T VT NonIsoCorrSpec Revised

download T VT NonIsoCorrSpec Revised

of 27

Transcript of T VT NonIsoCorrSpec Revised

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    1/27Page1of27

    AParametricModelfortheDistributionoftheAngleofArrivalandthe

    AssociatedCorrelationFunctionandPowerSpectrumattheMobileStation

    AliAbdi1,JanetA.Barger2,andMostafaKaveh3

    1Dept.ofElec.andComp.Eng.,NewJerseyInstituteofTechnology2Dept.ofElec.Eng.,UniversityofTexasatTyler

    3Dept.ofElec.andComp.Eng.,UniversityofMinnesota

    Abstract__OneofthemainassumptionsintheClarkesclassicchannelmodelisisotropicscattering,

    i.e. uniform distribution for the angle of arrival of multipath components at the mobile station.

    However,inmanymobileradiochannelsweencounternon-isotropicscattering,whichstronglyaffects

    thecorrelationfunctionandpowerspectrumofthecomplexenvelopeatthemobilereceiver.Inthis

    contribution,weproposetheuseoftheversatilevonMisesangulardistribution,whichincludesand/or

    closelyapproximatesimportantdistributionslikeuniform,impulse,cardioid,Gaussian,andwrapped

    Gaussian, for modeling thenon-uniform angle of arrivals at themobile.Basedon this distribution,

    associatedcorrelationfunctionandpowerspectrumofthecomplexenvelopeatthemobilereceiverare

    derived.Theutilityofthenewresultsisdemonstratedbycomparisonwiththecorrelationfunction

    estimatesofmeasureddata.

    Pointofcontact:AliAbdi

    Dept.ofElectricalandComputerEngineeringNewJerseyInstituteofTechnology

    323KingBlvd.Newark,NJ07102,USA

    Phone:(973)5965621

    Fax:(973)5965680

    Email:[email protected]

    Thework of thefirstand the third authors have beensupported inpart by theNationalScience Foundation, under the

    WirelessInitiativeProgram,Grant#9979443.

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    2/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page2of27

    I.INTRODUCTION

    Thereceivedsignalcorrelationfunctionsandpowerspectraatthemobilestation(MS)dependon

    theprobabilitydensityfunction(PDF)oftheangleofarrival(AOA)ofascatteredwave.Clarkestwo-

    dimensionalisotropicscatteringmodel(auniformAOAPDFover ),[ )givesrisetothezero-order

    Besselfunction fortheautocorrelation function andtheU-shaped power spectrum for thecomplex

    envelopeof multipathcomponentsattheMS[1,p.40-43].However,ithasbeenargued[2]-[6],and

    experimentallydemonstrated[7]-[16] that thescatteringencountered in many environments is non-

    isotropic, resulting ina non-uniform PDF for AOA at the MS. As has been discussed in[16], the

    assumptionofauniformPDFfortheAOAintroducessmallerrorsonthefirstorderstatisticsofthe

    received signal, but a significant error on thesecond order statistics, like correlation functions and

    levelcrossingrates.

    In[17]and[18],twogeometricallybasedangleofarrivalPDFsarederived;whilethreedifferent

    models are assumedfor such a PDF byotherauthors:quadratic PDF [19], LaplacePDF [10],and

    cosine PDF [20]. In addition to showing good fit to measurements, another important factor in

    selectingacandidatefortheangleofarrivalPDFisthemathematicalconvenienceitprovidesto the

    determinationofclosed-formsolutionsforthecorrelationfunctions,powerspectra,spectralmoments,

    etc..ThepreviouslymentionedPDFsdonotsatisfythelatterrequirement.Achievingthisgoalisthe

    mainpurposeofthispaper.

    Theremainderofthepaperisorganizedasfollows.InSectionIIwepresentthetwoparametervon

    Mises PDF as flexible model for the PDF of the angle of arrivals. The utility of this model is

    demonstrated by the derivation of closed-form expressions for the correlation function and power

    spectrum of the complex envelope at the MS in Section III. This is followed by a study of the

    differences in the characteristics of the correlation function and power spectrum for cases which

    deviatefromtheisotropicscatteringmodelintroducedbyClarke.Finally,measureddataisusedto

    confirmthevalidityoftheproposedmodelinpredictingthescatteringcharacteristicsencounteredin

    actualmobilecommunicationsituations.

