci (ax) -1 -z cos (1,'lTz) r (z) -z a

0 < Re z < -2

13.20 Ci (ax) sin (ax) 1,'lTa -z

sec(1,'lTz)r(z)

-si(ax)cos(ax) -1 < Re z < 1

13.21 Ci (ax) cos (ax) -1,'lTa -z

cs c (1, 'IT z) r (z)

+si(ax)sin(ax) -1 < Re z < 1

13.22 [Ci(ax)]2+[si(ax)]2 -1 -z 'lTZ a r(z)csc(1,'lTz)

0 < Re z < 2

13.23 1: k i'lT-\z-l tan (\'lTz)r(\+z) ,-\<Re Erf (ix 2) Erfc (x 2) z< 1

Page 147: Tables of Mellin Transforms

1.13 Whittaker Functions and Special Cases

¢ (x)

13.24 sin [b (a 2+X2) J,]

'si [b (a 2+x2) J,]

+cos [b (a 2+X2) J,]

'ci [b (a 2+X2) J,]

13.25 sin[b(a 2+x 2 )J,]

'Ci [b (a 2+X2) J,]

-cos [b (a 2+X2) J,]

'si [b (a 2+x 2 ) y,]

13.26 (a 2+x2)-J,

• {sin [b (a 2+x2) J,]

'si[b(a2+x2)J,]

+cos [b (a 2+x2) J,]

oCi[b(a2+x2)J,]}

13.27 (a 2+x2)-J,

• {sin [b (a 2+X2)~]

'ci [b (a 2+x2) y,]

-cos [b (a 2+x2) J,]

'si [b (a 2+x2) J,]}

ro

~(z) = f ¢(x)x z - 1dx o

O<Rez<2

O<Rez<l

O<Rez<3

O<Rez<2

141

Page 148: Tables of Mellin Transforms

142 I. Mellin Transforms

00

z-l ¢ (x) <l> (z) = f ¢(x)x dx 0

13.28 S (ax) _(2rr)-~z-la-zr(~+z)

_3/2 < Re z < 0 • sin [~rr (Hz) ]

13.29 C (ax) -(2rr)-~z-la-zr(~+z)

-~ < Re z < 0 'cos [~rr (~+z)]

13.30 cos (ax) C(ax) 2-~rr2a-Z [r (l-z) ]-lsec [~rr (~-z)]

+sin(ax)S(ax) -~ < Re z < 1

13.31 sin(ax)C(ax) _3/2 2 -z 2 rr a -1 r(l-z)] csc[~rr(~-z)l

-cos(ax)S(ax) -~2 < Re z < 1

13.32 [~-S (ax) 1 cos (ax) 3

2- /2a- Zr (z) csc [~rr (~-z) 1

-[~-C(ax)lsin(ax) 0 < Re z < 3

3 13.33 [~-C (ax) 1 cos (ax) 2- /2a -zr (z) sec [~rr (~-z) 1

+[~-S(ax)lsin(ax) 0 < Re z < 3

13.34 [~-c(ax)12 -~ -1 -z ~rr z a sec(~rrz)r(~+z)

+[~-S(ax)12 0 < Re z < 1

Page 149: Tables of Mellin Transforms

1.13 Whittaker Functions and Special Cases 143

13.35

13.36

13.37

13.38

¢ (x)

_(a 2+x 2 )-!:lsin[b(a 2+x 2 )lz]

• {lz_C[b(a 2+x 2 )lz] }

00

$(z) = f ¢(xlx z - 1dx o

k kZ ",(!:lab/TI) '(a/b)' r(!:lz)r('\-!:lz)

3 -1 • [r( I'"ll S!:lz-l,!:lZ+!:l(ab)

3;. 1::z !:l (!:lab/TI) 2 (a/b) 2 r (!:lz) r (",-!:lz)

Q<Rez<lz

-k 1::z 5 (2TIa/b) '(a/b)' r ( Y,,-lzz) r (lzz)

~ 1:2z lz(2TIa/b) - '(a/b) r(lzz) r (~ .. -lzz)

o < Re z < ~2

Page 150: Tables of Mellin Transforms

144 I. Mellin Transforms

'" <P(x) cp (z) = f <P{X)X z- 1 dx

0

13.39 -1 -z Re > 0 r (v,ax) z a r(v+z) z

13.40 eaxr{v,ax) a- z [r{l-v)]-lr (z)r(v+z)

0 < Re z < l-Re v ·r{l-v-z)

=[r{l-v)]-l wa-zr {z)csc[w{v+z)]

13.41 -bx e r (v,ax) z-la-z{l+b/a)-z-vr (z+v)

Re z > 0 . F [l,v+z,l+z:b/{a+b)] 2 I

13.42 -bx y{v,ax) v-1 (1+b/a)-v-z r (z+v) e

Re z > -Re v . F [l,v+z:v+l: (l+b/a) -1] 2 I

13.43 e -2b~i (u-2ba) \, '+' -w (a/b)'1 '1Zr{~z)cot{~'lfZ)K,+, (2ab) '1 '1Z

+e2b~i (-u-2ba) u = 2b (a 2+x2) \ 0 <Re z < 1

13.44 -2ab _w-\'z-l(a/b)~+~Zr(~Z)K~, (2ab) e Ei (-u+2ba) '1Z

+e 2abEi (-u-2ba) u = 2b{a 2 +x 2 )\ Rez > 0

13.45 D [(ix~)] ~[r(-v)]-lr(Z)B(-~V-~z,~+z) v

~ 0 < -Re v °Dv[(-ix) ] < Re z

Page 151: Tables of Mellin Transforms

1.13 Whittaker Functions and Special Cases 145

13.46

13.47

13.48

13.49

¢ (xl

e -bxD (ax~l v

e - ~ax~_ (ax) --:K,]1

-~-Re ]1 < Re z < Re K

00

@(zl = I ¢(xlxz-1dx o

o < Re z < -~Re v

. r (2 z) Re z > 0

4b-a 2 F (-~v,z;~+z-~v; -----)

2 1 4b+a2

Re z > 0

r (1+2]1) [r (~+]1+K) r (~+]1-z) ]-1

-z 'a r(K-z)r(~+]1+z)

Re z > ± ~Re a

Page 152: Tables of Mellin Transforms

146

$(X)

13.50 e-bxM __ (ax) -><, Il

eRe Z > -l:!-Re Il

b > a

13.51 . l:!alc e WK ,1l (ax)

-l:!±Re Il < Re z < -Re K

13.53 -bx._ e wK,Il(ax)

Re z > -l:! ± Re Il

b > a

I. Mellin Transforms

co

~(z) = f $(x)x Z- 1dx o

a l:!+llr (l:!+Il+z) (b-l:!a) -Il-l:!-z

• F [l:!+Il+z,Il+K+l:!ll+2Ill (l:!-b/a)-l] 2 1

= a l:!+ll r (l:!+Il+z) (b+l:!a) -l:!-Il-Z

• F [l:!+Il+z,Il-K+l:!ll+2Ill (l:!+b/a)-l] 2 1

·r(l:!+Il+z)B(l:!-Il+z,-K-z)

Re z > -l:! ± Re Il

1-K+z; l.!-b/a)

= al:!+ll r (l:!+Il+z)r(l:!-Il+Z)

• [r (l-K+z) ] -l(b+l:!a) -Il-z-l:!

• F (l:!+Il+Z l:!+Il-K .1-K+z. 2b-a) 2 1 ' , '2b+a

Page 153: Tables of Mellin Transforms

1.13 Whittaker Functions and Special Cases 147

00

<j>(x) w(z) = J q,(x)xZ- 1dx 0

13.54 (b+x) -Pe -~ax r (1+2>1) [r (p) r (~+K+>I) j-1b z-p

~, >I (ax) 22 11-Z,1-K eG (ab )

23 P-Z,~+~,~->J

-~-Re >I < Re Z < Re (p+K)

13.55 (b+x) -Pe -~ax 31 11-Z l-K

oWK, >J (ax)

[r(p)]-lb z-PG (ab' )

23 p-z,~+~,~-~

Re Z > -~±Re ~

13.56 (b+x) -Pe~ax [r(p)r(~-K+>J)r(~-K->J)]-l

wK,>J(ax) 32 11-Z,1+K ebz-PG (ab )

-~±Re >J<Re 23 p-z,~+>J,~->J

z<Re(p-K)

Page 154: Tables of Mellin Transforms

148

13.57

13.58

13.59

13.60

13.61

¢ (x)

-WK ,:\ [a(b+x) 1

o < Re z < J,-Re (K+:\)

(x+b)-aeJ,ax

'W [a (b+x) 1 IJ,V

o < Re z < Re(a-lJ)

(x+b)-ae-J,ax

'W [a (b+x) 1 IJ,V

o x < b

-WK ,:\ (ax) x > b

Re IJ > 0

o x < b

x > b

'G

I. Mellin Transforms

00

¢(z) = f ¢(x)xz-ldX o

31

23 /

l+lJ,a

(ab a-z,J,+v,J,-V)

bz-ae" r (z) G (ab ) lab 30 la,l-1J

23 0-Z, !z+v 1 !z-v

Re z > 0

31 "G

23 /

l+K,l-Z

(ab I-IJ-z, J,+A, J,-:\)

Re Z < l-Re (K+IJ)

30 blJ-l+zr(IJ)G

23 /l-Z,l-K

(ab 1-1J- Z , J,+A, J,- A)

RelJ>O

Page 155: Tables of Mellin Transforms

1.13 Whittaker Functions and Special Cases 149

00

¢(x) <p(Z) = f ¢(xlxz - 1dx 0

13.62 0 x < b r(1+2]..1)r(l-z+K-]..I-z) [f(1-z)]-l

(x-b) ]..I-l-ze -l-zax • a -J,zb ]..I+J,Z-l-iW (ab) Yzz-K,!zz+l-1

'~,]..I [a (x-b) ] x > b Re Z < J,+Re (K-]..I)

13.63 -1 0 x < b f(1+2]..1) [f (l-z) f (J,+K+]..I) ]

(x-b) Ae -J,ax 'bA+Ze -!-iab 22 I-A,l-K G (ab )

·~,]..I[a(x-b)] x > b 23 -A-Z,J,+]..I,l-z-]..I

Re Z < Re (K-A)

13.64 0 x < b [f(l_z)]-lb A+ze -J,ab

(x-b) Ae -J,ax 31 I-A,l-K

"G (ab ) ·wK,]..I[a(x-b)] x > b 23 -Z-A,l-z+]..I,J,-]..I

Re A > _3/2 ±Re ]..I

13.65 0 x < b [f(l-z) f(J,-K-]..I) f(J,-K+]..I)] -1

(x-b) "e J,ax A+Z kab 32 I-A,l+K

'b e 2 G (ab ) 'WK [a (x-b) ] x > b 23 -Z-A,J,+]..I,J,-]..I ,]..I

A - 3/2 ±Re Re Z < -Re (K+A) Re > ]..I

Page 156: Tables of Mellin Transforms

150 I. Mellin Transforms

00

z-l tjl (x) iP(z) = J tjl(x)x dx

0

13.66 (l+x)-V-J,e-J,ax r(l+2V)r(z)a-J,Z

oM [a(l+x)] -1

jl,V • [r(2v+l-z)r(jl+v+~)]

O<Re z<~+Re (v+jl) ° Mjl_~Z, v-~z (a)

13.67 (l+x) v-~e -~ax -~z a 2 r (z) W, +' (a) jl-'1Z,V '1Z

-Wjl,V [a(l+x)] Re z > 0

13.68 D2V-~ [ (ax)~] (21T) ~ (l.ia) -zr (2z)

"D [(ax)~] · [r (~4+~Z+V) r (3/4+~Z-V) ]-1 -2v-~

Re z > 0

13.69 M_jl,v(ax)wjl,v(ax) ~r(1+2v)a-zr(v+~+~z)

· [r(v+~-~z)r(v+~-jl)]-l -1-2Re V<Re z<-2Re jl

· B(-jl-!,z, l+z)

13.70 wjl,v(ax)W_jl,v(ax) ~a-zr(l+z)r(~+~z+v)r(~+~z-v)

(-1 -1 · [r(l+J,z+jl)r(l+~z-jl)]

Re z > -1±2 Re v

Page 157: Tables of Mellin Transforms

1.13 Whittaker Functions and Special Cases 151

q, (xl

13.71 sin (cx~)

'e-~~ (x) 11,V

13.72 [x~+ (a+x) ~12 0-

'e -~~ (x) 11,V

13.73

largal<7f

13.74

largal<7f

13.75

I arga I <7f

00

~(z) = f q,(x)x z- 1dx o

Re z > -l±Re v

largal<7f,

33 1~'l'l+l1+Z 'G (a )

34 ~+v+z,~-v+z,-o-,o-

-!,±Re v < Re z < -Re(l1+o-)

33 IO'~'~+l1+z • G (a

34 -o-,l1+z,Z-l1,o-

-~±Re v < Re z < ~-Re (11+0-)

1 a 32 IO'~'~-l1+Z 7f-':ia G (a 34 -o-,z+v,z-v,o-

Re z > -~±Re v

Page 158: Tables of Mellin Transforms

152

13.76

13.77

13.78

13.79

¢ (x)

k sin (ex 2)

elz~ (x) ]l,V

k cos (ex 2)

'e -lz~ (x) ]l,V

k cos (ex 2)

Re Z > -lz-Re(A±V)

I. Mellin Transforms

¢ (Z)

22 Ilz+V-Z,lz-V-Z .G (~e2 )

23 lz,-]l-z,O

-liRe v < Re Z < lz-Re ]l

-1 [r (l-]l+z) 1 r (J,+v+z) r (lz-v+z)

F (¥v+z, !.2-\)+z i !:2,l-l1+z; _~C2) 2 2

Re Z > -lz±Re v

22 Ilz+V-Z,lz-V-Z 'G (~e2 )

23 O,-]l-z,lz

-lz±Re v < Re Z < lz-Re ]l

(lza)2A r(lz+A+V+Z)r(lz+A-V+Z) r(l+]l+a) r(l+A-a) r(l+A-]l+Z)

1+ A, ~+ A, lz+ A+V+Z, ~+ A-V+Z; • F ( -a 2)

4 4 1+A+a,1+A-a,1+2A,1+A-]l+Z;

Page 159: Tables of Mellin Transforms

1.13 Whittaker Functions and Special Cases 153

¢(x)

13.80

13.81

Re p>-l±Re ll±Re v

13.82 exp [-J,x(a+S)]

Re p>-l-Re ll±Re v

13.83 exp [J,x(a+S)]

'WK (ax)W, (Sx) ,ll ",v

'" ~(Z) = f ¢(x)x z- 1dx o

Re Z > { -J,-Re (Hv)

-J,-Re (ll±v)

·r(l+ll+v+z)r(l-ll+v+z) r(-2v)

• F (1+1l+V+z,1-1l+v+z,J,-A+V;1+2v,3/2-K+V+z;1) 3 2

+ [r (J,-Hv) r (3/2- K- v+ z ) ]-1

·r(l+ll-v+z) r(l-ll-v+z) r(2v)

• F (1+1l-v+z,1-1l-v+z,J,-A-v;1-2V'~2-K-v+z;1) 3 2

aJ,+ll s-ll-J,-z F (J,+K+ll, 3 2

1+1l+v+z,1+1l-v+z;1+21l'~2-A+1l+z;-a/S)

33 1J,+ll,J,-ll,l+A+Z 'G (S/a )

33 J,+v+z,J,-v+z,-K

-l±Re ll±Re v<Re z<-Re (K+A)

Page 160: Tables of Mellin Transforms

154

13.84

13.85

13.86

13.87

13.88

¢ (x)

exp [ -lzx ( a- S) 1

exp [-lzx(a+S) 1

exp [-!z(x/a+S/x)]

exp [!z(x/a-S/x)]

.WK,jJ(x/a)WA,v(S/x)

Re S >0, / arga / <37[/2

exp[!z(x/a+S/x) ]

'wK,jJ(x/a)WA,v(S/X)

/ arg (a, S) / <31T12

I. Mellin Transforms

00

~(Z) = J ¢(x)xZ-ldx o

-Z -1 S [f (!z-A+v) f ('rA-V) 1

23 j1ftjJ, !z-jJ,l+A+Z ·G (S/a )

33 1ftv+ Z , !z-v+ Z , K

Re Z > -l±Re jJ±Re v

22 j1ftjJ,!rV,l-A+Z S-zG (S/a )

33 !z+v+ Z, !z-v+ Z, K

Re Z > -l±Re v±Re jJ

40 jl-K,l-A-Z

SZ G24 (S/a !z+jJ, !z-jJ, !z+v-z, !z-V-Z)

Re(a,S) > 0

SZ[f(!z-K+jJ)f(!z-K-jJ)]-l

41 jl+K,l-A-Z ·G (S/a )

24 ~+J.l,~-J.l,1z+v-z,1z-'J-z

Re z<-!z-/ Re v /-Re K

Z -1 S [f(!z-A-V) f(!z-K+jJ) f(!z-K-jJ) fC!z-A+v)]

42 /l+K,l+A-Z

.G24 (S/a !z+jJ,!z-jJ,!z+V-Z,!z-V-)

-!z+Re A+ / Re jJ / <Re z<!z-/ Re v I-Re K

Page 161: Tables of Mellin Transforms

1.14 Elliptic Integrals and Elliptic Functions 155

1.14 Elliptic Integrals and Elliptic Functions

00

<P(x) <P (z) = f <P(x)x Z- 1 dx 0

14.1 k J,1IJ,2- z r (z) [r ('l,,+J,z) r (\+~z) ]-1 K [( ~-J,x) 2] X < 1

0 x > 1 Re z > 0

14.2 K[(1_x 2/a 2)J,j x < a \lIa z r 2 (J,z) [r (J,+~z) ]-2

0 x > a Re z > 0

0 x < a \lIa2r2(-~z) [r(J,-~z) ]-2

14.3 K[ (1-a 2/x 2) J,] x > a Re z < 0

0 X < a k z-k -z- 5/2 2

1I 2a 22 r (\-J,z)