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    3/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page3of27

    II.AFLEXIBLEPDFFORTHEAOA

    A PDF was introduced by R. von Mises in 1918 to study the deviations of measured atomic

    weightsfromintegralvalues[35].ThisPDFplaysaprominentroleinstatisticalmodelingandanalysis

    ofangularvariables[21,pp.57-68].Lettherandomvariable representtheAOAofamultipath

    component(scatterandspecular),receivedattheMS.ThevonMisesPDFforthescattercomponentof

    , )(scatp ,isgivenby:

    ),[,)(2

    )]cos(exp[)(

    0

    =

    Ip

    pscat , (1)

    where (.)0I isthezero-ordermodifiedBesselfunction, ),[ p accountsforthemeandirectionof

    AOAofscattercomponents,and 0 controlsthewidthofAOAofscattercomponents.Figs.1and

    2show )(scatp inlinearandalsoinpolarcoordinates,respectively,fordifferentvaluesof and

    0=p (non-zerovaluesof p simplyshiftFig.1circularlyorrotateFig.2).

    AscanbeobservedinFig.1,for 0= weobtain = 21)(scat

    p (isotropicscattering), while

    = yields )()( pscat

    p = (extremelynon-isotropicscattering),where (.) istheDiracdelta

    function.Forsmall ,thisfunctionapproximatesthecardioidPDF[21,p.60],whichisrathersimilar

    tothecosinePDF[20];whileforlarge itresemblesaGaussianPDFwithmean p andstandard

    deviation 1 [21,p.60].Ingeneral,thevonMisesPDFcanapproximatethewrappedGaussian

    PDFquitewell[21,p.66].ItisinterestingtonotethatthevonMisesPDFappearsinanumberofother

    communication contexts. For example, this PDF is referred to as the Tikhonov PDF in partially

    coherentcommunication[22,p.406],hasbeenusedinphase-lockedlooprelatedproblems[23],and

    hasbeenshowntorepresentthePDFofthephaseofasinewaveinGaussiannoiseforlargesignalto

    noiseratios[24].

    Ausefulgeometricalinterpretationfor canbeobtainedbythefactthatitistheslopeofthe

    tangenttothecurve )(scat

    p ,inpolarcoordinates,atthepoint 2= .Thisresultcanbeobtained

    using the relation )cossin()sincos( ++ [25, p. 176], where )(= represents a

    curveinpolarcoordinatesandprimedenotesdifferentiationwithrespectto .AlookatFig.2verifies

    thisresult.Forlarge ,say 3 , p scat ( ) takesaunidirectionalshape,ascanbeobservedinFig.2.

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    4/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page4of27

    InordertoobtainameasureforthespreadofAOA'sinthepolarcoordinatesforlarge ,weconsider

    theinflexionpointsof p scat ( ) whichareapproximatelyequalto 1 ,assuming islarge[21,

    p.60]. So, for a unidirectional scattering scenario (large ), the width of the AOA of scatter

    componentsatMSisroughlyequalto 2 .For 10,3= ,weobtain o66 and o36 ,respectively.

    III.CORRELATIONANDSPECTRUMOFTHECOMPLEXENVELOPEOFMULTIPATHCOMPONENTS

    Let the received complex envelope at the MS due to scatter components be represented by

    )()()( trjtrtr scatqscat

    i

    scat += ,with 1=j ,where )(trscati and )(trscat

    q arethein-phaseandquadrature

    scattercomponents. Then,the normalized autocorrelationfunctionof )(trscat , )(~

    scatrr ,isgivenby

    )(~

    )(~

    )(~

    += scatrrscat

    rr

    scat

    rr qiiij , where

    ~( )

    ~( ) r r

    scat

    r r

    scat

    i i q q= and

    ~( )

    ~( ) r r

    scat

    r r

    scat

    i q q i= are normalized

    autocorrelationandcrosscorrelationfunctionsof )(trscat

    i and )(trscat

    q .Notethatthetermnormalizedindicates 1)0(

    ~= scatrr .Itcanbeeasilyshownthat )]cos2[exp()(

    ~= m

    scat

    rr fjE [1,p.40],whereE

    representsmathematicalexpectationand mf isthemaximumDopplerfrequency.Using )(scat

    p in(1)

    forcarryingouttheexpectationwithrespectto yields[26,p.357]:

    )(

    cos44)(

    ~

    0

    22220

    +

    =I

    fjfImpm

    scat

    rr . (2)

    For 0= ,(2)resultsinthecorrelationfunctionsfortheClarkestwo-dimensionalisotropicscattering

    model, i.e. )2()2()(~

    00 == mmscat

    rrfJfjI

    iiand 0)(

    ~= scatrr qi , where (.)0J isthezero-orderBessel

    function. Note that for both analytical and numerical calculations, formula (2) and its real and

    imaginarypartsaremuchsimplerthan,andthusmorepreferabletothecomplicatedresultsin[19].

    The power spectrum of )(trscat can be obtained based on

    222 )]()()()([)( ffpGpGfS mscatscatscat

    rr += , mff [1, p.42], where and f are

    relatedaccordingto )(cos 1 mff= , 2 isthetotalpowerfromallscattercomponentsattheinputof

    thereceiverantenna,and (.)G isthereceiverantennagainpattern.Foraverticalmonopoleantenna,

    23)( =G . So the normalized power spectrum of )(trscat can be defined as

    23)(2)(~

    = fSfS scatrrscat

    rr , i.e.22)]()([)(

    ~ffppfS m

    scatscatscat

    rr += , mff . The term

    normalizedcomesfrom 1)(~

    =m

    m

    f

    f

    scat

    rr dffS ,whichcanbeeasilyverified.Thisisinagreementwith

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    5/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page5of27

    1)0(~

    = scatrr ,since )(~

    scatrr and )(~

    fSscat

    rr areFouriertransformpairs.Byusingthe )(scat

    p in(1)and

    aftersomemanipulationsweobtain:

    m

    mpmp

    m

    scat

    rr ffI

    ffff

    fffS

    = ,

    )(

    ))(1sincosh()cosexp(1)(

    ~

    0

    2

    22, (3)

    where cosh(.) isthehyperboliccosine.For 0= ,(3)reducestothepowerspectrumfortheClarkes

    two-dimensionalisotropicscatteringmodel,i.e. 221)(~

    fffS mscat

    rr = , mff .

    Forthespecularcomponent,thePDFofAOAcanbewrittenas:

    ),[),()( 0 =spec

    p , (4)

    where ),[0 is theAOAofthespecularcomponent.Letthereceivedcomplexenvelopeatthe

    MSduetothespecularcomponentberepresentedby )(trspec . Then,thenormalized autocorrelation

    function of )(trspec can be obtained based on )]cos2[exp()(~

    = mspec

    rr fjE andusingthegiven

    )(spec

    p :

    )cos2exp()(~

    0 = mspec

    rr fj . (5)

    Thenormalizedpowerspectrumof )(trspec , )(~

    fSspec

    rr , canbe easily obtainedby taking the Fourier

    transformof(5):

    mm

    spec

    rr fffffS = ),cos()(~

    0 . (6)

    Notethat 1)(~

    )0(~

    == m

    m

    f

    f

    spec

    rr

    spec

    rr dffS .

    Wheninadditiontothescattercomponents,aspecularcomponentisalsopresent,thePDFofthe

    AOAofmultipathcomponents(scatterandspecular)attheMScanbeexpressedas[19]:

    ),[,1

    )()()(

    +

    +=

    K

    Kppp

    specscat

    , (7)

    whereKistheRicefactor,definedastheratioofthepowerinthespecularcomponenttothatinthe

    scattercomponents. )(scatp and )(

    specp arealsogivenin(1)and(4),respectively.For )(tr ,the

    receivedcomplexenvelopeat MSdue tomultipathcomponents(scatterandspecular),we alsohave

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    6/27

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    7/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page7of27

    )(2

    sin)(2cos)]()([)2(

    ~

    0

    21

    2202

    2

    ++=

    I

    IIIfb

    pp

    m

    scat .

    So,forthezerocrossingrateof )(trscati wearriveat:

    m

    ppscat

    if

    I

    IIItrZCR 2

    )(

    sin)(2cos)]()([)}({

    0

    21

    220

    ++= .