14.4 (a+x) -J,K [ (~~:) J,] x > a • [r (l-z) ]-1 Re z < J,

14.5 (a+x) -lK ( I a-x I) 1/8 11 -1 aZ-l[r(J,z)r(~_J,z)]2 a+x

0 < Re z < 1

14.6 h (a2+x2) - 2 \az-lr2(J,z)r(~_~z)

'K [a (a 2+X2) -J,] [r ( ~+ J,z) ] -1 0 < Re z < 1

14.7 (a 2+X2) -~ [x (a 2+X 2) -J,] \az-lr(~z)r2(J,-J,z)

0 < Re z < 1 • [r (l-J,z) ]-1

14.8 (a 2+x2)-J, !aa z-l zr2 (J,z) r (J,-J,z)

'E [a (a 2+X 2) -J,] ·[r(J,+~z)] -1

0 < Re z < 1

Page 162: Tables of Mellin Transforms

156

14.9

14.12

14.13

<P(x)

O<Rez<1

2 2 1 'K{ [x + (a-b) 2] '2}

x 2+(a+b)

k (a2+x2) - 2

o x < a+b

2 2 -~ [x - (a-b) ]

x > a+b

I. Mellin Transforms

00

W(z) = I <P( ) x z - 1dx o

-z-l -1 1T2 r(lz-'iZ)r(Z) [r(lz+lzz)]

O<Rez<l

a 2 +b 2

'q-lz-lzz ([ 2 2[) a -b

O<Rez<1

• [r (l-z) r (h+lzz) ]-1

O<Rez<l

[ 2 2[~Z-~ a 2 +b 2 • a -b q 1 1 ( )

-'2Z-'2 [ 2 2[ a -b

Re z < 1

Page 163: Tables of Mellin Transforms

1.14 Elliptic Integrals and Elliptic Functions 157

<jJ(x) <jl (z) = 7 z-l <jJ(x) x dx 0

14.14 e (0 I ax) 21T -2za -z (22z_1 ) r (z) 1;(2z) Re z > !o 2

14.15 e (0 I ax)-l -2z -z 21T a r (z) 1; (2z) Re z > J, 3

14.16 e (J, I ax) 21T-J,a- z r(!o-z) (2 1 - 2z _1) 1;(1-2z) 3

Re z > 0

14.17 e (0 I ax) 2a-z1T-2z(21-2z_1)r(z)1;(2Z) 4

Re z < 0

14.18 e (y I x) 1T-J, 22z-l r (J,_z) 1

-~ < Y < J, • [1;(1-2z,~-J,y)-?;(1-2z,~+J,y)

+1; (1-2z, 3/4 +J,y) - 1; (1-2z, 3/4-~Y) J

- 1T-~22z-lr(J,-z) 14.19 e (y I x) 2

0 < Y < 1 • [1;(1-2z,~y)-1;(1-2z,J,+~y)

-?;(1-2z,~-J,y)+1;(1-2z,1-J,y)J

14.20 e (y Ix) 3

-~ 1T r (~-z) [1; (1-2z ,y) +1; (1-2z,1-y) J

0 < Y < 1 Re z < 0

Page 164: Tables of Mellin Transforms

158 I. Mellin Transforms

00

<P(x) ¢(z) = ! ¢(x)xz - 1 dx 0

14.21 e (y Ix) 1T -':,r (':,-z) [z; (1-2z ,':,+y) +1:; (1-2z,':,-y)] 4

-" < Y < J, Re z < 0

14.22 e (ylx) 1T -':, 22z-l r (J,-z) [z; (1-2z ,,,,+':,y) - z; (1-2z, 3/4 +J,Y) 1

-J, < Y < J, +1:; (1-2z,,,,-J,Y)-1:; (1-2z, 3/4 -"y) 1

Re z <%

14.23 e (y I x) 1T -':, 2 2z- 1 r (,,-z) [I;; (1-2z, J,y) -I;; (1-2z, J,+W) 2

0 < Y < 1 +Z;(1-2z,"-"Y)-1;;(1-2z,1-':,y)] Re z<-'1i:

14.24 e (y Ix) 1T -"r (.,-z) [I:; (1-2z ,y) -Z; (1-2z ,1-y) ] 3

0 < Y < 1 Re z < 0

14.25 e (y Ix) 1T -"r (.,-z) [z; (1-2z, .,+y) -I;; (1-2z,,,-y)] 4

-., < Y < " Re z < 0

2 1+2z 1T -2z r (Z) 00

(_1)n(2n+l)-2z 14.26 e 1 (y I x) I 0

-" < y < ." 'sin[(2n+l)1TY] Re z > 0

21+2z1T-2zr(z) 00

-2z 14.27 e (ylx) I (2n+l) cos [(2n+l)1TY] 2 0

0 < y < 1 Re z > 0

Page 165: Tables of Mellin Transforms

1.14 Elliptic Integrals and Elliptic Functions 159

'" z-l q, (x) cp (z) = f q,(x)x dx 0

00

27T- 2z r (z) -2z 14.28 e (ylx)-l L n cos (27Tny) 3

1

0 < Y < 1 Re z > 0

14.29 e (yl x) -1 4

27T -2zf(z) '" L n -2z (-1) n cos (27Tny) 1

-~ < Y < Y, Re z > 0

Page 166: Tables of Mellin Transforms

160

1.15 Hypergeometric Functions

15.1

15.2

15.3

15.4

¢(x)

(l_x)13-y-n

· F (-n,13;y;x) x < 1 2 1

0 X > 1

n = 0,1;2,···

(l-x) y-1

F (a.,13;y;l-x) x < 1 2 1

0 X > 1

(l-x)P-1

• F (a., S;y; I-x) x < 1 2 1

o

o

(X-l)y-1

• F (a.,S;y;l-x) 2 1

x > 1

x < 1

x > 1

I. Mellin Transforms

'" ~(z) = f ¢(x)xz- 1dx o

[r(y+n)r(y-z)r(l+13-y+Z)]-1

·r(y)r(l+13-y)r(z)r(y+n-z)

Re(13-y) > n-l Re z > 0

[r(y-a.+z)r(Y-13+z)]-1

·r(y)r(z)r(y-a.-13+z)

Re Y > O,Re z > { o

Re (a.+13-y)

r(p)f(z) [r(p+z)]-1

F (a.,S,p;y,p+z;l) 3 2

Re P > O,Re z > { o

Re (a.+S-y)

-1 [r(l-z)r(l+a.+S-y-z)]

·r(y)r(I+a.-y-z)r(l+13-y-z)

Re (l+a.-y) Re y > O,Re z > {

Re (l+S-y)

Page 167: Tables of Mellin Transforms

1.15 Hypergeometric Functions

15.5

15.6

15.7

15.8

15.9

</lex)

(l-x) 0'-1

F (o.,S;y;xz) x < 1 2 I

0 X > 1

(l-x)y-le xo

F (a.} S;y; l-x) x < 1 2 1

0 X > 1

Re Y > a

a x < a

(x-a)y-l

• F (a,S;y,a-x) x > a 2 I .

Re Y > a

F (a,b,c;-x) 2 I

Re(z,a-z,b-z) > a

-x e F (a ••• a • p q l' , p'

b ••• b . ax) l' 'q'

00

$(z) = f </l(x)x z - 1 dx o

[f (O'+z) ]-I f (0') f (z)

• F (a,S,z;y,O';z) 3 2

161

Re 0' > O,Re z > 0, I arg(-z) 1<11

-1 [f (y-a+z) f (y-S+z)] f (y) f (z)

'f(y-a-S+z) F (z,y-a-S+z; 2 2

y-a+z,y-S+z,o)

a Re z > {

Re (o.+B-y)

-1 [f(l-z)f(l+a+S-y-z)]

·f(y)f(l+o.-y-z)f(l+S-y-z)

F (l+o.-y-z,l+B-y-z,l+a+S-y-z,l-a) 2 I

Re(l+a-y) Re z > {

Re (l+B-y)

f(c)f(a-z)f(b-z)f(z) f (a) f (b) f (c-z)

c+ 0,-1,-2,'"

f(z) F ( z a ••• a'b '" b 'a) p+1 q , l' , P' l' , q'

p < a, Re z > 0

Page 168: Tables of Mellin Transforms

162 I. Mellin Transforms

00

z-l <jJ(x) 1>(z) = J <jJ(x)x dx 0

15.10 v-l B(v,z) +IF +l(a ,"',a ,z; (l-x) F (a ••• a .

pq l' 'p' P q 1 P

b 1,···,bq ;ax) x < 1 b 1,···,bq ,z+v;a)

0 x > 1 Re v > 0, Re z > 0

15.11 K (2x!:2) F (a ••• a . v p q l' , p' !:2r(z+!:2v)r(z-!:2v)p+2Fq(!:2v+z,

b 1"" ,bq;ax) z-.!zv , a 1 I ..... lap i b 1 ' ..... ,b qi a

Re z > ~IRe vi p < 9 - 1

15.12 KA (ax)K]1(ax) Sinha, S. , 1943:

• F (a ••• a 'b ... Bull. Calcutta Math. Soc. Pq l' 'P'1

, , 35, p. 37-42

b 'bx 2 ) q'

Page 169: Tables of Mellin Transforms

Part II. Inverse Mellin Transforms 163

2.1 General Formulas

00

z-l ¢ (z) = f x q,(x)dx q, (x) 0

(2'JTi) -1 c+ioo

1.1 ¢ (z) f -z ¢(z)x dz c-ioo

1.2 -z

q,(ax) ; > 0 a ¢(z) a

1.3 ¢ (z+a) xaq,(x)

1.4 ¢(pz) p-l<jl(x1 / p ) ; p > 0

1.5 <jl (-pz) p -lq, (x -lip) ; p > a

1.6 -z p-l(ax)a/pq,[(ax)l/Pj, a <jl (pz+a) p,a > 0

1.7 -z a <jl(a-pz) p-l(ax)-a/pq,[(ax)-l/Pj;p,a> 0

1.8 <jl (n) (z) q, (x) (log x) n

For further formulas see Part I, 1.1.

Page 170: Tables of Mellin Transforms

164 II. Inverse Mellin Transforms

2.2 Algebraic Functions and Powers of Arbitrary Order

00

$(2) J 2-1 ¢ (x) = x ¢(x)dx

0

2.1 -1 2 1 < 2 a x a

Re 2 > 0 0 x > a

2.2 -1 z 0 < 2 a x a

Re 2 < 0 -1 x > a

2.3 -1 2 (x/a)\) (\)+2) a x < a

Re 2 > -Re \) 0 x > a

2.4 -1 z 0 (\)+2) a x < a

Re 2 < -Re \) (x/a)\) x > a

2.5 -2 2

-log(x/a) < 2 a x a

Re 2 > 0 0 x > a

2.6 -2 2 0 < 2 a x a

Re 2 < 0 log (x/a) x > a

2.7 -2 z - (x/a) \)log (x/a) (\)+2) a x < a

Re z > -Re \) 0 x > a

Page 171: Tables of Mellin Transforms

2.2 Algebraic Functions and Powers of Arbitrary Order 165

00

z-1 cp (z) = J x cfJ(x)dx cjJ(x) 0

2.8 -2 z

(v+z) a 0 x < a

Re z < -Re v (x/a) v 10g (x/a) x > a

2.9 [(z+a) (z+13)] -1 -1 a S (S-a) (x -x ) x < 1

Re z > -Re(a,S) 0 x > 1

2.10 -1 -1 a 1 [(z+a) (z+S)] (8-a) x x <

S -1 S 1 -Re a < Re z < -Re (8-a) x x >

2.11 [(z+a) (z+8)] -1

0 x < 1

< -Re(a,S) -1 8 a > 1 Re z (il-a) (x -x ) x

2.12 (Z2+ a 2) -1 -1 sin[a log (1/x) ] < 1 a x

Re z > JIm aJ 0 x > 1

2.13 (z2+a 2) -1 0 x < 1

Re z < JIm aJ -1

a sin(a logx) x > 1

2.14 (Z2+ a 2) -1 -~ia -1 -ia < 1 x x

-Im a Re < Im -~2ia -1 ia > 1 < Z a x x

Im a > 0

Page 172: Tables of Mellin Transforms

166 II. Inverse Mellin Transforms

00

<1>(z) = f z-l x <p (x) dx <p (x) 0

2.15 (z2+ a 2)-1 ~iCt

-1 ia < 1 x x

1m a < Re z < -1m a !zia -1 -ia x x > 1 1m a < 0

2.16 z (z2+ a 2)-1 cos (a log x) x < 1

Re z > 11m al 0 x > 1

2.17 z(z2+a 2)-1 0 x < 1

Re z > 11m al -cos (alog x) x > 1

2.18 z(z2+ a 2)-1 !zx -ia < 1 x

1m a > 0 -!.zx ia x > 1

-1m a < Re z < 1m a

2.19 z (z2+ a 2)-1 .!.2X ia

< 1 x

1m a < 0 -!zx -ia x > 1

1m a < Re z < -1m a

2.20 z-1(z2+a 2)-1 2a -2 sin2[~a1og(1/x)1 < 1 x

Re z > 11m al 0 x > 1

Page 173: Tables of Mellin Transforms

2.2 Algebraic Functions and Powers of Arbitrary Order 167

'" ¢(z) f z-l

<t> (x) = x <t>(x)dx 0

2.21 z (Z2+ a 2) -1" ~a-llog(1/X)sin[al0g(1/x)1 x < 1

Re z > 11m al 0 x > 1

2.22 -1 -~ a -~2Erf{ [a 1< z (z+a) log (l/x) 1 '} x < 1

Re z > 11m al 0 x > 1

2.23 (Z2+ a 2) -~ -1< [~1Tlog (l/x)] 'cos [ (alog (l/x) ]

• [(z2+a2)~+z]~ x < 1

Re z > 11m al 0 x > 1

(z2+a2)-~ -1< 2.24 [~1Tlog (l/x)] 'sin [ a log(l/x)]

• [(Z2+ a 2) lz_z] ~ x < 1

Re Z > 11m al 0 x > 1

2.25 -v Z [r(v)]-l[log(a/x)]V-l x < a z a

Re z > 0, Re v > 0 0 x > a

2.26 -v z 0 (-z) a x < a

Re Z < o ,Re v > 0 [r(v)]-l[log(x/a)]v-l x > a

Page 174: Tables of Mellin Transforms

168 II. Inverse Mellin Transforms

00

<!l(z) J z-l

<)lex) = x <)lex) dx 0

2.27 -1 -v a-v [r(vl]-ly[v,alog(l/x)] < 1 z (z+a) x

Re v > 0 0 x > 1

Re z > (O,-Re a)

2.28 -1 -v z (z+ a) -v -1 -a [rev)] r[v,a1og(l/x)] x < 1

Re v > 0 -a -v x > 1

-Re a < Re z < 0

, [( z+a) 'z_a'z] v kv -1 ~a 2.29 'zV(X 2 [log(l/x)] x 2 I, ['zalog(l/x)]

'2V Re z>-Re a,Re v>O x < 1

0 x > 1

2.30 [(z+a) l-i+S'z] v -(2/c)'zV[21og(1/x)]-1-'zvx a-'zS

k } Re z>-Re a,Re v<O 0DV_1 {[2S1og(l/X)] 2 x < 1

Re S > 0 0 x > 1

2.31 (z+a) -Yz (2/TI)'z[210g(1/x)]-'z-'zvx a-'zS

[(z+a) 'z+S'-i] v oDv {[2S10g(1/x)]'z} x < 1

Re z>-Re a,Re v<l 0 x > 1

Re S > 0

Page 175: Tables of Mellin Transforms

2.2 Algebraic Functions and Powers of Arbitrary Order 169

'" 1>(z) = f z-l x q,(x)dx q, (x)

0

2.32 z -v [(z+a) lz_alz] v k kv-l ka (2/'JT) 2V [2log(l/x)] 2 x 2

Re z>-Re a,Re V>O oD_ v_1 {[2a1og(1/x)]lz} x < 1

0 x > 1

2.33 -v z (z+a) -~ (2/'JT)lz[21og(1/x)]lzv-lzx Yz a

[(z+a) lz_a Yz ] v k .D_v {[2a1og(l/x)] 2} x < 1

Re z>-Re a, 0 x > 1

Re v > -1

2.34 (alz+zYz) v -(2'JT)- lzV2- Yzv [1og(l/x)]-1-lzvx -lza

Re z>O, Re v>O ·D 1{[2a10g(l/X)]lz} x < 1 v-

0 x > 1

2.35"'" [(z+a) (z+S) ]-v rr lz [r(v)]-1(a-S)lz-v[1og(l/X)]v- Yz

Re z>-Re (a, b) k(a+B) 1 ox' I 1 [lz(a-S)log(l/x)] x <

\J-~

Re v > 0 0 x > 1

2.36 (z_a)v(z+a)-Il (2a)Yzv-lzll [r(ll_v)]-1[log(l/x)]YzIl-YzV-l

Re z>IRe a/ °Mlzll+lzv ,lzll_lzv_lz[2alog(1/x)]x < 1

Re (Il-v) > 0 0 x > 1

Page 176: Tables of Mellin Transforms

170 II. Inverse Mellin Transforms

00

<!l(z) ! z-l <P(x) = x <P(x)dx

0

2.37 (z-a) j.l(z-S)-v (a_S)~j.l-~V[r(v_j.l)J-lx-~a-~S

Re z>Re(a,S) 'M~j.l+~V,~V_~j.l_~[(a-S)log(l/x)]

x < 1

0 x > 1

2.38 (a-z) j.l(a+z)-v (2a)~j.l-~V[r(V)]-1[lOg(1/x)]~V-~j.l-l

Re z> I Re al ·W~j.l+~V,~V_~j.l_l[2alog(1/x)] x < 1

Re (v-j.l) > 0 0 x > 1

2.39 (z-a)j.l(S-z)-v [r(_j.l)]-l(S_a)~j.l-~VX-~a-~s

Re a<Re z<Re S ~v-kj.l-l • [log (l/x) ] 2

Re (V-j.l) > 0 'W -~j.l-~V, ~+~j.l-~V [ (S-a) log (l/x) ,]

x < 1

[r(v)]-l(S-a)~j.l-~v[log(l/x)]~V-~j.l-l

-!za-!zS 'X W, +' , +' , [( S-a) logx]