    Theaboveclosed-formformulaisausefultoolforstudyingtheeffectofnonisotropicscatteringonthe

    performanceof )}({ trZCR scati forestimatingthespeedofthemobile.For 0=p and 0= ,Clarkes

    isotropic scattering, the above result reduces to mf2 , in agreement with [1, p. 60]; while for

    2=p and 7= weobtain mf251.0 ,halfoftheisotropiccase.Therefore,wemayconclude

    that )}({ trZCR scati is not a robust estimator against nonisotropic scattering and may change

    significantly as p and vary. Higher order spectral moments likescatb3~ and

    scatb4~ , needed for

    developingmoreefficientandrobustestimatorsforthespeed[27],canbesimplyobtainedbytaking

    higherorderderivativesof )(~

    scatrr in(2).

    IV.ACASESTUDY

    Here we consider three different urban scenarios studied in [19] and derive the associated

    autocorrelationfunctionsandpowerspectraofthecomplexenvelopeofmultipathcomponentsatthe

    MS.LettheMSmovefromlefttoright.Forthefirstscenario,S1,scattercomponentsarriveattheMS

    headon,i.e. p = 0 .Forthesecondscenario,S2,scattercomponentsarrivefromboththe p = 0 and

    p = directionswithequalprobabilities.Forthethirdscenario,S3,scattercomponentsarriveatthe

    MSfromadirectionperpendiculartoitsdirectionofmotion,e.g. p = 2 .ForS1andS3, )(scatp is

    equal to )(2)cosexp( 0 I and )(2)sinexp( 0 I , respectively; while for S2 we have

    )(2)coscosh()(5.0)(5.0 00 =+ == Ipp ppscatscat .ThesethreePDFsareplottedinFig.3for

    3= ,togetherwithClarkesclassicisotropiccase 0= .

    Thenormalizedautocorrelationfunctionsofthecomplexenvelopeduetothescattercomponents

    fortheabovethreescenarioscanbederivedaccordingto(2):

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    8/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page8of27

    )(

    44)(

    ~

    0

    22220

    1,

    +

    =I

    fjfImm

    Sscat

    rr , (10)

    )(

    44Re)(

    ~

    0

    22220

    2,

    +

    =I

    fjfI mmSscat

    rr , (11)

    )(

    4)(

    ~

    0

    22220

    3,

    =I

    fIm

    Sscat

    rr , (12)

    where Re[.] gives the real part of its complexargument.Notice that for S1, the imaginarypartof

    )(~ 1, Sscatrr ,i.e. )(

    ~ 1, Sscatrr qi ,isnonzero,contrarytoClarkesclassicisotropicscenario.Bysubstituting

    (10),(11),and(12)into(8),wecanreadilyobtain~

    ( ) r rS1 ,

    ~( ) r r

    S2 ,and~

    ( ) r rS3 .Figs.4and5show

    ~ ( ) r rS

    i i

    1 , ~ ( ) r rS

    i i

    2 ,and ~ ( ) r rS

    i i

    3 ,therealpartsof ~ ( ) r rS1 , ~ ( ) r r

    S2 ,and ~ ( ) r rS3 ,for ( , ) ( , )K = 0 10 and

    ( , )1 3 , respectively (for the case of nonzero K, we considered p=0 ). Comparing with Clarkes

    model ( , ) ( , )K = 0 0 shown in Figs. 4 and 5, we observe the noticeable effect of non-isotropic

    scatteringindifferentscenariosonthecorrelationpropertiesattheMS.Fornonisotropicscattering,it

    is possible to have large correlations when Clarkes isotropic scattering model predicts small

    correlations.

    Thenormalizedpowerspectraofthecomplexenvelopeduetothescattercomponentsforthethree

    scenariosS1,S2,andS3canbeobtainedbasedon(3):

    m

    m

    m

    Sscat

    rrff

    I

    ff

    fffS

    = ,

    )(

    )exp(1)(

    ~

    022

    1, , (13)

    m

    m

    m

    Sscat

    rr ffI

    ff

    ff

    fS

    = ,)(

    )cosh(1)(

    ~

    022

    2, , (14)

    m

    m

    m

    Sscat

    rr ffI

    ff

    fffS

    = ,

    )(

    ))(1cosh(1)(

    ~

    0

    2

    22

    3, , (15)

    NoticethatforS1,thepowerspectrum )(~ 1,

    fSSscat

    rr isnotsymmetricwithrespectto 0=f ,contraryto

    Clarkesscenario.Bysubstituting(13),(14),and(15)into(9),wereadilyobtain )(~ 1

    fSS

    rr , )(~ 2

    fSS

    rr ,and

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    9/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page9of27

    )(~ 3

    fSS

    rr . Figs. 6 and 7 show )(~ 1,

    fSfSscat

    rrm , )(~ 2,

    fSfSscat

    rrm , and )(~ 3,

    fSfSscat

    rrm for 10= and 3 ,

    respectively.ComparingwithClarkesclassicisotropiccase, 0= ,superimposedontheplotsinFigs.

    6 and 7, we clearlysee thesignificant effectsof different non-isotropic scattering scenarios on the

    powerspectrumattheMS.

    V.EXPERIMENTALRESULTS

    InthissectionweshowtheutilityoftheproposedAOAdistribution,andtheassociatedparametric

    correlationfunctionindescribingthecorrelationpropertiesof arangeofavarietyofmeasureddata.

    Firstwegiveabriefsummaryofthedataused(thedynamicstatisticalcharacteristicsofthisdataset

    arediscussedin[28]).Inthesubsequentsubsections,wetalkaboutenvelopecorrelationandenvelope

    extraction,twonon-isotropicscatteringcorrelationmodelforfittingtodata,estimationoftheenvelope

    correlationofdataandparameterestimationforthetwomodels,andfinally,themeritsandlimitations

    ofthetwomodelsinfittingtomeasureddata.

    A.TestLocationsandDataCollection

    Twositeswereusedforthecollectionofdata:asuburbanhousingdevelopmentinGreenville,

    Texas,andanurbanareaamongthebuildingsofthecampusoftheUniversityofTexasatArlington,

    Texas. These test locations were chosen to provide a random signal environment that would be

    representative of actual operational situations. By choosing environments with irregular structures,

    datareflectsthegeneralangularspreadofthesignalandnotyieldresultsfoundonlyin veryregular

    environments.

    Inthesuburbanarea,parkedvehicles,vegetation,andinconsistencyinthesetbackofthehousing

    structures produced very irregular reflective conditions. Measurements for records #0011 through

    #0015weretakeninthesuburbanneighborhoodcharacterizedbyhomesofawood/brickconstruction

    withanominal7mofseparationbetweenthestructures.Thetransmitantennawasataheightof2m

    aboveahillsidelocationtoproducealowgrazingangleoverthehomes,simulatingacellularradio

    signalatagreaterdistance.Themeasurementsweremadewiththereceiveantennainatotalshadow

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    10/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page10of27

    environment. Records #0016 through #0018 represent data taken near a large intersection in a

    suburbanareawiththetransmitantennaheightraisedtoabout5m.Fortheintersectionmeasurements

    there was a significant direct ray component of the signal. During these sample periods there was

    significanttrafficactivitynearthetestvehicle.

    Theurbanenvironmentischaracterizedbybuildingsofonetosixstoriesinheight,heavytraffic,

    largeopenareas,andhighlyinconsistentsetbackfromthestreet.Records#0019through#0022were

    madeintheurbanlocationwiththetransmitantennaataheightofabout21m,producingasignalata

    moderatelylowangleofradiationoverthebuildingssurroundingthepath.Amapoftheurbanlocation

    isshowninFig.8.Buildingsshownareofmodernbrickconstruction.Buildingheightsareindicated

    byanumberinsidetheoutlinesshowninFig.8.Theurbanlocationcontainedsignificantvehicular

    traffic, and the measurements were made over paths that had no direct ray component, but

    demonstratedthedeepshadowenvironment.

    The UHF transmitter generated a 910.25 MHz carrier at a nominal power of 0.2 W (the

    wavelengthwas0.33m).Signalsamplesweretakenatdistancesof0.16kmto0.25km.Thecollected

    dataconsistoftwelvesetsofnarrowbandinphaseandquadraturecomponentstakenattwelvedifferent

    locations.Eachdatasetrepresentsthesignaloveratraveleddistanceof47m,or7softime.These

    signalswere digitized witha sampling rateof 35156.25 Hz, toproduce one sampleper 0.2 mmof

    distancetraveled(28sintime)bythemovingreceiverplatform(atafixedspeedof6.7m/s).Hence,

    thenumberofsamplesforeachrecordisapproximately250,000.Theantennaatthemobilereceiver

    wasa1/4waveverticalstub,0.6cmindiameter,mountedontopofa1.9cmdiameteraluminumtube.