~}.l ~\J,Yz ~}.l-~V

X > 1

2.40 (Z2+ a 2) -v TI~(2a)~-v[r(v)]-1[log(1/x)]V-~

Re z 11m al 'Jv_~[a log(l/x)] x < 1

Re v > 0 0 x > 1

Page 177: Tables of Mellin Transforms

2.2 Algebraic Functions and Powers of Arbitrary Order 171

2.41

2.42

2.43

2.44

2.45

ro

~(z) = f XZ-l~(x)dx o

Re Z>IRe al

Re v > 0

-Re a<Re z<Re a

Re v > 0

[z+ (Z2+ a 2) ~]-v

Re z> I 1m a I,Re v>O

(Z2+ a 2) -~

[z+ (Z2+ a 2) ~]-v

Re z>I1m al,Re v>-l

(Z2_ a 2) -~

• {[z+ (z 2_a2)~] v

_[z_(z2_a2)~]V}

Re z > -IRe al

~ (x)

1V_~[a log(l/x)]

o

'KV_~ [a log (l/x) J

x < 1

x > 1

x < 1

x > 1

-v 1-1 va [log(x)] J v [alog(l/x)] x < 1

Ox> 1

x < 1

o x > 1

-1 v 2~ a sin(~v)Kv[alog(l/x)] x < 1

o x > 1

-1 < Re v < 1

Page 178: Tables of Mellin Transforms

172 II. Inverse Mellin Transforms

cjJ (z) J Xz-l~(x)dx ~(x) o

2.46

Re z > 11m al

x < 1

o x > 1

Page 179: Tables of Mellin Transforms

2.3 Exponential and Logarithmic Functions 173

2.3 Exponential and Logarithmic Functions

00

1>(z) = J xz-l<p(x)dx <P(x) 0

3.1 etZ 2 -'< _hy2 let e lz(net) '2e 4

Re et > 0

3.2 V etZ 2 -l<v -l< -l:--ay2 I et Z e (2et) 2 (net) 2e

-l< Re z > 0, Re et > 0 .Dv [(2et) 2y]

z -lze et/z -k k 3.3 (ny) 2cosh [2 (ety) 2] x < 1

Re z > 0 0 x > 1

3.4 z -lze -et/z -k k: (ny) 2COS [2 (ety) 2] x < 1

Re z > 0 0 x > 1

-3.5 z -v-Ie Cl./z (Ylet)lzV 1v [2(ety)lz] x < 1

Re z > 0, Re v > -1 0 x > 1

3.6 z-V-1e -et/ z k\) 1:: (y let) 2 J v [2 (ety) 2] x < 1

Re z > 0, Re v > -1 0 x > 1

Y = log (l/x)

Page 180: Tables of Mellin Transforms

174 II. Inverse Mellin Transforms

'" z-l ¢I(z) = f x <p (xl dx <P(x)

0

3.7 -az~ -~ _3/2 -!.ia 2 /y x < 1

e ~a7f y e

Re z > 0, Re a 2 > 0 0 x > 1

3.8 z -~e -az~ _~ _!;;.a2./y (7fY) e x < 1

Re z > 0, Re a 2 > 0 0 x > 1

3.9 -1 -az~ Erfc (~ay -~) < 1 z e x

Re z > 0, Re a 2 > 0 0 x > 1

~ Erf (~ay -~) 3.10 z-l(l_eaz ) x < 1

Re z > 0, Re a 2 > 0 0 x > 1

k -v-~ -~ -v-l _1/8a2/y 3.11 v -az 2

z e Z 7f Y e

a 2 _k

Re z > 0, Re > 0 oDZv+1 [a(Zy) 2] x < 1

0 x > 1

3.1Z 1/

exp(-3z 3) !:; -1 _ 3/. -~

3 27f Y 2K 1. (Zy 2) /3

X < 1

Re Z > 0 0 x > 1

y = log (l/x)

Page 181: Tables of Mellin Transforms

2.3 Exponential and Logarithmic Functions 175

'" <l>(z) = f X Z- 1 ¢(x) ¢(x)

0

_I" 1/ 3~( 1lY) -lK (2y -~) 3.13 z 3exp (-3z 3) x < 1

2/3

Re z > 0 0 x > 1

_ 2/ 1/

1T -1 e"W) -~ (2y -~) 3.14 z 3exp (-3z 3) x < 1 1"3

Re z > 0 0 x > 1

3015 (Z2+ a 2) -J, k -b J o [a(y2_b2) 2] X < e

·exp[-b(z2+a2)~] 0 x > e -b

Re z > 11m 0.1

3.16 (Z2_ a 2) k -b I [a(y2_b 2) 2] X < e 0

k -b ·exp [-b (Z2_ a 2) 2] 0 X > e

Re z > IRe 0.1

3.17 (z2+a2)-J,[(z2+a2)~_z]V \) !":V a [(y-b) / (y+b) ] 2

k k -b °exp [-b (Z2+ a 2) 2] oJv [a(y2-b 2) 2] x < e

Re z > 11m ai, Re v > -1 0 x > -b e

y = log (l/x)

Page 182: Tables of Mellin Transforms

176

3.18

3.19

3.20

3.21

3.22

00

~(z) = f xz-lq,(X)dx o

Re z > IRe ai, Re v > -1

Re z > 0

Re z > 0

-1 z log z

Re z > 0

z -l:ilog z

Re z > 0

y = log (l/x)

II. Inverse Mellin Transforms

q, (x)

a v [(y-b) / (y+b) ]l:iv

.I [a(y2_b 2 ) l:i] v

o

'log (y/a)

o

-b x < e

-b x > e

x < 1

x > 1

k ~ -l:i1TY [2 (ay) 2]-l:iJ [2 (ay) ] o 0

'log(y/a)

o

-y-log Y

0

-l< - (1TY) 2 [log

0

y+y+log

x < 1

x > 1

x < 1

x > 1

4] x<l

x > 1

Page 183: Tables of Mellin Transforms

2.3 Exponential and Logarithmic Functions 177

00

z-l <l>(z) = f x q,(x)dx QJ (x) 0

3.23 -n-1 (n!) -lyn (1+lz+' " "+ 1 -y-1og y) z log z n

n = 1,2,3,·" x < 1

Re z > 0 0 x > 1

3.24 -n-lz z log z 'IT - lz22n (n!) [(2n) ! ]-lyn-lz

n = 1,2,3, ••• • [2 (1+ !. +". "+ 2~_1)-Y-10g(4Y)] 3

Re z > 0 x < 1

0 x > 1

3.25 -\I z log z [r(\I)]-ly\l-l[~(\I)_log y] x < 1

Re z > 0, Re \I > 0 0 x > 1

3.26 -1 z log (1+z/a) -Ei (-ay) x < 1

-Re z > 0 0 x > 1

3.27 -1 z log(z/a-1) -Ei (ay) x < 1

Re z > a 0 x > 1

3.28 log(l-a/z) -1 a Y (I-x) x < 1

Re z > a 0 x > 1

Y = log (l/x)

Page 184: Tables of Mellin Transforms

178 II. Inverse Mellin Transforms

'" <!>(z) f z-l q,(x) = x q,(x)dx

0

3.29 10 (~) -1 -a a < 1 g z-a y (x -x) x

Re z > a 0 x > 1

3.30 10 (z+b) -1 a b < 1 g z+a y (x -x ) x

Re z > -(a,b) 0 x > 1

3.31 (z+a)-llog(z+a) _xa (y+log y) x < 1

Re z > -a 0 x > 1

3.32 -1 (z+a) log (z+b) x a {log(b-a)-Ei[-y(b-a)]} x < 1

b > a, Re z > -b 0 x > 1

3.33 -1 z log (l +a 2/ z 2) -2Ci (ay) x < 1

Re z > 0 0 x > 1

3.34 z-110g(z2+a 2) 2 log a-2Ci(ay) x < 1

Re z > 0 0 x > 1

3.35 (z2+a 2)-110g z a-1 {cos(ay)Si(ay)+sin(ay)

Re z > 0 • [log a-Ci(ay)]} x < 1

0 x > 1

Y = 10g(1/x)

Page 185: Tables of Mellin Transforms

2.3 Exponential and Logarithmic Functions 179

'" z-l oj> (z) = f x <P(x)dx <p (x)

0

3.36 log (l+a 2/z 2) -1 2y [l-cos (ay) ] x < 1

Re z > 0 0 x > 1

3.37 10g(1-a 2/z 2) 2y-l[l-cosh(ay)] x < 1

Re z > a 0 x > 1

2 2 -1 3.38 10g(~) 2y [cos (by) -cos (ay)] x < 1 z2+b 2

Re z > 0 0 x > 1

3.39 10g[c 2+(z+a)2] 2y -1 cos (cy) (xa_xb ) x < 1 c2+(z+b) 2

Re z > 0 0 x > 1

z2_a 2 -1 1 3.40 log (--) 2y [cosh (by) -cosh (ay) ] x <

z2_b 2

Re z > (a,b) 0 x > 1

3.41 (Z2+a 2)-1 -1 sin (ay) [y+log (~y fa) +ci (2ay) ] -a

·log (z 2+a 2) -1 +a cos (ay)Si(2ay) x < 1

Re z > 0 0 x > 1

Y = log (l/x)

Page 186: Tables of Mellin Transforms

180 II. Inverse Mellin Transforms

00

<l>(z) f z-l ¢(x) = x ¢(x) dx 0

J, -1 a 2y k 3.42 109(z,+a) ye Erf( ay 2) x < 1 z~-a

Re z > 0 0 x > 1

3.43 (Z2+a 2)-J, Jo(ay) log a-J,1TYo (ay) x < 1

'log[z/a+(1+z 2/a 2)J,] 0 x > 1

Re z > 0

3.44 (Z2+ a 2) -J, -J,1TYo (ay)-Jo (ay) [y+log(2y/a)]

'log(z2+a 2) x < 1

Re z > 0 0 x > 1

3.45 (Z2+a 2) -J, -J,'fTHo (ay) x < 1

k 'log[a/z+(1+a2/z2) 2] 0 x > 1

Re z > 0

3.46 (Z2_ a 2)-J, Ko(ay)-Io(ay) [y+log(2y/a)]

-log (Z2_a 2) x < 1

Re z > a 0 x > 1

y = log (l/x)

Page 187: Tables of Mellin Transforms

2.3 Exponential and Logarithmic Functions 181

'" z-l <I> (z) = f x q,(x)dx q,(x)

0

3.47 (Z2_ a 2)-lz I o (ay)log a+Ko (ay) x < 1

k 0log(z+(Z2-a 2) 2) 0 X > 1

Re z > a

3.48 (Z2_ a 2)-lz Ko(ay) x < 1

'log[z/a+(z2/a 2-1)lz) 0 x > 1

Re z > -a

3.49 -1 2 z (log z) (y+1og y)-1T 2/6 x < 1

Re z > 0 0 x > 1

3.50 -v 2 z (log z) [f (v) )-ly V-1

Re z > 0 • {[1/1(v) -log y)2-1/1' (v)}

x < 1

0 x > 1

Page 188: Tables of Mellin Transforms

182 II. Inverse Mellin Transforms

2.4 Trigonometric and Hyperbolic Functions

00

<I>(z) = f xz-lcp (x) dx cp(x) 0

4.1 z CSC(lIZ) (_1)n ll-1(x/a)n(1+x/a)-1 a

-n < Re z < I-n,

n = O,±1,±2,···

4.2 z sec (lIZ) (_l)nll-l(x/a)n+~(l+ x/a)-l a

-n-~ < Re z < -n+!z,

n=O,±1,±2,'"

4.3 z cot(lIZ) lI- l (x/a)n(l-x/a)-l a

-n < Re z < l-n,

n=O,±1,±2,'"

Principal value

4.4 aZtan (lIZ) -1 n+~ -1 -11 (x/a) (I-x/a)

-n-~ < Re Z < ~-n

n=O, ±I, ± 2, II • 10 ;

Principal value

4.5 -1 Z -1 Z a CSC(lIZ) 11 log (l+a/x)

0 < Re Z < 1

Page 189: Tables of Mellin Transforms

2.4 Trigonometric and Hyperbolic Functions 183

'" 1>(z) = f Xz- 1 q,{x)dX q, (x) 0

4.6 -1 -z csc (-1Iz) -1 Z a 'IT log(l+ax)

-1 < Re Z < 0

4.7 -1 -1 -1 (l-z) csc{'1Iz) '11 x log(l+x)

0 < Re Z < 1

4.8 Z-lc-z{az_b z ) '11 -llog [(a+cx) / (b+cx) J

'csc('1Iz) 0 < Re Z < 1

-1 -z sec (!z'1lz) -1 4.9 Z a -2'11 arctan (ax)

-1 < Re Z < 0

4.10 -1 -z sec (!z'ITz) 2'11 -1 arccot(ax) Z a

0 < Re Z < 1

4.11 -1 -z cot ('ITz) logll-axl -1 < Re < 0 Z a Z

4.12 -1 -11 ll+xl -1 1 Z tanh (!z'1lz) 'IT og I-x < Re Z <

Page 190: Tables of Mellin Transforms

184 II. Inverse Mellin Transforms

co

<jJ (Z) f z-l <p (x) = x <P(x)dx

0

4.13 z CSC(1TZ) -1 sin8 x(x 2+2ax+a 2)-1 a 1T a

'sin (z8) -1 < Re z < 1

-1T < 8 < 1T

4.14 -1 cos(z8)CSC(1TZ) -1 COS8+X2) z !z1T log(1+2x

-1 < Re z < 0 -1T < 8 < 1T

4.15 csc 2 (1TZ) -2 n -1 1T x (x-l) log x

-n < Re Z < l-n,

n=O,±1,±2,"',

Principal value

4.16 sec 2 (1TZ) -2 n+'" -1 1T x 2(x-l) log x

-n-!.z < Re Z < !z-n,

n=O,±1,±2,···j

Principal value

4.17 csc 3 (1TZ) !z1T-3 (-x)n(1T 2+1og 2 x)/(1+x)

-n < Re Z < l-n,

n=O,±1,±2,· .. ·

Page 191: Tables of Mellin Transforms

2.4 Trigonometric and Hyperbolic Functions 185

00

z-l <p(z) = f x cp (x) dx cp (x) 0

4.18 a Zcsc(1Iz) -1 a (a+xcos8) (x 2 +2ax cos8+a 2 )-1 11

cos(z 6) 0< Re z < 1

-11 < 8 < 11

4.19 z-'zsin(a/z) (1IY) -'zsinh [ (2ay) 'z] sin [ (2ay) 'z] x < 1

Re z > 0 0 x > 1

4.20 z -'zcos (a/z) -k k k (1IY) 'cosh[(2ay) 2]cos[(2ay) 2) x < 1

Re z > 0 0 x > 1

4.21 -v sin (a/z) ~v-~ k z (y/a)' '{sin (311V/4+1I/4)berV_1 [2 (ay) ']

Re z > o , -cos (311V/4+1I/4)bei v _1 [2 (ay)'z] }

Re v > 0 x < 1

0 x > 1

4.22 -v cos (a/z) kv-k h z - (y/a) 2 '{cos (311v/4+1I/4)berv _ 1 [2 (ay) ']

Re z > 0, +sin(3 11v/4+1I/4)bei v _ 1 [2(ay)'z]}x < 1

Re v > 0 0 x > 1

y = log (l/x)

Page 192: Tables of Mellin Transforms

186 II. Inverse Mellin Transforms

00

z-l <P (z) = f x ¢(x)dx ¢ (x) 0

1<

(~y)-~exp[-~(a2-b2)/YJsin(~ab/y) 4.23 -!z -az 2 z e

'sin(bz~) x < 1

a ~ b, Re z > 0 0 x > 1

4.24 -~e -az!z (~)-~exp[-~(a2-b2)/YJcos(~ab/y) z

·cos (bz~) x < 1

a ,;, b, Re z > 0 0 x > 1

4.25 z-vcos(az-~) [ f(v) J -ly v-I F ( iV, !.2;-~a 2y) < 1 x

0 2

Re z > 0, Re v > 0 0 x > 1

4.26 z-vsin(az-~) a [f (~+v) ]-1 F ( ; !z+v , ~2; -!za 2y) x < 1 0 2

Re z > o ,Re v > -!z 0 x > 1

4.27 arctan (a/z) -1 sin(ay) < 1 Y x

Re z > 0 0 x > 1

4.28 -1 arctan (z/ a) z -si (ay) x < 1

Re z > 0 0 x > 1

Y = log (l/x)

Page 193: Tables of Mellin Transforms

2.4 Trigonometric and Hyperbolic Functions 187

00

<!> (z) = f x z - 1 <j> (x) <j>(x) 0

4.29 arctan[2az/(z2+b 2-a 2 )] 2y -1 sin (ay) cos (by) x < 1

Re z > 0 0 x > 1

4.30 (z2+a 2)-1 ~a -1 cos (ay) [ei (2ay) -y-1og (2ay) ]

'arctan (a/z) +!za -1 sin(ay)Si(2ay) < 1 x

Re z > 0 0 x > 1

4.31 log(z2+a 2) -2y -1

sin (ay) (y+1ogy) < 1 x

'arctan (a/z) 0 x > 1

Re z > 0

4.32 (z2_a2)-~ Ko (ay) x < 1

'arccos (a/z) 0 x > 1

Re z > -Re a

4.33 (Z2_a 2) -~ ~7fLo (ay) x < 1

'arcsin (a/z) 0 x > 1

Re z > Re a

4.34 sin(z2/a ) -L k

~7f 2a2sin(~ay2-~7f)

y = log (l/x)

Page 194: Tables of Mellin Transforms

188 II. Inverse Mellin Transforms

00

z-l <l> (z) = f x <P(x) dx <P(x)

0

4.35 COS(Z2/a ) ~~-~a~cos(~ay2-~TI)

4.36 aZcsc(TIz)sinh(bz) -1 sinh b(x 2+2ax coshb+a 2)-1 TI ax

-1 < Re Z < 1

4.37 aZcsc(TIz)cosh(bz) -1 a(a+xcosh b) (x 2+2ax cosh b+a 2)-1 TI

0 < Re z < 1

4.38 z -~sinh (a/z) _h ~ k

~(TIY) 2{cosh[2(ay) 2]-cos[2(ay) 2]}

Re z > 0 x < 1

0 x > 1

4.39 z -~coSh (a/z) k k k ~(TIY) 2{cosh[2(ay) 2]+cos[2(ay) 2]}

Re z > 0 x < 1

0 x > 1

4.40 -v

sinh (a/z) hV-~ k k

z ~ (y/a) 2 2{IV_1 [2 (ay) 2]-JV _ 1 [2 (ay) 2]}

Re z > 0, x < 1

Re v > -1 0 x > 1

4.41 -v

cosh (a/z) ~(y/a)~v-~{I 1[2(aY)~]+J 1[2(aY)~1} z v- v-

Re z > 0, 0 x < 1

Re v > 0 0 x > 1

Y = log(l/x)

Page 195: Tables of Mellin Transforms

2.4 Trigonometric and Hyperbolic Functions 189

00

z-l cj>(z) = f x <P(x)dx <P(x) 0

z -~sinh (~ab/z) -k ~ k 4.42 ('flY) 2S in (ay 2) sin (by 2) x < 1

'exp[-~(a2+b2)/zJ 0 x > 1

Re z > 0

-k -~ k k 4.43 z bosh (~ab/z) (ny) 2COS (ay 2) cos (by 2) x < 1

'exp[-~(a2+b2)/zl 0 x > 1

Re z > 0

4.44 (z2+a 2)-1 4a'lT -2 1 sin (ay) I x < 1

coth(2az/'lT) 0 x > 1

Re z > 0

k -2 a I -2 4.45 sech (az 2) -a ['1)\j e (l,v ya ) 1 -0 x < 1 1 v-

Re z > 0 0 x > 1

k -2 a e 4 (l,v I y a - 2 ) 1 v= 0 4.46 csch (az 2) -a ['1)\j x < 1

Re z > 0 0 x > 1

-1: k -1 -2 4.47 z 2tanh (az 2) a e (Olya ) x < 1 2

Re z > 0 0 x > 1

y = log (l/z)

Page 196: Tables of Mellin Transforms

190 II. Inverse Mellin Transforms

'" <I>(z) J z-l

¢ (xl = x ¢ (x) dx 0

4.48 z -~coth (az~l -1 (0 Iya -2) < 1 a e x 3

Re z > 0 0 x > 1

4.49 sinh(vzY,)csch(azY,) -1 a -1 -2 a [a-v e (y,va Iya )] x < 1

4

-a < v < a 0 x > 1

Re z > 0

1,; 1: -1 a -1 -2 4.50 cosh(vz2)sech(az2) a [a-v e 1 (y,va I ya )] x < 1

-a < v < a 0 x > 1

Re z > 0

y = log (l/z)

Page 197: Tables of Mellin Transforms

2.5 The Gamma Function and Related Functions 191

2.5 The Gamma Function and Related Functions

'" <P (z) f z-l

¢ (x) = x ¢(x}dx 0

5.1 f (z) Re > 0 -x z e

5.2 r (z) -1 < Re < 0 -x -1 z e

5.3 sin(az)f(z) -xcosa sin(x sin a) e

Re z > -1 -~7T < Re a < ~7T

5.4 cos (az) f (z) -xcosa cos(x sin a) e

Re z > 0 -~'TT < Re a < ~rr

5.5 sin (az) f (z) -xcosa sin(x sin a) e

-m < Re z < I-m m-l + 2 (-l)rsin(ar)xrjr!

m = 2,3, ••• r=l

-!z1T < Re a < ~'IT

5.6 cos(az)f(z) -xcosa cos(x sin a) e

-m < Re z < I-m m-l - I (-l)rcos(ar)xrjr!

m = 1,2,' .. r=O

-!zIT < Re a < !zIT

5.7 sec(rrz)f(z) eXErfc (xl:!)

0 < Re z <!:i

Page 198: Tables of Mellin Transforms

192 II. Inverse Mellin Transforms

00

z-l <I> (z) = f x q,(x)dx q,(x)

0

5.8 sec (1Iz) f(z) e~rfc(xt,)

n-lz < Re z < n+~ -1 n-1 ( -1) r r (t,+ r) x - t,--11 I r

n = 1,2,3,··· r=O

5.9 -1 z r(t,+t,z) -1I~rf(ax)

-1 < Re z < 0

5.10 -1 Re 0 -Ei (-x) z r (z) z >

5.11 r(z)csc(1Iz) -1 eaxEi (-x) -11

0 <~ Re z < 1

5.12 r (z) cot (1Iz) -1 -ax-. -11 e E~ (x)

0 < Re z < 1

5.13 z-l r (z) cot (t,1Iz) 1I-1Ei (-x)Ei (x)

0 < Re z < 2

5.14 -1 sin(t,1Iz)r(z) -Si (x) z

-1 < Re z < 0

Page 199: Tables of Mellin Transforms

2.5 The Gamma Function and Related Functions 193

00

z-l <l> (z) = f x <j>(x)dx <j>(x)

0

5.15 -1

cos (~1Iz) f (z) -Ci (x) z

0 < Re z < 1

5.16 sec (~1Iz) f (z) 211-1 [Ci(x) sinx-si (x) cos xl

-1 < Re z < 1

5.17 csc(~1Iz)f(z) -211-1 [Ci(x) cosx+si (x)sin xl

-1 < Re z < 1

5.18 -1 f (~+z) 211 -"arccos (x") < 1 z f (1+z) x

Re z > -!:i 0 x > 1

5.19 f (z) f (v-z) f(v) (1+x2)-~vsin(varctan x)

'sin(~1Iz) -1 < Re z < Re v

5.20 f(z)f(v-z) f(v) (1+x2)-~vcos(V arctan x)

'cos (~1Iz) 0 < Re z < Re v

5.21 f (z) [f (~+~z-~v) 211-1(4-x2)-~cos[varccos(~x)J

-1 < 2 ·f (~+~z+~v) J x

Re z > 0 0 x > 2

Page 200: Tables of Mellin Transforms

194 II. Inverse Mellin Transforms

'" z-l <!>(z) = f x <P(x)dx <p (x) 0

5.22 -1 z r (~+z) ,/zErcf (xlz)

Re z > 0

5.23 -1 sec(~7Tz) r(~+z) 27T~{[~-C(ax)12+[~-s(ax)]2} z

0 < Re z < 1

5.24 -1 CSC(~7TZ)r(Z) 7T- l [Ci 2 (x)+si 2 (x)] z

0 < Re z < 2

5.25 -1 z r (v+z) r(v,x)

Re z > 0

5.26 r(Z)CSC[7T(V+Z) ] -1 x 7T r(l-v)e r(v,x)

0 < Re z < l-Re v

5.27 [r(z)/r(~-z) ]2 -1 ~ ~ 27T Ko (4x )-Yo (4x )

0 < Re z < ~8

5.28 r(~-z)r(~+~v+~z) I-v r(l+v-z) r(l-~v-~z) 2 sin x J v (x)

-l-Re v < Re z < ~

Page 201: Tables of Mellin Transforms

2.5 The Gamma Function and Related Functions 195

00

~(z) J z-l <p(x) = x <p(x)dx

0

5.29 f(l:;-z) f (l:;v+l:;z) I-v x JV (x) r(l:;-~v-l:;z)f(l+v-z) 2 cos

-Re v < Re z < l:;

5.30 f(l:;-z) f (z+v) n!ze -~xI v (l:;x) r (l+v z)

-Re v < Re z < l:;

5.31 f (l:;-z) f (z+v) r (z-v) ~ !.:x

n'sec(nv)e' Kv(l:;X)

± Re v < Re z < l:;

5.32 f (z-v) f (z+v) 7r -~e -!axK v (l:;x) f (~+z)

Re z > ± Re v

5.33 f (2z) f (v+z) 2J2V(2X~)K2V(2X~) f (l+v-z)

Re z > 0, -Re v

5.34 f(z)f(l:;-z)f(v+z) ~

l:;n 2 sec (nv)

±Re v < Re z < !2 • [J2 (xl:;) +y2 (Xl:;)] V v

5.35 f(a+z)jf(S+z) [f(s_a)]-l x a(l_x)S-a-l

Re z > -Re a,Re(S-a) > 0 x < 1

0 x > 1

Page 202: Tables of Mellin Transforms

196 II. Inverse Mellin Transforms

00

<1>(z) f z-l rp(x) = x rp(x)dx

0

5.36 f(a+z)f(S-z) f(a+S)x a (l+x)-a-S

-Re a < Re z < Re S Re (a+S) > 0

5.37 f(a-z)jf(S-z) 0 x < 1

Re z < Re a, Re (S-a) > 0 [ f(B_~]-lx1-B(x_1)S-a-1

x > 1

5.38 f(a+z)jf(S-z) xlz+~ia-}2S J (2xlz) a+S-1

-Re a<Re z <-~+lzRe (S-a)

5.39 f(a+z) f(S+z) 2xlza+ lzSK S (2xlz) a-

Re z > -Re(a,S)

5.40 f(1-2z) f(a+z) J a + S (2X lz )Ja_s (2x1:2)

o[f(l+S-z)f(l-S-z)f(l+a-z)]-l -Re a < Re z < 1:2

5.41 f (1-2z) f (z+a) f (z+S) CSC(21TS) [Ja + S (2x1:2)y a _s (2x1:2)

f(z-S)jf(l+a-z) -Y a + S (2x1:2)J a _ S (2x1:2)]

-Re a } < Re z < 1:2

±Re S

Page 203: Tables of Mellin Transforms

2.5 The Gamma Function and Related Functions 197

DO

z-l <jJ(z) = J x <P(x)dx <P(x) 0

5.42 cos [1T( S+z) r (1-2z) h !,:

-1TJ, +'S(2x 2 )y, 'S(2x 2 ) ~a. Yz ~a-;:.z

·r(z+a) r(z+S) -Re(a,S) < Re z < ~

• [r(l+S-z) r(l+a-z)] -1

5.43 r(1-2z) r(z+a) r (z+S) 1:: 1::

2Ia+S (2x 2)Ka_S (2x 2)

• [r(l-z+a) r(l-z+S)] -1 -Re(a,S) < Re z < l,

5.44 -1 [r(2z)] r(z+a)r(z-a)

!-::: 1:: 4Ka_S (2x 2) Ka+S (2x 2)

"r(Z+S) r(Z-S) Re z > Re(±a±S)

5.45 r (a+z) r(a+S) [r(2a)]-le-l,XMS ,(x) I CJ.-~

'r(S-z)jr(a-z) -Re a<Re z < Re S,

Re(a+S) > 0

5.46 r (l-a+z) e -l,~l S ,(x) - Ict-~

• r (a+z) jr (S+z)

-l+Re a Re z > {

-Re a

5.47 r (l-a+z) l<~ r(a+S)r(l-a+S)e 2 -S,a-l,(X)

·r (a+z) r (S-z) -Re a } < Re z<Re S

-l+Re a

Page 204: Tables of Mellin Transforms

198 II. Inverse Mellin Transforms

ro z-l <I>(z) = J x ¢ (x) dx ¢ (x)

0

5.48 f(v+~+z)f(-~-z)f(1+2z) f (~+v-~) M (x~) W (xl-i) f(v+~-z)f(l+z-~) f (1+2v) -~,v ~,v

-~-Re v < Re z < -Re ~

5.49 f(1+2z)f(~+z+v)f(~+z-v) W (x~) W (x~) f (l+z+~) f (l+z-~) ~,v -~,v

Re z > { -~

-~±Re v

5.50 f(a+z)f(S+z) [f(y+6_a_S)]-lxa (1_x)y+6-a-S-l

-1 (o-S,y-S;y+o-a-S;l-x) • [f(y+z) f(6+z)] . F

2 1

Re z > -Re (a, S) x < 1

Re (y+6-a-S) > 0 0 x > 1

5.51 f(a-z)f(S-z) f(a)f(S) [f(y)]-l

·f (z)jf (y-z) . F (a,S;r;-x) 2 1

0 < Re z < Re(a,S)

5.52 f (~+a-z) f (S-z)

0 f (l-z) x < 4

Re z < Re (S, ~+a) ~ ( 4) -lza-lzS a+ S (' lz) TI x- P a - S ~x

x > 4

Page 205: Tables of Mellin Transforms

2.5 The Gamma Function and Related Functions 199

00

1> (z) f z-l ¢(x) = x ¢(x)dx

0

5.53 z-l\)l(z) -1 < 1 -y-log (x -1) x

Re z > 0 0 x > 1

5.54 z -1\)1 (l+z) -y-log (I-x) x < 1

Re z > 0 0 x > 1

5.55 z-l[Y+\)I(l+z)] -log(l-x) x < 1

Re z > -1 0 x > 1

5.56 \)I' (z) -1 < 1 (x-I) log x x

Re z > 0 0 x > 1

5.57 csc (rrz) \)I (l+z) -1 -1 1T (l+I/x) [y+log(l+I/x)]

-1 < Re z < 0

5.58 csc(rrz) [Y+\)I(l+z) -1 -1 rr (1+I/x) log(I+I/x)

-1 < Re z < 1

5.59 \)I' (~+~z) -\)I' (~z) -1 2(x+l) log x x < 1

Re z > 0 0 x > 1

5.60 \)I (z+a) -\)I (z+S) (xS-Xa)/(l_X) x < 1

Re z > -Re(a,S) 0 x > 1

Page 206: Tables of Mellin Transforms

200 II. Inverse Mellin Transforms

00

z-l <!l(z) = J x ¢(x)dx ¢ (x) 0

5.61 1)!(z+a)-ljJ(z+S) (x B+k _x a+k )/(l_x) x < 1

-h<Re(z+a) <l-h (xa_XB+XB+k_Xa+h)/(l_x)

-k<Re(z+S)<l+k x > 1

h,k = 0,1,2,'"

5.62 r(z) 1)!(z) -x e log x

Re z > 0

5.63 B(z,V) 1)!(z+v) v-I (I-x) [1)!(v)-log(l-x)]

Re(z,v) > 0 x<l

0 x > 1

5.64 B(z,V)1)!(z) v-I -1 (I-x) [1)!(v)-log(x -1)]

Re(z,v) > 0 x < 1

0 x > 1

5.65 B(z,v-z)1)!(v-z) -v (l+x ) [1)!(v)-log(l+x)]

-1 < Re z < Re v

5.66 B(z,v-J,z) 2(1+x2)-J,[(1+x2)~_x]2V-l

• [1)!(v-J,z)-1)!(v+J,z)] k 'log[ (l+x2) 2_X]

0 < Re z < 2 Re v

Page 207: Tables of Mellin Transforms

2.5 The Gamma Function and Related Functions 201

'" 1> (z) = J XZ-lcp (x) dx cp(x)

0

5.67 sin(~rrz)r(z)~(z) sin x log x -~rr cos x

0 < Re z < 1

5.68 co s ( ~rr z) r ( z) ~ ( z ) cos x log x + !z7T sin x

0 < Re z < 1

5.69 -z a f(z)r;(z) (eax_l) -1

Re z > 1

5.70 -z a r(z)r;(z-l) e ax (eax_l)-2

Re z > 2

5.71 a -zr (z) r; (Hz) -ax -log(l-e )

Re z > 0

5.72 (2a) -zr (z) 1; (z-1) \'csch 2 (ax)

Re z > 2

5.73 csc (rrz) r; (1-z) -rr -1 [y+~ (x+l) 1

-1 < Re z < 0

5.74 CSC(1fZ) r;(1-z) -1 -rr [~(l+x)-log xl

0 < Re z < 1

Page 208: Tables of Mellin Transforms

202 II. Inverse He11in Transforms

00

z-l <!> (z) = f x ¢(x)dx ¢ (xl

0

5.75 CSC(1TZ) 1T-1[~(1+1/x)-log(1+1/x)]

-1 [1;(1+z)-z ]

-1 < Re z < 0

5.76 -1 r(z) [1; (z) - (z-l) ] e-x [1_x-1+(ex _1)-1]

Re z > 0

5.77 f(z)f(n+1-z) (-1) n-1~n (1+x)

1; (n+1-z) 0 < Re z < n, n=l, 2,3, •••

5.78 -z a f(z)f(v-z) r (v) 1;(v,l+ax)

• 1; (v-z) 0 < Re z < Re v-I

5.79 -z a f(z) 1;(2z) J,[8

3 (0 I aX1T -2) -1]

Re z > J,

5.80 -1 ·-1 -1 x < 1 z 1; (z) n, (n+1) <x<n

Re z > 1-Re a n = 1,2,3,'"

0 x > 1

00

= L H(l - n) n=l x

Page 209: Tables of Mellin Transforms

2.5 The Gamma Function and Related Functions 203

'" z-l 1>(z) = J x ¢ (x) dx ¢(x) 0

-1 L -a 5.81 n z I; (z+a)

1 <n<!. Re z > l-Re a = =x

5.82 -v [r (v) ]-1 L [log (L) ] v-I z I; (z)

1 <n<!. nx

Re z > 1,Re v > 0 = =x

5.83 -z c r(z)l;(z,a) (ecx_l)-le cx(l-a)

Re z > 1,Re a > 0

5.84 -z a r(z)r(v-z) r(v) I;(v,a+ax)

"I;(v-z,a) 0 < Re z < Re v-I, Re a > 0

5.85 I;(v,z/a) -1 v v-I a-I [r (v)] a [log(l/x)] (l-x)

Re z > o ,Re a > 0 x < 1

Re v > 1 0 x > 1

5.86 I; ("0, \z+\zz/a) (2a)v[f(v)]-1(log!.)V-l(x- a _xa )-1 x

Re z > -Re a, Re v>l x < 1

0 x > 1

Page 210: Tables of Mellin Transforms

204 II. Inverse Mellin Transforms

00

z-l 1> (z) = f x ¢(x)dx ¢(x) 0

5.87 <;; (v ,l+z/a) a V[f(v)]-l(log!)V-l(x-a_l)-l x x < 1

Re z > -Re a,Re v > 1 0 x > 1

5.88 esc (1TZ) -1 1T [~(a+x)-~(b+x)]