    Thetubeservedasarathersmallgroundplane.Forthefixedtransmitter,thesameantennawasused

    except a 1/4 wave diameter groundplane (flat) was attached tothe base ofthe antenna stub. Both

    antennashadomnidirectionalpatterns.

    B.EnvelopeCorrelationandEnvelopeExtraction

    Sinceformanypractical applications, theenvelopeofmultipathcomponentsand itscorrelation

    propertiesareofconcern,weconsidertheenvelopeofmultipathcomponent )()( trtz = .When )(tr is

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    11/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page11of27

    a complex Gaussian process with non-zero mean, the autocovariance function of )(2 tz ,

    )]}]([)()]}{([)([{)( 222222 ++= tzEtztzEtzEzz

    , can be expressed in terms of the

    autocorrelation functionofthe complexenvelopeof multipath components )(tr ,havingbothscatter

    and specular components [29]. The normalizedversion of )(22 zz , )(~

    22 zz , assuming nospecular

    component(whichmakes )(tr azero-meancomplexGaussianprocess),isgivenby[1,p.55]:

    2

    )(~

    )(~ 22 =scat

    rr

    scat

    zz, (16)

    where )(~ 22 scat

    zzisthenormalizedautocovariancefunctionof )(2 tz duetoscattercomponents.Again

    normalizedindicates 1)0(~ 22 =scat

    zz.

    Inordertoextract )(tz ,themultipath(orfastfading)componentoftheenvelope,whichwe are

    interested in, the shadow (or slow fading) component of the envelope must be removed. Let

    )()()( tjRtRtR qi += denote the received complex envelope at the MS in the presence of both

    multipath and shadow components, with )(tRi and )(tRq as the inphase and the quadrature

    components. The shadow (or slow fading)component of theenvelope, )(tR , is represented by its

    mean, ])([ tRE , which is a function of time because )(tR isnonstationary.Themultipath(orfast

    fading) component of )(tR can be represented as ])([)()( tREtRtz = [1, p. 91]. A method for

    estimating ])([ tRE from )(tR usingalocalslidingwindowisdescribedin[30].

    C.TwoNon-IsotropicScatteringPropagationModel

    Weconsider )(~ 22 scat

    zzforfittingtothedata,accordingtotwopropagationmodels:thesimplenon-

    isotropicmodelandthecomposite non-isotropic/isotropicmodel.In thesimplenon-isotropicmodel,

    we assume that the MS receives the signals mainly from one direction. The AOA PDF and the

    normalized autocorrelation function for the simple non-isotropic model are given in (1) and (2),

    respectively.Forthecompositenon-isotropic/isotropicmodel,theMSreceivessignalsuniformlyfrom

    alldirections,inadditiontoacomponentcenteredaroundaspecificdirection.TheAOAPDFandthe

    normalizedautocorrelationfunctionforthecompositenon-isotropic/isotropicmodelcanbewrittenas:

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    12/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page12of27

    ),[,2

    1)1(

    )(2

    )]cos(exp[)(

    0

    +

    =

    Ip

    pscat , (17)

    )2()1()(

    cos44)(

    ~0

    0

    22220

    +

    +

    = mmpm

    scat

    rr fJI

    fjfI

    , (18)

    where 10 indicatestheamountofdirectionalreception.Thecompositenon-isotropic/isotropic

    modelreducestothesimplenon-isotropicmodelfor 1= ,andsimplifiestoClarkesmodelfor 0= .