• [<;; (1- z , b) - <;; (1- z , a) ] 0 < Re z < 1

Page 211: Tables of Mellin Transforms

2.6 Orthogonal Polynomials and Legendre Functions 205

2.6 Orthogonal Polynomials and Legendre Functions

6.1

6.2

6.3

6.4

6.5

00

4(z) = J XZ-l~(x)dx o

-n -1 Z Tn(l-z )

Re z > 0

Re z > 0

Re z > 0

-!.:.:-n k z 2 He 2n [(2z) 2]

Re z > 0

-n-2 k z He 2n+l [(2z) 2]

Re z > 0

y = log(l/x)

~ (x)

n -1 n-l ~ (-1) [(2n-l)!] (2y) He 2n (y 2)

x < 1

o x > 1

x < 1

o x > 1

x < 1

o x > 1

2n+~2 (n+l) -1 (y/1T) l;i(y+l)n

·Un+l[(l-y)/(l+y)] x < 1

o x > 1

Page 212: Tables of Mellin Transforms

206 II. Inverse Mellin Transforms

co z-l \p(z) = f x <P(x) dx <p (xl

0

6.6 Z-n-~e-a/ZHe2n[(2a/Z)]~ n -k n-k ~ < 1 (-2) 11 'y 2eos [2 (ay) 2] x

Re z > 0 0 x > 1

6.7 -n-l -a/z ~ (-2)n(2/1I)~nsin[2(ay)~] < 1 z e He 2n+l [(2a/z) 2] x

Re z > 0 0 x > 1

z-~(l-~/z)He [a(l-~/z)-~] -k k k 6.8 (211Y) 2[Hen (a+y2)+Hen (a-y 2)] n

Re z > 0 x < 1

0 x > 1

6.9 -n-1 n (l-a/z) (~a)n+1ynL (~ay)/n! < 1 z P x n

Re z > 0 0 x > 1

6.10 -v n (l-a/z) n-1 F (-n,n+1;1,v;~ay) 1 z P Y x <

2 2

Re z > 0, Re v > 0 0 x > 1

6.11 z -~p -1 -n .1-z ~ [(-2ay) ~l n (a/z) (n!) i (1Iy) He n [(2ay) 2]He n

Re z > 0 x < 1

0 x > 1

Y = log(l/x)

Page 213: Tables of Mellin Transforms

2.6 Orthogonal Polynomials and Legendre Functions 207

00

z-l <jl (z) = J x <j>(x) dx <j> (x)

0

6.12 z-l:;-l:;np [(2z)-l:;] -1 kn -~ ~n-h k 1 (n ! ) 2' 11 y' 'He (y') x < n n

Re z > 0 0 x > 1

6.13 (z+b) -n-lp (z+a) -1 n -by < 1 (n!) y e L (l:;by-l:;ay) x n z+b n

Re z > -b 0 x > 1

6.14 (z+b) -v p (~) -1 v-1 e-by F (-n,n+li1,vi~by-l:;ay) n z+b [f (v) 1 y 2 2

Re z > -b, Re v > 0 x < 1

0 x > 1

6.15 (Z2+a 2) -l:;n-l:; -1 n < 1 (n!) y Jo(ay) x

.p [z (Z2+a 2) -~] n 0 X > 1

Re z > 0

6.16 (z2_a 2)-l:;n-l:; -1 n 1 ( n ! ) y 10 ( ay) x <

op [Z(Z2_a 2)-l:;] 0 x > 1 n

Re z > a

y = log (l/x)

Page 214: Tables of Mellin Transforms

208 II. Inverse Mellin Transforms

00

z-l cjl (z) = f x ¢(x)dx ¢(x)

0

6.17 z -n-2\1C\l (l-a/z) rr~21-n-4\1[f(\I)f(~\I+n)]-lan+2\1 n

Re z > 0 .yn+2\1-1L\I-~(~ay) n x < 1

0 x > 1

6.18 Z -IlC\l (l-a/z) [nB(n,2\1)f(Il)]-ly ll -1 n

Re z > 0, Re 11 > 0 F (-n,n+2\1;~+\I,Il;~ay) x < 1 2 2

0 X > 1

6.19 (z+b) -IlC\l (~) -1 ll-l -by n z+b [nB(n,2\1)f(Il)] y e

Re z > 0, Re (11, \I) > 0 F (-n,n+2\1;~+\I,Il;~by-~ay) 2 2

X < 1

0 x > 1

6.20 z -\l-~nc \I (z -~) 2~n[n!f(\I)]-ly\l+~n-l n

l< Re z > 0 'Hen [(2y) 2] x < 1

0 x > 1

6.21 z-n-1Ln (Z) (n!)-l(l+y)npn(~~i) x < 1

Re z > 0 0 x > 1

Y = log(l/x)

Page 215: Tables of Mellin Transforms

2.6 Orthogonal Polynomials and Legendre Functions

6.22

6.23

6.24

6.25

6.26

00

~(z) = f xz-1~(x)dx o

Re z > 0

Re z > 0, Re v > 0

Re z > O,Re(v+n) > -1

v -1 -1 ·Ln [az (l-z) ]

Re z > 0, Re v > -1

On (z/a)

Re z > 0

y = log(l/x)

Hx)

o

-1 v-I (a.+1)n[n!r(v)] y

• F (-nia.+1,viay) 1 2

o

o

o

o

209

x < 1

x > 1

x < 1

x > 1

x > 1

x > 1

x < 1

x > 1

Page 216: Tables of Mellin Transforms

210 II. Inverse Mellin Transforms

00

<l> (z) f z-l <P (xl = x <jJ(x) dx

0

6.27 Sn (z/a) -:k !.:; n

(l+a 2 y2) 2{ [ay+{l+a2y2) 2J

k n Re z > 0 - [aY-(l+a 2y 2)'J } x < 1

0 x > 1

k _ 3,.... -k 6.28 P v (z) -2 21T 2sin (1TV) y 'K +, (y) x < 1

v 'i

Re z > -1,-1 < Re v < 0 0 x > 1

k 6.29 qv (z) (1,1T/y) 2Iv+1, (y) x < 1

Re z > 1,Re v > -1 0 x > 1

6.30 (Z2_a 2)-1,11 (2a/1T)1,[f(I1-V)f(I1+V+l)]-1

.p~(z/a) .yl1-~ (ay) \)+~

x < 1

Re z > -a,Re(l1+v) > -1 0 x > 1

Re()1-v) > 0

6.31 (Z2_a 2)-1,)1 k 11-!::: (1,1Ta)'y 21 +, (ay)

v 'i x < 1

-i 1T)1 )1 0 > 1 'e q (z/a) x v

Re z > a Re ()1+v) > -1

Y = log(l/x)

Page 217: Tables of Mellin Transforms

2.6 Orthogonal Polynomials and Legendre Functions 211

6.32

6.33

6.34

6.35

6.36

co

~(z) = f Xz-l¢(x)dX o

[ (z+a) (z-a) ]-\].!

Re z > -a

[(2+a) / (z-a) ]-\\1

Re z > a

Re z > 0,-1 < Re v < 0

p [(2ab) -1 (a 2 +b 2 _z 2 )] v

-(a+b) < Re z < a+b

-1 < Re v < 0

-(a-b) < Re z < a-b

y = log(l/x)

¢ (x)

Ox> 1

-\ < Re v < \

-1 \[r(2+2v)] r(l+v+\1)

-1 'y M 1 + (2ay)

1-1, ~ v

o Re v > -\

x < 1

x > 1

l< (ab) 2sin ('lTv) [J +, (by) Y " ' (ay) v '2 -y-'2

x < 1

o x x > 1

a > b, Re v > -1

Page 218: Tables of Mellin Transforms

212

6.37

6.38

6.39

6.40

6.41

00

~(z) = f xz-l~(x)dx o

Re z > 0, Re v > -1

Re z > a+b

-1 < Re v < 0

Re z > a+b, Re v > -~

k qn[(z/a) 2]

Re z > a

n = 1,2,3,'"

(2 z+a) -~ (2 z-a) ~)l

)l k 'pv [(~+z/a) 2]

Re z > ~a

Re(V+)l) < 1,Re(v-)l) > -1

y = log(l/x)

II. Inverse Mellin Transforms

~ (x)

k 1T(ab) 2J +' (ay) J +' (by) x < 1 v :-z v ~

o x > 1

(ab)~tan(1Tv) [I +' (ay)I +' (by) v '2 v '2

o x > 1

k 1T(ab) 21 +, (ay)I +' (by) x < 1 v ~ V P2

o x > 1

-k 3 -1-~ ~a 2 r (l+~n) [r (~2+n) ]y

kay 'e 2 M, , +' (ay)

-~,~ ~

o

x < 1

x > 1

Ox> 1

Page 219: Tables of Mellin Transforms

2.6 Orthogonal Polynomials and Legendre Functions 213

00

z-l ¢(z) = J x ¢ (xl dx ¢(x) 0

6.42 (2z-a)~~p~[(~+z/a)~1 3 .... 2 - 3/211 -~ -1 v 2 a [r(~~-~v-~)r(-~v-~~)l

> ~a -kj.l- s/It

Re z 'y 2 Wy,~_~, ~v+~(ay) x < 1

Re (v-~) > -1 0 x > 1

Re (v+~l < 0

(2z-a) ~v ~ [(2z+a) y,

~v+~ -~ -1 6.43 Pv 2z-a 1 2 a [r(-~~-~v)r(l-~)l

-},:;v- 3 ....... 2 Re z > a 'y 2 M (ay) x < 1 ~V,-~l1

Re (v+~) < 0 0 x > 1

6.44 (z2+a2)-~V-~ [r(v+~+l)l-lyVJ~(ay) x < 1

.p-~[z(z2+a2)-~1 v

0 x > 1

Re z > 0 Re(~+v) > -1

6.45 (z2_a2)-~V-~ [r(v+~+l)J-lyVI (ay) x < 1 ~

.p-~[z(z2-a2)-~J 0 x > 1 v

Re z > a Re (v+~) > -1

6.46 (z2_a2)-~V-~e-iTI~ -1 v 1 [r(v-~+l)J y K~(ay) x <

'q~[z(z2_a2) -~] 0 v

x > 1

Re z > a Re (v±~) > -1

Y = log (l/x)

Page 220: Tables of Mellin Transforms

214 II. Inverse Mellin Transforms

00

<I>(z) = J x Z- 1q,(x)dx q, (x) 0

6.47 Z CSC(1TZ)PZ(COS 8) -1 x(x2+2ax 8+a2)-~ a -1T cos

-1 < Re Z < 0 -1T < 8 < 1T

6.48 a Zcsc(1TZ)p (cosh CI.) -1 x(x 2 +2axcosh CI.+a 2) -~ -1T Z

-1 < Re Z < 0

6.49 a Zr(l+z-v)r(-v-z) 1T-~r(~-V) (2a sin 8)-vx l-v

.pv(cos z 8) • (x2+2axcos 8+a2)V-~

-l+Re v < Re Z < -Re v -1T < 8 < 1T

6.50 a Zr(l+z-v)r(-v-z) 1T -~r(~-v) (2a sinh CI.) -v

.pv(cosh z CI.) • (x 2+2ax cosh CI.+a2) v-~

-l+Re v < Re z < -Re v

6.51 r (l+v+z) a z -1 -x -2 k a xe J v [x(a -1) 2]

-v 'P z (a),Re z > -l-Re v -1 < a < 1

6.52 r (l+v+z) (1,;2-1) ~z+~ -2 -~ x exp[-(l-1,; ) x]Iv(x)

-v -l-Re 'pz (1,;), Re z > v 1,; > 1

Page 221: Tables of Mellin Transforms

2.6 Orthogonal Polynomials and Legendre Functions 215

00

z-l <!>(z) = f x q,(x)dx q, (xl 0

6.53 2z[r(1-~z)J-l~-~z ~ k k ~ 2JV [~'(~;;:+~) 2XJJV[~ 2(~r;;-~) 'xl

-v -2 • r (v+~z) p -~z (;;:) Re v < Re z < 2

6.54 2zr(~z)r(V+~z)~-~z 41 [~~(~;;:-~)~xlK [~~(~;;:+~)~xl v v -v (0,-2 v) 'p-~z (;;:) Re z > Re

6.55 2zr(~z)r(v+~z) 4K [~~(~;;:-~)~xlK [~~(~;;:+~)~xl v v -!jz i'ITV -v

.~ e q~z-l (;;:) Re z > (0 , ± 2 Re v)

-i 7fll 11 a) (~7f)~[r(~-ll)l-l(sinh a) 11 6.56 e q (cosh z-~

Re < -~-Re ' (coshy -cosha)-ll-~ < e -a z 11 x

Re 11 < ~ 0 x > -a e

6.57 r (~+z) r (-ll-Z) (~7f~)-~(;;:2-1)-\x~

z p ~ (;;:)

-2 _1< -1 .~ 'q 1 {(l-;;: ) 2[l+X(~;;:) l}

-ll-~

-!:2 < Re z < -Re 11

6.58 r (z-~) r (l-ll-Z) 7f(~7f~) ~sec(7fll) (;;:2-1) -\x-~

.~ze-i7fllqll (;;:) -2 -1< -1 • P 1 {(l-;;: ) 2[l+X(~;;:) l} -z -ll-~

~ < Re z < l±Re 11

Page 222: Tables of Mellin Transforms

216 II. Inverse Mellin Transforms

2.7 Bessel Functions and Related Functions

7.1

7.2

7.3

7.4

7.5

1> (zl z-l I

= f x <p (xl dx o

z-v[sin(az+blJ (az) v

-cos(az+blYv(az)

Re z > O,Re v > -~

-v z [cos(az+b)Jv(az)

+sin(az+b)Yv(az)]

Re z > O,Re v > -~

J 2 (azl+y2(az) v v

Re z > 0

Re z > 0

y = log (l/x)

<P (xl

'(4a2+y2)~V-~COs[b+(v-~)arccot(\y/a)]

x < 1

o x > 1

x < 1

o x > 1

x < 1

o x > 1

-2 -1 2 2 2~ Y exp(y,a /y)Kv(y,a /y) x < 1

o x > 1

o x < e-a

e-a < x < e a

o a x > e

Page 223: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 217

7.6

7.7

7.8

7.9

I <I> (z) = J ~(x)x-l (x)dx

o

Re z > 0

cos (az 2) J (az 2 ) o

Re z > 0

-Re b < Re z < Re b

Re\i<~

y = log y(l/x)

~(x)

(~a)-~[cosaJ (a)+sinaY (a)l x < 1 o 0

o x > 1

(~a)-~[cosaJ (a)-sinaY (a)l x < 1 o 0

o x > 1

Page 224: Tables of Mellin Transforms

218 II. Inverse Mellin Transforms

'" z-l (jl(z) = J x ¢(x)dx ¢(x) 0

7.10 (b2_Z2) -lzv 0 x < e -a

.J [a(b 2_z 2) lz] v

(lzb/1T) lz(ab) -v (a2_y2) 'iV-l,j

Re > -~ .J [b (a 2 _y2) lz] -a <

a v v-!;z e < x e

0 > e a

x

7.11 e-azJ [a(b 2_z 2 )lz] 0

0 x < -2a

e

1T-1 (2ay-y2)-lzcos[b(2ay-y2)lz]

x > -2a

e

7.12 z -)1 J (az -lz) v -1 )1+'-v-1 v

(lza) [r (1+v)r (lzv+)1) ] y 2

Re z > 0 , Re (v+2)1) > 0 F ( ; )1+lzv, l+v; -l,ja 2y) x < 1 a 2

0 X > 1

7.13 z)1J v (a/z) v -1 v-)1-1

(lza) [r (1+v) r (v-)1)] y

Re z > O,Re(v-)1) > 0 F ( i l+v, ~V-~lJ I ~+~'J-!zll i _l~ 6a 2y2) a 3

x < 1

0 x > 1

Y = log

Page 225: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 219

00

z-l <I>(z) = f x q,(x)dx q, (x)

0

7.14 -1< Z 2 [sin (a/z) J v (a/z)

-~ -~ 41T 2y 2COS(lTV) [cos (J,1Tv)ker 2V (a)

-cos(a/z)Yv(a/z)] -sin(y,lTv)kei 2v (a)] x < 1

Re z > 0,-\ < Re v < Y, 0 x > 1

a = 2 (2ay) Y,

z - y,[cos (a/z) J v (a/z) _:t- -k

7.15 -41T 2y 2COS (lTv) [sin (y,1Tv)ker2V (a)

+sin(a/z)Yv(a/z)] +cos(y,1Tv)kei 2V(a)] x < 1

Re z > O,-~ < Re v < Y, 0 x > 1

a = 2 (2ay) Y,

7.16 z-le -a/zJ (b/z) h: k J v (Ay 2) Iv (By 2) x < 1

v

Re z > o ,Re v > -1 0 x > 1

A = 2lz [(a 2+b 2 ) y,±a)

B

7.17 z -le a/zJv (b/z) k k

Iv (Ay 2) J v (By 2) x < 1

Re z > O,Re v > -1 0 x > 1

A = 2Y,[ (a 2 +b 2 ) y,±a]

B

y = log (I/x)

Page 226: Tables of Mellin Transforms

220 II. Inverse Mellin Transforms

7.18

7.19

7.20

7.21

7.22

00

~(z) = J x z- 1 ¢(x)dx ¢(x) o

kZ (a/b) 2 r (~-~z)

·J~z (2ab)

±2Re v < Re z < 1

kZ (a/b) 2 r (~-~z)

Y, (2ab) ':2Z

±2Re v < Re z < 1

-1 [r(l+v-~z)l r(~-~z)

kZ • r (v+~z) (a/b) 2 J, (2ab)