    Forthesimplenon-isotropicmodelandbasedon(2)and(16)wehave:

    )(

    cos44)(~

    2

    0

    22222

    0

    22

    +

    =I

    fjfImpm

    scat

    zz, (19)

    whileforthecompositenon-isotropic/isotropicmodelandaccordingto(18)and(16)wederive:

    )(

    )()2()1(cos44)(~

    20

    2

    002222

    0

    22

    +

    +

    =I

    IfJfjfI mmpmscat

    zz. (20)

    D.EstimationoftheEnvelopeCorrelationandtheParametersoftheTwoModels

    Theestimateforthenormalizedautocovariancefunctionoftheenvelope-squaredduetomultipath

    components, )(~ 22 zz

    ,wasobtainedusingthebiasedmethod[31,p.743],scaledsuchthat 1)0(~ 22 =zz

    (the bias is very small because of the large number of samples 250000). Recall that (16) and

    consequently(19)and(20)arevalidwhen )(tr isazero-meancomplexGaussianprocess(nospecular

    componenthence 0)( =trspec and )()( trtr scat= ).ThismeansthatatleasttheunivariatePDFsofthe

    envelope, )()( trtz = , and the phase, )(tr , have to be Rayleigh and uniform, respectively,

    independent of each other (note that a univariate Rayleigh PDFfortheenvelope by itselfdoes not

    implythat )(tr isazero-meancomplexGaussianprocess[32]).Accordingtothedataanalysisresults

    partlyreportedin[33],records#0011,#0017,#0019,#0021,and#0022meettheaboverequirements.

    So, for these records, equation (16), and subsequently (19) and (20) hold exactly, while for other

    records,thethreeequationsmaybeconsideredasapproximations.However,ourcollecteddatathatis

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    13/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page13of27

    analyzedanddiscussedinthesequel,suggestthatirrespectiveoftheapparentunderlyingprobability

    distributionforthecomplexenvelope )(tr , the parametricmodelsgiven in(19) and(20) givevery

    goodfitstotheautocovariancefunctionoftheenvelope-squared.

    In (19) and (20), the maximum Doppler frequency is 20=mf Hz. The unknown parameters

    ),( p in (19) for the simple non-isotropic model and ),,( p in (20) for the composite non-

    isotropic/isotropic model were estimated by the nonlinear least squares method (which provides

    consistent estimates [34, p. 207]): Simple),(

    MSEminarg),(p

    p

    = where

    = =

    n scat

    zzzzn

    1

    21Simple )](

    ~)(~[MSE 2222

    with )(~ 22 scat

    zz given in (19), while

    Composite),,(

    MSEminarg),,(

    =p

    p where = =

    n scat

    zzzzn

    1

    21Composite )](

    ~)(~[MSE 2222

    with )(~ 22 scat

    zz

    given in (20) (note that MSE stands for mean-squared-error). In the estimation procedure we had

    350=n and 1...,1,s,1014.0 31 ==

    + n .Thisindicatesthattheestimationwascarriedout

    overthecoherencetime[1,p.72],whichrangesfrom 0= through mf1= .Theestimatedvalues

    ),( p and ),,( p forbothmodelsarelistedinTableI.Themean-squared-erroroftheClarkes

    model, defined by = =

    n

    mzzfJn

    1

    220

    1Clarke )]2()(

    ~[MSE 22

    ,isalsogiveninTableI,together

    with the minimum values of SimpleMSE and CompositeMSE for all twelve data sets. In Fig. 9 andfor

    severaldatarecords, )(~ 22 scat

    zzsin(19)and(20)areplottedusingtheestimatedparameters ),( p and

    ),,( p ,togetherwith )(~

    22 zz andtheassociatedClarkesresult )2(2

    0 mfJ .Thecorrelationplots

    ofrecords#0012,#0020,#0021,andalso#0015arenotshowninFig.9,asthefirstthreearesimilarto

    thecorrelationplotof#0011,whereastheforthoneresemblesthatof#0014.

    E.Discussion

    Asexpected, )MSEmin()MSEmin(MSE CompositeSimpleClarke > forallthetwelvesetsofdata.Note

    thesignificanterrorofClarkesisotropicscatteringmodelinpredictingtheamountofcorrelationfor

    mostofthecases.Forexample,forrecords#0011and#0014,themaximumerrorinpredictingthe

    correlations is about 0.5, which is not negligible at all. Regarding the characteristics of the two

    proposed models, let us first focus on the simple non-isotropic model. In this case, only for few

    situationsthemaximumdeviationofthemodelpredictionsfromtheempiricalcorrelationsoverthe