--'2Z

-2Re v < Re z < 1

kZ • r (v+~z) (a/b) 2 Y, (2ab) -;:.zz

-2 Re v < Re z < 1

[J (2ab) -J (2ab) 1 -z z

3/. ~ 2sec(~v)Yv(U)Jv(v)-Jv(u)Yv(v)l

U = b[(a2+x2)~±al v

2 ~~J (v) Y (u) v v

-1 < Re z < 1

Page 227: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 221

00

z-l Hz) = f x q,(x)dx q,(x)

0

7.23 b z se c (l:PIZ) 211 -1 sin[a(x+b 2/x)]

• [Jz (2ab)+J_ z (2ab)] -1 < Re Z < 1

7.24 (2a/b) ~zr (~z) 2aV(a2+x2)-~VJ [b(a2+x2)~] v

'Jv_~z(ab) 0 < Re z < 'l.-2+Re v

7.25 (2a/b) ~zr(~z) 2aV(a2+x2)-~Vy [b(a2+x2)~] v

.y v-~ z

0 < Re z < ~2+Re v

7.26 (2a/b) ~zr (~z) 2a-V(a2_x2)~VJ [b(a2-x2)~] v

'Jv+~z (ab) x < a

Re z > 0, Re v > -1 0 x > a

-z -~ -k ~ 7.27 (~a) r (~+z) 11 2(1/x-l) 2COS [all-x) 2]

·Jz (a) x < 1

Re z > -~ 0 x > 1

7.28 (~a)zr(z) !:::v k (l-x) 2 J v [a (l-x) 2] x < 1

'Jv+ z (a) 0 x > 1

Re z > 0

Page 228: Tables of Mellin Transforms

222 II. Inverse Mellin Transforms

'" <jl(z) = J xZ-lq,(x)dx q,(x)

o

7.29 (2a/b) ~zr (~z)

• [JV+~z (ab) cos (~7fz) o < Re Z < '!.-2-Re v

7.30 (2a/b) ~zr (~z)

o < Re z < ~2-V

7.31 J;- (a)+Y;- (a) ~z ~z

-2 I -11 47f Ko(a x-x )

Principal value

7.32 o x < 1

-2 -1 47f sin(27fv)K2V [a(x-x )]

x > 1

-~ < Re z < ~

7.33 -1 -1 -27f J 2V [a(x+x )]

- ~2 < Re z < ~2

y = log y (l/x)

Page 229: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 223

7.34

7.35

7.36

7.37

co

$(z) = f xz-1¢(xldx o

Re \) > -~

Re v > -!z

y = log (l/x)

¢(x)

-1 -1 2TI Y2v[a(x+x )]

_TI- l (a+bx) v (b+ax)-v

'J2V{[a2+b2+ab(X+X-l)1~}

0 -TI

X < e

-1 -TI YzTI J 2V (2asiny)e < x < e TI

0 X > TI e

0 X < -TI e

-1 YzTI J 2v [2a cos (Yzx) 1

-TI < e x < TI e

0 X > TI e

Page 230: Tables of Mellin Transforms

224 II. Inverse Mellin Transforms

00

z-l w(z) = f x <P(x)dx <P(x) 0

7.39 -az 0 -2a e 10 (az) x < e

11-1 (2ay_y z)-1:2 x > e -2a

7.40 -1 o (z) 1 -1 z I x < e

Re > 0 -1 arccos (-y) -1 z 11 e < x < e

0 x > e

7.41 I 2n (az) 0 x < -a e

n = 0,1,2,·· • 1I-l(aZ-yZ)-~2n(y/a) -a a e < x < e

0 x > e a

7.42 -v 0 -a z I v+2n (az) x < e

Re v > -1:2, n=0,1,2,'" -1 -v -1 1:211 (1:2a) (2n)!r(v) [r(2n+2v)]

'(a Z_yz)v-1:2cv (y/a) -a a 2n e <x<e

0 x > a e

7.43 Iv (z) -1I-12 Vs{n(1Iv) (yZ_l)-1:2

0 ~ !.:: -2v -1 Re z > • [(y-l') 2+ (y+l) 2] x < e

1I-l(1-y2)-1:2cos[v arccos (-y) ]

-1 e < x < e

y = log 0 x > e

Page 231: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 225

00

z-l <jJ (z) = J x 4> (x)dx 4> (x)

0

7.44 -1 z Iv (z)

v -1 2 (ltv) sin (ltv)

k 12 -2v -1 Re z > 0 • [ (y-l) 2+ (y+l) ] x < e

-1 (ltv) sin[v arccos (-y)]

-1 < < e x e

0 x > e

7.45 -v -a z Iv (az) 0 x < e

Re v > -\ IT-\(2a)-v[r(\+v)]-1(a2_y 2)v-\

-a e < x < e

a

0 > a x e

7.46 -v cosh (az) Iv (az) 0 < a z x e

Re v > -!z -k -v -1 v-~ \IT 2(2a) [r (\+v)] (2ay-y 2)

-a e < x < e

a

0 x > a

e

7.47 I {\a[z+(z2-b 2 )\]} 0 < -a x e v

'I {\a[z~(z2-b2)\]} -1 -k 2 k IT (a 2_y2) 2J [b (a 2_y ) 2] V 2v

Re > -!z -a < < a v e x e

0 > a x e

y = log

Page 232: Tables of Mellin Transforms

226

7.48

7.49

7.50

7.51

7.52

<X>

W(z) = J XZ- 1 ¢(x)dX o

Re v > -l:i

Re z > 0, Re v > 0

Z-llr (a/z) v

Re z > O,Re(ll+v > 0

Re z > O,Re v > -l:i

Re z > O,Re v > -1

a > b

y = log (l/x)

II. Inverse Mellin Transforms

¢ (x)

o x < e-a

o

-~ ~ k (l:iy/a) '{berv [(2ay) 21bei~ [(2ay) 'J

o

o

-!::: k (1TY) 'J 2v [ (8ay) ']

o

A = (a+b)~±{a-b)~ B

o

x > 1

x < 1

x > 1

x < 1

x > 1

x < 1

x > 1

Page 233: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 227

7.53

7.54

7.55

7.56

00

¢(z) = J xz-l¢(X)dx o

z -Ie -a/z I (b/z) v

Re z > O,Re v > -1

a > b

Re z > 0, Re v > -~

-2 -2 -2 z exp(-z )Iv(Z )

Re z > 0

• [Iv_~ (a/z) -Iv+~ (a/z) 1

y = log (l/x)

¢ (x)

x < 1

o x > 1

x < 1

o x > 1

F (;1+v,1+2v;-~y2) X < 1 o 2

o x > 1

x < 1

o x > 1

Re z > 0

Page 234: Tables of Mellin Transforms

228 II. Inverse Mellin Transforms

00

z-l <P(z) = J x CP(x)dx cp(x) 0

7.57 Ko(az) (y 2-a 2)-l:z -a x < e

Re > 0 0 -a z x > e

7.58 -1 log[y/a+(y2/a 2-1)l:z] -a z Ko (az) x < e

0 -a Re z > 0 x > e

7.59 Kv(az) l:z(y2_ a 2)-l:z [y/a+(y2/a 2_1)l:z]v

Re 0 +[y/a_(y2/a 2)l:z]v -a z > x < e

0 -a x > e

7.60 -1 z K v(az) J, -1 l:z v V {[y/a+ (y2/a 2_1) ]

Re z > 0 _[y/a_(y2/a 2_1)l:z]v}x -a < e

0 -a x > e

7.61 -v z K v(az) nl:z(2a)-v[r(l:z+v)]-1(y2_ a 2)v-l:z

Re > o ,Re -~ -a z v > x < e

0 x > -a e

7.62 z -ilK v(az) ~ 2 ~~-k ~-~ (l:zn/a) 2 (y2_a ) 2 2p 2 (y/a)

v-~

Re z > 0 -a x < e

0 -a x > e

y = log

Page 235: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 229

'" ~ (z) J

z-l q,(x) = x q,(x)dx 0

eazK -h 7.63 o (az) (y2+2ay) 2 x < 1

Re z > 0 0 x > 1

7.64 -v eazK v (az)

k -v -1 2 V-k z 'JT 2(2a) [r (~+v) 1 (y +2ay) 2

Re z > 0, Re v > -}z x < 1

0 x > 1

7.65 z-)JeazK v (az) (~'JTja)~(y2+2ay)~)J-~

Re z > 0 ·p~-)J(l+yja) v-!:z x < 1

0 x > 1

7.66 z -IKO (az~) -~Ei(-~a2jy) x < 1

Re z > 0 0 x > 1

7.67 z~vK (az~) v -v-l _\a2jy x < 1 v a (2y) e

Re z > 0 0 x > 1

7.68 )J h

z Kv(az 2 ) a -ly -)J-~exp (-Yea 2 jy)

Re z > 0 'W~+)J,~v (\a2jy) x < 1

0 x > 1

y = log (ljx)

Page 236: Tables of Mellin Transforms

230 II. Inverse Mellin Transforms

00

z-l <p(z) = f x q,(x)dx q,(x)

0

7.69 z -~K (az lz) lz('rry) -lzexp(_1/ea2jy)K, e/e a2 jy) \l ,,\l

Re z > 0 x < 1

0 x > 1

K [a(b 2+z 2) lz] _:!.:: k -a 7.70 (y2_a 2) "cos [bjy2_a 2) "] x<e

0

Re z > 11m bl 0 > e -a

x

eazK [a(b2+z2) lz] -~ k

7.71 (y2+2ay) "cos [b (y2+2ay) "] x < 1 0

Re z > 11m bl 0 x > 1

7.72 (b2+Z2) -lz\l (lzTIb)lz(ab)-\l(y2_a2)lz\l-~

'K [a (b 2+Z 2) lz] .J ,[b (y2_a 2) lz] < e -a

x \l "V-~

Re z > 11m b I, Re \l > -~ 0 > e -a

x

7.73 e az (b2+Z2) -lz\l (lzTIb)lz(ab)-\l(y2+2ay)lz\l-~

'K [a(b 2+z 2) lz] 'J ,[b (y2+2ay) lz] x < 1 \l V-Yz

Re z > 11m bl, Re \l > -lz 0 x > 1

7.74 K [a(b 2_z 2)lz] lz(a 2+y2)- lzexp[_b(a 2+y2)lz] 0

-Re b<Re Z<Re b, Re b>O

Page 237: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 231

7.75

7.76

7.77

7.78

7.79

00

¢(z) = J Xz-l¢(x)dx o

-Re b<Re z<Re b

Re b > 0

(b 2 _Z 2 )-1-;,v

.K [a(b 2-z 2) 1-;,] v

-Re b<Re z<Re b

Re z > IRe bl

(Z2_b 2) -1-;,v

oK [a(z2-b2) 1-;,] v

Re z > IRebl

Re v > -~

y = log(l/x)

¢ (x)

-Re b < Re z < Re b, Re b >0

Re b > 0

o

-a x < e

-a x > e

(1-;,nb)1-;,(ab)-V(y2_a2)1-;,v-~

k a .r [b (y2_a 2 ) 2] x < e-v-Yz

o -a x > e

Page 238: Tables of Mellin Transforms

232

7.80

7.81

7.82

7.83

00

w(z) = ! xZ-l~(x)dx o

[ (z+b) / (z-b) ]l:;v

Re z > IRebl

Rez>O,a~b

Re z > 0

Re z >0, a~b

y = log n/x)

II. Inverse Mellin Transforms

~ (x)

-v 2 2 -k V ub V -ub l:;a (y -a) 2 [(y+u) e + (y-u) e 1

o

-a x < e

-a x > e

x < e-(a+b)

l:;(ab)-\ I [(2ab)-1(a 2 +b 2 _ y 2)] v-~

e-(a+b) < x < e-(a-b)

Ox> e -a-b)

l:;1T(ab)\ I [(2ab)-1(y2_ a 2_b 2)] v-~

x < e-(a+b)

Ox> e-(a+b)

o x > 1

Page 239: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions

'" ~ (z) = f z-l x ¢ (x) dx

o

7.84

Rez>O,a2,b

7.85

Re z > 0

a 2: b

7.86

Re z > 0

7.87 -v l< 2 z [Kv (az 2) 1

Re z > 0

7.88

Re z > 11m bl

y = log(l/x)

<jJ (x)

o

o

o

o

o

233

x < 1

x > 1

x < 1

x > 1

x < 1

x > 1

x < 1

x > 1

-2a x < e

-2a x > e

Page 240: Tables of Mellin Transforms

234

7.89

7.90

7.91

7.92

00

¢(z) = J XZ-l~(x)dx o

Re Z > lIm b I

Re z > lIm b I

oK {a [(z2+b 2 ) J,+z] } \!

Re z > lIm b I

Re z > IRe bl

y = log(l/x)

II. Inverse Mellin Transforms

~ (x)

x < 1

o x > 1

-k !,.; (y2_4a2 ) 2J2 \! [b (y2_4a 2) 2]

o

x < e -2a

-2a x > e

Re \! > -J,

x < 1

o x > 1

Re \! > -J,

o

Re \! > -J,

-2a x < e

-2a x > e

Page 241: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 235

7.93

7.94

7.95

7.96

7.97

00

~(z) = J xz-l~(x)dx o

e2azIV{a[Z-(Z2-b2)~1 }

oK {a[z+(z2-b2)~1} v

Re z > IRe bl

K {a[z-(z2-a2)~1} v

oK {a[z+(z2-a2)~1} v

Re z>IImbl,-~<Re v<~

e2azKv{a[Z-(Z2-b2)~1}

oK {a[z+(z2-b2)~1} v

Re z>IIm bl,-~<Re v<~

z -~ea/zKv (a/z)

-~ < Re v < ~

Re z > O,-~ < Re v < ~

Re z > 0, -~ < Re V < ~

y = log(l/x)

~(x)

o x < 1

Re v > -~

2 cos (TTV) (y2_4a2)-~

oK [b (y2-4ay) ~l -2a x < e 2v

0 x > e -2a

2 cos (TTV) (y2+4ay)-~

oK [b (y2+4ay) ~l 2v x < 1

0 x > 1

x < 1

Ox> 1

-(TTy)~{sin(TTV)J2V[(8aY)~1

+cOS(TTV)Y2V[(8aY)~1} x < 1

o x > 1

Page 242: Tables of Mellin Transforms

236 II. Inverse Mellin Transforms

00

<j>(z) = f x z - 1 <j>(x)dx <j>( x) 0

7.98 z -le a/ zK (biz) 2lT-1 sin(-rrv) [K (AY~)K (BY~) v v v

Re z > O,-l<Re v<l +K (AY~) I (BY~) 1 +I (AY~) K (BY~) v v v V

A = (a+b)~±(a-b)~ < 1 B x

0 x > 1

7.99 -1 e-a/zK v (biz)

~ k z -~lT{sin (lTv) [J (Ay ) J (By 2) v v

Re z > 0,-1 < Re k ~

v < 1 -Yv (Ay 2) Yv (By 2) 1

A (a+b) ~± (a-b) ~ k !.:: = +cos(lTv) [JV (Ay 2)Yv (By 2) B

k !:z +JV (By 2)Yv (Ay)]} x < 1

0 x > 1

7.100 z -2ve az 2 Kv (az 2 ) 2lT~[r(1+2v)]-1(8a)~VyV-l

Re z > 0, Re v > -~ 'exp(-Yrsy 2 Ia)M 3 1 (~8y2Ia) - ""'2 V , ~v

X < 1

0 x > 1

Y = log(l/x)

Page 243: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 237

'" z-l ~(z) = f x ¢(x)dx ¢ (x)

0

7.101 (2a/b)~z[r(1-~z)1-1 0 x < a

'Kv+~z (ab) a-V(x2_a2)~VJ [b(x2-a2)~1 v

Re z < ~2-Re V x > a

Re v > -1

7.102 (2a/b) ~zr (~z) 2aV(a2+x2)-~vK [b(a2+x2)~1 v

Kv_~z (ab) Re z > 0

7.103 (2a/b)~zr(~z) 2a-V(a2+z2)~vK [b(a2+x2)~1 v

'Kv+~z (ab) Re z > 0

kz 2a -v (a 2_X 2) ~vI [b (a 2_X 2) ~l 7.104 (2a/b) 2 r(~z) v

'Iv+~z (ab) x < a

Re z > 0 0 x > a

7.105 bZcos(~~z)K (2ab) ~cos[a(x-b2/x)1 z

-1 < Re z < 1

7.106 bZsin(~~z)K (2ab) ~sin[a(x-b2/x)1 z

-1 < Re z < 1

Page 244: Tables of Mellin Transforms

238 II. Inverse Mellin Transforms

'" z-l <P (z) = f x <P(x)dx <P(x)

0

7.107 aZK z(b) ~exp[-~b(x/a+a/x)l

7.108 r (v+J.,z) [r (l+v-J.,z) 1 -1 2J2v (a)K2V (13)

• (4ajb) J.,zK [2 (ab) ~l 13 = (2b) ~[(a2+x2) J.,±a] ~ z a

Re z > -2 Re v

7.109 r (v+~z) [r (l+v-~z) 1 -1 2')[~I v(a)Kv (13)

~z 13 = b [(a 2 +x2) ~±al • r (~-~z) (a/b) K, (2ab) ~z a

-Re v < Re z < 1

7.110 r(~z+v)r(J.,z-v) -k

2')[ "K)a)Kv (13)

[r(~+J.,z)1-1(a/b)~zK~z(2ab) 13 = b [(a 2+X2) ~±al a

Re z > ±2Re v

7.111 cos(~')[z)K: (a) ~')[y [a Ix-x-1 11 ~z 0

- ~2 < Re z < ~2 Principal value

, 7.112 Jz(a)Kz(a) ~J 0 [a (l/x-x) ~l x < 1

Re z > - ~ 0 x > 1

Page 245: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 239

00

z-l <P (z) = J x .p(x)dx .p(x)

0

7.113 I;,z (a)K;'z_;,(a) -(;,~a)-;'(1-x2)-;'sin[a(x-x-l)]

Re z > -1 x < 1

0 x > 1

7.114 Kl;,z (a) Il;,z_;,(a) (;'rra)-;'(1-x 2)-;'cos[a(x-x- l )]

Re z > -1 x < 1

0 x > 1

7.115 Kv+;'z(a)Kv_;'z(a) -1 K2v [a(x+x )]

-k k 7.116 Iv+z (a) Kv_z (a) ;'J2v [a(x '-x')] x < 1

Re z > _3/4 ,Re v > -1z 0 x > 1

7.117 K;,V+;'z (a) I;,v-;'z (a) 0 x < 1

~2 , -1 -1 1 Re z < Re v > Jv[a(x-x )] x >

7.118 I;'v_;'z(a)K;'v+;'z(a) I -1 J [a x-x 11 v

+I;'v+;,z(a)K;'v_;'z(a) - ~2 < Re z < 3-2 , Re v > -1

7.119 K (a)K (b) v-z v-z ;'(a+bx) v (b+ax)-v

oK2V{[a2+b2+ab(x+x-l)1;'}

Page 246: Tables of Mellin Transforms

240 II. Inverse Mellin Transforms

co z-l

~(z) = f x q,(x) dx 4>(x) 0

7.120 cosh (~1TZ) 0 x < -7T e

.IV_~iz(a)IV+~iz(al -1

~7T I 2v (2a sin y)e -7T < x < e 1T

Re v > -~ 0 x > e 7T

7.121 Iv_iz(a)Iv+iz(a) 0 x < e -7T

> -~ -1 cos (~x) ] -1T < e 7T Rev ~7T I 2v [2a e < x

0 x > e 7T

7.122 z -1 [H; (az) -Y (az)] 27T-110g[y(a+(1+y2/a2)~] x < 1 o 0

Re z > 0 0 x > 1

7.123 -1 -a z [Io (az) -1.0 (az) ] 1 x < e

Re z > 0 2 7T -larcsin (y fa) e -a < x < 1

0 x > 1

7.124 -v z ~ (az) -Yv (az) ] 27T-~(2a)-v[r(~+v)]-1

Re z > 0 2 2 v-~ • (y +a ) x < 1

0 x > 1

y = 10g(1/x)

Page 247: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 241

co z-l <I>(z) = f x <p(x) dx <j>(x)

0

7.125 z -v [I (az) -10 (az) 1 0 x < -a e v v

Re z > 0, Re v > -~ 2~-~(2a)-v[r(~+v)1-1

.(a2_y2)V-~ -a < x < 1 e

0 x > 1

7.126 Z~v[H (az~)-Y (az~)l -1 v -v-1 v v 7T cos(~v) (~a) y

Re z > 0, Rev<~ .exp (~a 2/y ) Erfc (~ay -~) x < 1

0 x > 1

7.127 (~a)-zr(~+z) 0 x < 1

• [~(a) -Y z (a) 1 ~ -~x~(x-1) -~exp [-a (x-1) ~l x > 1

7.128 (~) -zr(~+z) ~-~~(l-x)-~exp[-a(l-x)~l x < 1

• [I z (a) -loz (a) 1 0 x > 1

Re z > -~

7.129 -z (~a) r (Z)Hv+ z (a) (l-x)~vH [a(l-x)~l

v x < 1

Re z > 0, Rev>- 3~ 0 X > 1

7.130 (~a)-zr(z)lov+z(a) (l-x)~vL [a(l-x)~l v x < 1

Be z > 0, Rev > - ~2 0 X > 1

Y = log(l/x)

Page 248: Tables of Mellin Transforms

242 II. Inverse Mellin Transforms

co

~(z) = f X z- 1 $(x)dx ¢(x) o

7.131 (2/a) z-l r (\+z)

o x > 1

Re z > -~

7.132 -z (2a) r (\+z) o x < 1

[I_Z (a) -Lz (a) 1

Re z > -~

7.133

. r (\+v+z)

o < Re z < \-Re v

7.134 -1 v 2 -k '1T sin ('1Tv) a (y+a 2 ) 2

Re z > 0 x < 1

o x > 1

7.135 -1 -1 '1T exp[-\a(x -x)] x < 1

o x > 1

y = log(l/x)

Page 249: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions

7.136

7.137

7.138

7.139

7.140

'" ~(z) = f x z- 1 ¢(x) o

Re z > 0, Re(Il±V) > -~

z-2 (2b) r (~z-~v)

(b/a)zr(z)r(~-z)

sz+v,z_v(ab)

O<Rez<~

-1 r (z) [r (~+z) 1

Re z > 0

-z a r(z)r(~-~Il-~v-z)

y = log(l/x)

¢ (xl

2,,-1 -k " 2 ... a "y"'exp (~a2/y)

·W (a/yl Il,V

o

(b 2+X2) -lK (ax) v

Rez>±ReIl

[r(~+v)1-12V-1

o

s [a(l+x) ~l Il,V

243

x < 1

x > 1

x > 1

Page 250: Tables of Mellin Transforms

244 II. Inverse Mellin Transforms

2.8 Whittaker Functions and Special Cases

'" z-l <!> (z) = J x <P(x)dx <P(x)

0

8.1 Ei[-b(a+z)] -1 a < e -b -y x x

Re z > -a 0 > e -b x

8.2 -1 log (a/y) -a z Ei (-az) x < e

> 0 0 -a Re z x > e

8.3 eazEi (-az) -1 1 -(a+y) x <

0 x > 1

8.4 -1 az . z e El.(-az) -log (l+y/a) x < 1

Re z > 0 0 x > 1

8.5 -az e Ei (-az-bz) -(a+y) -1 x < e -b

0 x > e -b

8.6 e az [Ei (-az)] 2 2 (a+y) -llog(y/a) < e -a x

Re z > 0 0 > e -a x

y = log (l/x)

Page 251: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 245

00

z-l <J>(z) = J x ¢ (x) dx ¢ (xl 0

8.7 e(a+b)z (y+a+b) -llog [ (abl -1 (y+a) (y+b) 1

·Ei (-az) Ei (-bz) x < 1

Re z > 0 0 x > 1

8.8 Ei (-az) Ei (-bz) -1 -1 y log [ (ab) (y-a) (y-b) 1

Re z > 0 x < e-(a+b)

0 x > e-(a+b)

8.9 E"i(az)Ei(-bz) y -llog 11-y2 /a 21 x < 1

Re z > 0 0 x > 1

8.10 z -le a/zEi (-a/z) -2Ko [2 (ay) ~l x < 1

Re z > 0 0 x > 1

8.11 z -le -a/zE"i (a/z) k 1TYo [2 (ay) 'J x < 1

Re z > 0 0 x > 1

8.12 az 2 e Ei (-az 2 )

_~ _~2/a k i(1Ta) e' Erf(~ia'y) x < 1

Re z > 0 0 x > 1

Y = log(l/x)

Page 252: Tables of Mellin Transforms

246 II. Inverse Mellin Transforms

00

z-l 1>(z) = f x ¢(x)dx ¢(x) 0

8.13 z -J,Ei (-a/ z) -!.: .k 2 (lTy) 'ei [2 (ay) '] x < 1

Re z > 0 0 x > 1

8.14 z -J,E"i (a/z) -~ .k - k (lTY) '{Ei [-2 (ay) 2]+Ei [2 (ay) ']}

Re z > 0 x < 1

0 x > 1

8.15 z -J,ea/zEi (-a/z) -k k k (lTY) '{exp [2 (ay) 2]Ei [-2 (ay) 2]

Re z > 0 !::: _ :k

+exp [-2 (ay) '] Ei [2 (ay) ']}x < 1

0 x > 1

8.16 z -J,e -a/zE"i (a/z) -k :k :k 2 (lTY) '{cos [2 (ay) 2] ei [2 (ay) 2]

Re z > 0 1: 1.:

+sin [2 (ay) ']Si [2 (ay) 2]} X < 1

0 x > 1

z -~i (-azJ,) _k

8.17 J, (lTY) 'Ei (-!,;a 2 /y) x < 1

Re z > 0 0 x > 1

8.18 exp (a 2 Z2) -!z -1 2 2 IT a exp (-!,;y / a ) x < e -2ab

'Erfc (b+az) 0 x > e -2ab

y = log(l/x)

Page 253: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 247

00

<f>(z) = f x z - 1 (x)dx q, (x) 0

8.19 -1

exp (a 2 z 2 ) Erf(~/a) < 1 z x

·Erfc (az) 0 x > 1

Re z > 0

8.20 -1 Z2

z e Erfc(a+z) Erf (J,y) -Erfa x < e -2a

Re 0 0 -2a

z > x > e

8.21 Erfc [ (az) J,] -1 J, -1 -1

Tr a y (y-a) x < e -a

Re z > 0 0 x > e -a

8.22 z -J,Erf [(az) J,] 0 < e '""a x

Re 0 (TrY) -~ -a < x < 1 z > e

0 x > 1

-k k -~ -a 8.23 z "Erfc [(az) 2] (TrY) x < e

Re z > 0 0 > e -a

x

8.24 eazErfc[ (az) J,] -1 -l< -1

Tr (y/a) '(y+a) x < 1

Re z > 0 0 x > 1

Y = log (l/x)

Page 254: Tables of Mellin Transforms

248 II. Inverse Mellin Transforms

00

<l>(z) = f z-l x CP(x) dx cp(x)

0

8.25 -~ a 2/z -~ z e Erfc(az) (7Ty) -~exp (-2ay~) x < 1

Re z > 0 0 x > 1

8.26 Erf(az-~) -1 ~ (7Ty) sin(2ay) x < 1

Re z > 0 0 x > 1

8.27 -v a 2/z z e a1-Vy~V-~ (2ay~)

-1 x < 1

-Erf (az -~) 0 x > 1

Re z > 0

8.28 z-ve a2 / z I-v ~v-~ ~ ~ a y [Iv _1 (2ay )-~v_1(2ay )1

'Erfc(az-~) x < 1

Re z > 0 0 x > 1

8.29 b-Zy(z,ab) e -bx

x < a

Re z > 0 0 x > a

8.30 -z 0 b r (z,ab) x < a

e -bx

x > a

y = log (l/x)

Page 255: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 249

co

<I> (z) = f Xz - 1 $(x) $(X) 0

8.31 r(z)r(l-z,a) (l+x)-le -a(x+l)

Re z > 0

8.32 r (v ,az) v -1 -1 -v a [r(l-v)] y (y-a) x < e -a

Re z > 0, Rev < 1 0 x > -a e

8.33 eazr(v,az) v -1 -v -1 a [r (l-v) ] y (y+a) x < 1

Re z > 0, Rev < 1 0 x > 1

8.34 aZy(z,a) e -ax x < 1

Re z > 0 0 x > 1

8.35 -z e-a / x a r(-z,a) x < 1

0 x > 1

8.36 -v y(v,az) 0 -a z x < e

Rev > -1 v-1 -a < x < 1 y e

0 x > 1

8.37 -v v-1 -a z r(v,az) y x < e

Rev > -1 0 > e -a x

y = log (l/x)

Page 256: Tables of Mellin Transforms

250 II. Inverse Mellin Transforms

co

<l> (z) f z-l <P(x) = x <P(x)dx

0

8.38 -v e aZ r (v, az) (y+a) v-I < 1 z x

Re z > 0 0 x > 1

8.39 -v -az 0

-a z e y(v,-az) x < e

v-I -a 1 (a-y) e < x <

0 x > 1

8.40 Y (v, a/z) kv 1.:\)-1 ~

< 1 a 2 y2 J v [2(ay) 2] x

Re z > 0, Re v > 0 0 x > 1

8.41 z V-l y (v, a/z) kV -kv h a 2 r(v)y 2 Iv [2 (ay) 2J x < 1

Re z > 0, Re v > 0 0 x > 1

8.42 zV-le a/z r (v,a/z) 2[r(1-V)]-1(y/a)-~vKv[2(ay)~]

Re z > 0, Re v < 1 x < 1

0 x > 1

8.43 z lle a/zy (v, a/z) [Vr(V_ll)]-l a Vy V-ll-l

Re z > 0, Re(v,ll) > 0 • jF 2 (l;v+l,v-ll;ay) x < 1

0 x > 1

Y = log(l/x)

Page 257: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 251

00

<I>(z) f z-l ¢ (x) = x ¢(x)dx 0

8.44 exp(l,;a2z 2)Dv (az) aV[f(_v)J-1y-V-1exp(_~2/a2)

Rev < 0 x < 1

0 x > 1

8.45 1<

Dv [2(az 2)] 2 lzv+lzalz [f (-lzv) J -1 (y-a) -l-lzv

!,n)-1.:: -a Re z > O,Re v < 0 • (y+a) 2 2 X < e

0 > e -a x

8.46 -k 1:: z 2DV [2 (az) 2] 2 lzv [f(lz_lzv)]-1(y_a)-lzv-lz(y+a)lzv

Re z > 0, Re v < 1 < e -a x

0 x > e -a

8.47 z lzv e lzaz -l-lzv -1 -1< 2 [f(-v)] (a+y) 2

'Dv [(2az) lz] !,; k -v-1 • [(a+y) 2_a 2] x < 1

Re z > 0, Re v < 0 0 x > 1

8.48 kv-l k

Z2 DV[(2az)2] 2- lzV [f(l_v)]-1[(a+y)lz_alz ]-v

Re z > 0, Re v < 1 x < 1

0 x > 1

8.49 zVexp(a/z) -1 -v-1 lz [f ( - 2 v) ] (2 y) exp [ - 2 (2 ay) ]

'D2v [2 (a/z) lz] x < 1

Re z > 0, Re v < 0 0 x > 1

Y = log(l/x)

Page 258: Tables of Mellin Transforms

252

8.50

8.51

8.52

8.53

00

¢(z) = f xz-l~(x)dx o

Re z > -b

Re z > -b

r(z)D (a) -z

Re z > 0

r(Z)D 2 [(2a)lz] -z

Re z > 0

y = log (l/x)

II. Inverse Mellin Transforms

~ (x)

o

Re v < 0

o

Rev<O

2 -lz l+x (l-x) exp [-a (I-x) 1

o

x < 1

x > 1

-a x < e

-a x > e

x < 1

x > 1

Page 259: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 253

8.54

8.55

8.56

8.57

8.58

00

4>(z) = f xz-l<p(x)dx o

-ll-~ ~az z e

'W (az) V,].I

Re z > 0, Re (].I-V) >-lz

z-].I-lzw (2az) V,].I

Re z > 0

Re (].I-V) > -lz

Re z > O,Re v > 1

-a. az z e W (az)

V,].I

Re z > 0, Re (a.-V) > 0

Re z > b

Re(].I-V) > -lz

y = 1og(1/x)

<p(x)

(y+a) v+].I-lz

o

V+].I-l< • (y+a) 2

o

x < 1

x > 1

-a x < e

-a x > e

kV v -a [(y+a) / (y-a) 1 2 P 1 (y/a) x<e

11-~

o -a x > e

F (lz-v+].I,lz-V-].Iia.-viy/a) 2 1

o

-1 abr (1+2].1) [r (lz+].I-v) 1

-v-k \j-k • (y-a) 2 (y+a) 2

o

-a x < e

-a x > e

-a x < e

-a x > e

Page 260: Tables of Mellin Transforms

254 II. Inverse Mellin Transforms

8.59

8.60

8.61

8.62

'" f z-l ¢(z) = x ~(x)dx o

w (z)W (z) V,~ 2 V,~ 1

Re z > b

Re (~±V) > -~

Re z > 0

Re(~-v) > 0

Re z > 0

Re(~-v) > -~

'M (a/z) v,~

Re z > O,Re(v+~) > -~

y = log (l/x)

<P (x)

-1 2ab[r(~+~-v)r(~-~-v)1

-v-!.: V-~ • (y-a) 2 (y+a)

'K [b (y2_a2 ) ~l 2~

o

o

-a x < e

-a x > e

x < 1

x > 1

a = ~(~-v-1), f3 = ~(1-v-3~)

x < 1

o x > 1

~ -1 v-~ a 2r (1+2~) [r (~+v+~) 1 y 2

x < 1

x > 1

Page 261: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 255

'" ¢(z) = J XZ-l$(x)dx

o

8. 63 z-ve-'za/z

'W (a/z) V,]1

Re z > 0

Re (v±]1) > -~

8.64 zVe'za/z

oM (a/z) V,]1

Re z > 0, Re (]1-V) >-J,

8.65 z VeJ,a/z

'W (a/z) V,]1

Re z > 0, Re (v±]1) <J,

8.66 r (z+]1)W (a) -z,v

Re z > -Re ]1

y = log(l/x)

$ (xl

" -cos('ITV-'IT]1)J 2 [2(ay)']} x < 1 - ]1

Ox> 1

~ -1 -v-L a 2 r(l+2]1) [r(J,+]1-v)] y 2

o

o

-1 -1 'W [a(x -1) ] ]1,V

o

x < 1

x > 1

x < 1

x > 1

x < 1

x > 1

Page 262: Tables of Mellin Transforms

256 II. Inverse Mellin Transforms

8.67

8.68

8.69

8.70

8.71

'" ~(Z) = ! XZ-l¢(x}dx ¢(x) o

f(y,+v+z}f(y,-v+z} f (l-].l+z)

'W (a) -z,v

Re Z > -y,±Re v

Re v < ~

-z -1 a [f (2v+l-2z) 1

• f (2z) M].l-Z, v-z (a)

o < Re Z < ~+Y,Re(v+].l}

-Z a f(2z)W].l_Z,v+z(a)

Re z > 0

-Z a f (y,-].l-v-2z)

of(2Z)W].l+z,v+z(a)

y = log(l/x)

-1 -1 'W [a(x -l} 1 ].l,V

-ax-Y, e

o

o

y,f (y,+].l+v) [f (l+2v) J- l

x < 1

x > 1

x < 1

x > 1

k -v-k -kax~ 1 • (l+x 2) 2e 2 M [a(l+x~»)

].l,V

k 1; v-1: -~ax 2 1,; y,(l+x2) 2e W [a(l+x 2})

].l,V

~ v-~ ~f(~-].l-v) (l+x 2)

Page 263: Tables of Mellin Transforms

2.7 Bessel Functions and Related Functions 257

~(z) co z-l = 6 x cp(x)dx

8.72 r (2z) [r (l+2v-2z) ]-1

-z 'a M (a) ll-z,V-Z

o < Re z < ~+Re(v+ll)

8.73 -z a r(2z)W + (al ll-Z,v z

Re z > 0

8.74

·W (a) ll+z,V+z

o < Re z < ~-~Re (ll+V)

8.75 -z a r (~+V-ll-2z)

[r(1-2z)]-lW (a)W + (a) z-v z II

Re z < ~~Re (V-ll)

8.76 r (v+z) r(l+v-z)

-Re V < Re z < l+Re V

y = log(l/x)

CP(x)

- ax~ I 'e ~ M [a(l+x~)] ll,V

k V-I kax~ ~r (~-ll-V) (l+x 2) ~e 2

o

l-x ·exp[~(a+b) (l+x)]

x < 1

x > 1

Page 264: Tables of Mellin Transforms

258 II. Inverse Mellin Transforms

8.77

8.78

8.79

8.80

co

~(z) = f xz-l¢(x)dx ¢(x) o

r (v+z) r (l+v-z)

oM, (a)M L (b) ,,-z,v Z--:z,v

-Re v < Re z < l+Re v

r (v+z)

Re z > -Re v I a > b

r (1+v-z)

Re z < l+Re v, a > b

r(l+v-z)r(l-v-z)

Re z < liRe v

y = log (l/x)

(ab~r2 (1+2v) (1+x) -lI [2 (abx) ~l 2v l+x

x-l 'exp[~(a-b) (x+l)]

a > b

- ~ (ab) ~r (1+2 ) (1- ) lJ [2 (abx) ] v x 2v l-x

.exp[-~(a-b) (l+x)] x < 1 l-x '

Ox> 1

o x < 1

~ (ab) ~r (1+2v) (x-l) -lI [2 (abx) ]

2v x-l

o

x+l ·exp[-~(a+b) (x-l)]

x > 1

x < 1

x > 1

Page 265: Tables of Mellin Transforms

Appendix. List of Notations and Definitions

Abbreviations: £ n

Neumann I S number

£ 0 1 I £n = 2 I n = 1 I 2 I 3 I

y 0.57721·· • Euler's constant

a (a+l)··· (a+n-l)

a (a-I)'" (a-n+l) In!

r (a+n) . r (a) ,

-1 r (Ha) [n! r (Ha-n)]

1. Elementary functions

Trigonometric and inverse trigonometric functions:

sinx, cosx , sinx cosx tanx = COSX' cotx = sinx

1 secx = COSX' cscx 1

sinx ' arcsinx , arccosx ,

arctanx , arccotx.

Hyperbolic and inverse hyperbolic functions:

sinhx ~(e x -x -e ), coshx x -x

~ (e +e ) I -1 sinh x,

tanhx sinhx cothx coshx -1 COShX' sinhx '

tanh x,

sechx 1 cschx 1 COShX' sinhx'

2. Orthogonal polynomials

Legendre polynomials Pn(x).

259

-1 cosh x,

-1 coth x,

F (-n , n+l; 1; ~-~x) 2 1

Page 266: Tables of Mellin Transforms

260 Appendix

Gegenbauer's polynomials C~(x)

Chebycheff polynomials Tn(x), Un (x)

Tn (x) = cos (narccosx) F (-n,n;J,;J,-J,x) 2 I

(1-x2 l-J,sin[ (n+llarccosx] = C~(x)

Jacobi polynomials

J,n lim r ('JlC~ (xl v=o

p(a,S)(x) n

-1 [n!r(l+a)] r(l+a+n) F (-n,n+a+S+l;a+l;J,-J,x)

2 I

Laguerre polynomials

-1 [nIr (l+al] r (a+l+n) F (-n;a+l;x)

I I

Page 267: Tables of Mellin Transforms

Appendix

Hermite polynomials

n x 2 Hn(X) = (-1) e

He 2n (x) =

F (-n;:Y2 ;~X2) 1 1

3. The Gamma function and related functions -----"'j -t z-l r(z) = e t dt o

ljI-function

,I, (z) ~ log r I (z) ~ dz z = -rTZf

Beta function B(x,y)

B(x,y) = r(x)r(y) r(x+y)

4. Legendre functions

Re z > 0

(Definition according to Hobson)

~ -1 z+l y,~ Pv (z) = [r (l-~) 1 (z-l) F (-v ,v+l;'l-~ ;Y,-y,z)

2 1

• F (y,v+Y,~+Y"Y,V+Y,~+1;V+3~;z-2) 2 1

z is a point in the complex z-plane cut along the real

z-axis from to +1

261

Page 268: Tables of Mellin Transforms

262

P~(x)

Q~(x)

p~(z) q~(z)

P~(z) = Pv(z); Q~ (z)

5. Bessel functions ---z 2n

v '" (_l)n (2") Jv(z) = (~z) I Ir( 1) n=O n. v+n+

6. Modified Bessel functions ---

Appendix

Page 269: Tables of Mellin Transforms

Appendix 263

7. Anger-Weber functions

1 71 71- f cos(z sint-vt)dt

a

n = 0,1,2,"·; e: (z) = -H. (z) o 0

(7, (z) = (y,7fz) -y,{ [C (z)-S (z) ]cosz+[C (z)+S (z) ]sinz} = E J (z) 7z -"2

-!< ,J'_!<2(Z) = (y,7fz) 2{[C(z)+S(z)]cosz-[C(z)-S(z)]sinz} = EJ (z)

'2

8. Struve functions

9. Lommel functions

(y,z) v+2n+l L r(n+ 312)r(v+n+ 312} n=O

zll+l sll,V (z) = (Il-v+l) (Il+v+l)

11 ±v + -1, - 2, - 3, •••

S (z) Il,V

s (z) V,1l

S (z) = S (z) Il,V Il,-V

Special cases:

Page 270: Tables of Mellin Transforms

264

S (z) Lim' ll-l,v

f(V-v)

S (z) o,V

S-l,v (z) -1

-~wv csc(wv) [J (z)+J (z») v -v

Appendix

-1 ~wv csc (wv) [Jv (z) +J -v (z) -.::rv (z) -:r_v (z) 1

sl,v (z) l-~wvcsc(wv) [.1' (z)+.1' (z») v -v

-1< S_~,~(z) = z '[sinz Ci(z)-cosz si(z»)

-1< S 3 1 (z) = -z '[sinz si (z)+cosz Ci (z) 1

-;.0"2 ,~

Kelvin's functions

" 3 J(ze-~'"4l1) b ()"b"() v erv z -~ e~v z

Page 271: Tables of Mellin Transforms

Appendix

.1T

KV (Ze-14) = kerV(z) - i keiv(z)

bero (z) ber(z), beio(z) bei(z) ,

kero(z) ker(z), keio (z) kei(z)

Neumann polynomials

<1m ~ =2: 2m-n-l n(n-m-l)! (y,x) 1m!

m=O

Schlafli polynomials

<y,n =1: 2m-n (n-m-l) ! (~:iz) 1m! m=O

10. Gauss' hypergeometric series

F (a,b;c;z) 2 1

r (c) r(a)r(b) L

n=O

r (a+n) r (b+n) r (c+n)

11. Confluent hypergeometric functions

Kummer's functions

F (a;c;z) 1 1

F (a;c;z) 1 1

r (c) \' r (a+n) 'F'(aT n~O r (c+n)

e Z F (c-a;c;-z) 1 I

0 0 (x) -1

x

o

265

I z [ < 1

Page 272: Tables of Mellin Transforms

266 Appendix

Whittaker functions

r(-2~) r(2~) r(~ ~-k) Mk,~(Z) + r(~+~-k) ~,~(Z)

Wk,_~(z) = Wk,~ (z)

Parabolic cylinder function

-kZ 2 e • Hen (z) n = 0, 1, 2, •••

(2 ~Z-1)-~ K (' 2) " 1 '4 Z

'4

Error integrals

Erf(x) = 2'IT-~ f e- t2 dt o

Erfc(x) l-Erf (x)

21T -!zx F (!z i 3/2 i _x 2 ) 1 1

2 ( ~x) -~e-~x2 M (2) " 1 1 X -'4,'4

• 'IT 1 14

Erf(x~e ) C(x) + S(x) + i[C(x) - S(x)]

• 'IT 1 ;1.4

Erfc(x~e ) l-C(x) - S(x) + i[S(x) - C(x)]

Page 273: Tables of Mellin Transforms

Appendix 267

Fresnel's integrals

x C(x) = (2TI)-~ J t-~cost dt;S(x)

o

X (2TI)-~ J t-~sint dt

o

Exponential integrals

-Ei(-z) = -y-log z - L (non!)-l(_z)n n=l

-Ei (-x)

Ei (z) y+log z + L n=l

-1 n (nonl) z

x > 0

co

Ei(x)=~[Ei(-xeiTI)+Ei(-xe-iTI)]= -pov. f t-le-tdt, x> 0 -x

Ei(-ze±iTI) = ±iTI+Ei(z); Ei(ze~iTI) = ±iTI+Ei(-z)

Ei(-ze±~iTI)=Ci(z)+i[~TI-Si(z)];Ei(ze±~iTI)=Ci(z)±i[~TI+Si(z)]

Ei(-xe±~iTI)=Ci(x)±isi(x);Ei(xe±~iTI)=Ci(x)±i[TI+si(x)]

x > 0

Sine and cosine integral

Si (z)

Ci(z)

Ci(x)

L (-1)n[(2n+l)(2n+l)!]-lz2n+l n=O

y+log z + I (_1)n[2n(2n)!]-lz2n n=l

- f t-lcos t dt, si(x) x

x > 0

TI Si (x)- 2"

Page 274: Tables of Mellin Transforms

268

Ci (x) x

y+log x - J t-l(l-coS t)dt, o

Incomplete gamma function

y (v,x) xJ v-l -t -1 v

t e dt=v x F (v,v+l;-x), o 1 1

f(v,x) f(v)-y(v,x)

1Tl:iErfc(z); f(O,z) = -Ei(-z)

Appendix

x > 0

Re v > 0

~ - -z 1T"Erf(z); y(l,z) = l-e , f(l,z) -z

e

12. Particular cases of Whittaker's functions

M () k21Tl:iz!:iel:izErf(zl:i) -!:i,!:i z

Page 275: Tables of Mellin Transforms

Appendix

~,k+J,(Z)

W 1 1 (Z) -~,~

Wk,k-J,(Z)

13. Elliptic integrals and elliptic theta functions

Complete elliptic integrals

~7T K(k) = f (1-k2sin2x)-~dx

o

E (k) !j1T f (1-k 2sin2x)J,dx o

Theta functions

e (Z It) = (7ft)-J, 1 n=-co

2 L (_l)n exp[-7f2t(n+J,)2jsin[ (2n+l)7fz] n=O

269

Page 276: Tables of Mellin Transforms

270

e (z I t) 2

e (z I t) 3

8 (z I t) 4

(rrt) -;, L n 2 (-1) exp[- (z+n) /t] n=-oo

2 L exp[-rr 2 t(n+;,)2]cOs[ (2n+1)rrz] n=O

-I< (rrt) 2

CD

L n=-oo

2 exp[-(z+n) /t]

L En exp(-rr 2 tn 2 )cos(2rrnz) n=O

(rrt)-;' L exp[-(z+n+;,)2/t ] n=-oo

L n=O

Modified theta functions

CD

~ (zit) = (rrt)-;'{ L (_l)n exp[-(z+n+;,)2/t1 1 n=O

e (z I t) 2

e (z I t) 3

L (_l)n exp[-(z+n+;,)2/t ]} n=-l

CD

(rrt)-;'{ L (_l)n exp[-(z+n)2/t ] n=O

L (_l)n exp[-(z+n)2/t ]} n=-l

(rrt)-;'{ I exp[-(z+n)2/t ] n=O

L exp[-(z+n)2/t ]} n=-l

Appendix

Page 277: Tables of Mellin Transforms

Appendix

6 (zl t) (1ft)-~ l exp[-(z+n+~)2/t] n=O

2 l exp[-(z+n+~ It]} n=-l

14. Generalized hypergeometric functions

F (a a "'a'b b "'b ·z) P q l' 2' p' l' 2' q'

(a) "'(a) n I' In pnz L (b) ••• (b) n!

n=O 1 n q n

P'q = 0, 1, 2, •••

271

Izl<l if p = q+l, Izl<oo if p~q; divergent otherwise.

15. Meijer'~ ~-function

(21Ti) -1 f L

A(z) z B (z) x dz

where

m n A(z) = IT r(bk-z) II r(l-ak+z)

k=l k=l

q p B(z) II r(l-bk+z) II r(~-z)

k=m+l k=n+l

L is a path separating the poles of r(b -z) "', 1

(see Erdelyi et. al. Higher transcendental functions,

Vol. 1, Sec. 5.3; 1953, McGraw Hill).

Page 278: Tables of Mellin Transforms

272 Appendix

16. Miscellaneous functions

Riemann's

Z;; (z) =

Hurwitz's

z;; (z, a)

zeta function

2: n -z

n=l

zeta function

2: (n+a)-z n=O

Lerch's zeta function

Y(z,s,a) = I n=O

-s n (a+n) z

Unit step function

H(t) = I, t > 0; H(t) 0,

List of Functions

Symbol Name of the Function

C(x) Fresnel's integral

ci (x) Cosine integral

CV (x) n Gegenbauer's polynomial

Dv (z) Parabolic cylinder function

E(k) Complete elliptic integral

Ei (-x)

} Exponential integrals Ei(x)

Erf(z)

J Error integrals Erfc (z)

Re z > 1

Re z > 1

I z I < 1

t < 0

Listed under

11

11

2

11

13

11

11

Page 279: Tables of Mellin Transforms

Appendix

Symbol

a , ••• , ap b 1 ••• b )

1 ' , q

H(x)

H(1),(2)(z) v

K(k)

LC\(x) n

Lv (z)

~,lJ (z) } wk,lJ (z)

On (z)

Pn (x)

Name of the Function

Anger-Weber function

Hypergeometric functions

Meijer's G-function

unit step function

Hermite's polynomial

Hankel's functions

Struve's function

Modified Bessel function

Bessel function

Anger-Weber function

Complete elliptic integral

Modified Hankel function

Laguerre's function

Laguerre's polynomial

Struve's function

Whittaker's functions

Neumann polynomials

Legendre's polynomials

Listed under

7

273

10,11,12,14

15

16

2

5

8

6

5

7

13

6

11

2

8

11

9

2

Page 280: Tables of Mellin Transforms

274 Appendix

Symbol Name of the Function Listed under

pea,S) (x) Jacobi's polynomials 2 n

pil(z) v

pil(x) v

Legendre functions 4

q~(z)

Q~(x)

Sex) Fresnel's integral 11

Sn (z) Sch1af1i polynomials 9

si(x) } Sine integrals 11 Si (x)

s (z)

} il,V Lomme1's functions 9

S (z) il,V

Tn (x) } Chebycheff's polynomials 2 Un (x)

W (z) il,V Whittaker's function 11

Y(z,s,a) Lerch's zeta function 16

Yv (z) Neumann's function 5

B(x,y) Beta function 3

r (z) Gamma function 3

r (v, z) } Incomplete gamma functions 11 y(v,z)

Page 281: Tables of Mellin Transforms

Appendix

Symbol

lJ! (z)

1,; (z)

1; (z, a)

e (z I t) 1

e (z I t) 2

e (z I t) 3

e (z It)

" e (zl t) 1

e (z It) 2

e (z It) 3

8 (zl t) "

Name of the Function

Psi function

Riemann's zeta function

Hurwitz's zeta function

Elliptic theta functions

Listed under

3

16

16

13

Modified elliptic theta functions 13

275

Page 282: Tables of Mellin Transforms

G. Doetsch: Introduction to the Theory and Application of the Laplace Transformation

Translated by W. Nader 51 figures and a table of Laplace transforms VII, 326 pages. 1974 Cloth DM 68,-; US $27.80 ISBN 3-540-06407-9 Prices are subject to change without notice

In anglo-american literature there exist numerous books, devoted to the application of the Laplace transfor­mation in technical domains such as electro technics, mechanics etc. Chiefly, they treat problems which, in mathematical language, are governed by ordinary and partial differential equations, in various physically dressed forms. The theoretical foundations of the Laplace transformation are presented usually only in a simplified manner, presuming special properties with respect to the transformed functions, which allow easy proofs. By contrast, the present book intends principally to develop those parts of the theory of the Laplace transformation, which are needed by mathematicians, physicists and engineers in their daily routine work, but in complete generality and with detailed, exact proofs. The applications to other mathematical domains and to technical problems are inserted, when the theory is adequately developed to present the tools necessary for their treatment.

Springer-Verlag Berlin . Heidelberg . New York MOnchen Johannesburg London Madrid New Delhi Paris Rio de Janeiro Sydney Tokyo Utrecht Wien

Page 283: Tables of Mellin Transforms

F. Oberhettinger and L. Badii:

Tables of Laplace Transforms

VII, 428 pages. 1973 OM 39,-; US $16.00 ISBN 3-540-06350-1

Th is material rep resents a collection of integrals of the Laplace- and inverse Laplace Transform type. The useful­ness of this kind of informa­tion as a tool in various branches of Mathematics is firmly established. Previous publications include the contributions by A. Erdelyi and Roberts and Kaufmann (see References). Special consideration is given to results involving higher functions as integrand and it is believed that a substantial amount of them is presented here for the first time. Greek letters denote complex parameters within the given range of val i d ity. Latin letters denote (unless otherwise stated) real positive parameters and a possi ble extension to complex values by analytic continuation will often pose no serious problem.

F.Oberhettinger:

Tables of Bessel Transforms

I x, 289 pages. 1972 OM 32,-; US $13.10 ISBN 3-540-05997-0

This book contains a comprehensive collection of integrals for integral trans­forms which have cylindrical functions as kernels; the selec­tion reflects the extensive experience of the author. This particular type of integral transforms is of great impor­tance for appl ied mathe­maticians, physicists, and engineers.

Prices are subject to change without notice

Springer-Verlag Berlin Heidelberg NewVork