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    14/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page14of27

    range 10 ,theempirical

    correlations approach zero slower than the predictions of Clarkes model. Notice the very slow

    convergenceof the empirical correlationsto zero for record#0018, 3.3 = , followed well by the

    simplenon-isotropicmodel.Onlyforonecase(record #0019), issmallandequalto0.6,yielding

    aresultclosetothatgivenbyClarkesmodel.Onedisadvantageofthesimplenon-isotropicmodel,

    whichgaveusthemotivationtodevelopthecompositenon-isotropic/isotropicmodel,isitsinabilityto

    followtheoscillationsobservedintheempiricalcurvesofrecords#0013-#0017and#0022.Onthe

    otherhand,thecompositenon-isotropic/isotropicmodelisabletofollowallkindsofvariationsofthe

    empirical curves. Specifically, note the improvements obtained in data fitting for records #0013 -

    #0017,#0019,and#0022.Ofcoursethoseimprovementsareachievedattheexpenseofaddingthe

    parameter tothesimplenon-isotropicmodel.

    Notethatsincethesimplenon-isotropicmodelshouldaccountfortheincomingwavesattheMS

    fromalldirectionsjustbyasinglevonMisesPDF,estimatedvalues areallsmallforthismodel

    ( 3.3 ), which correspond to large AOA spreads ( o632 ). On the other hand, since the

    composite non-isotropic/isotropic model is equipped with two PDF for modeling the directions of

    incoming waves at the MS, von Mises PDF can take care of the directional reception muchbetter,

    whichinturnyieldsmoderateandlargevaluesfor ( 8812 and 700 = ).Thiscorrespondsto

    moderate and small values for the AOA spread of the directional incoming waves at the MS

    ( oo 33212 and o3.42 = ).

    Regardingthephysicalinterpretationoftheestimatedvalues p forbothmodelsisTableI,letus

    assumethata o20 toleranceinestimatingtheapproximateorientationstothefixedtransmitter,listed

    inTableI,isacceptable(ofcoursethetolerancerange o20 shoulddependon ,butherewefixitto

    makeasimpleconclusion).InTableI,aperpendiculardirectioncorrespondstoeither o90=p or

    o270=p ,andaparalleldirectionisassociatedwitheithero0=p or

    o180=p .Nowitiseasyto

    verify that within the tolerance limit o20 , thesimple non-isotropic model correctly estimates p

    onlyforrecords#0013,#0014,#0018,and#0021,whilethecompositenon-isotropic/isotropicmodel

    successfully estimates p for #0011 - #0013, #0016, #0017, #0020 and #0022. This confirms the

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    15/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page15of27

    superiorityofthecompositenon-isotropic/isotropicmodelincharacterizingthepropagationofwaves

    inwirelesschannels.

    VI.CONCLUSION

    In this contribution wehave proposed the application of the von Mises PDF for modeling the

    distributionoftheanglesofarrivalofscattercomponentsreceivedatthemobilestation.Thisflexible

    parametricfamilyofangularPDFsincludesavarietyofnon-isotropicscatteringscenarios,including

    theisotropiconeasaspecialcase.ThisPDFforanglesofarrivalresultsinclosed-formandeasy-to-

    use formulas for the correlation function and power spectrum of the complex envelope of scatter

    componentsatthemobilestation.TheseformulasincludeClarkesBesselfunction-basedcorrelation

    and U-shaped power spectrum as special cases. As a consequence, those correlation or spectral

    parameterswhichareimportantforvarioussystemcalculationscanbeeasilyderived.Forexample,

    spectralmomentsofthereceivedsignalatthemobilestation,usefulforestimatingthespeedofmobile,

    canbeexpressedinsimpleclosedforms.Themathematicaltractabilityofthecorrelationfunctionand

    power spectrum derived in this paper make them useful for other applications such as efficient

    simulationof fadingchannels[36],Karhunen-Loeveexpansionofthemultipathfadingprocess[37],

    derivationofclosed-formexpressionsfortheerrorprobabilitiesinchannelswithsignificantDoppler

    spread,hencehavingfastvariations[38][39,pp.523-524][40,pp.365-367](inplaceof numerical-

    onlycalculations[41]),etc..Theutilityoftheproposedmodelandnewresultshavebeenverifiedby

    fitting the parametric model of the correlation function to the estimates of this function based on

    measureddata.

    REFERENCES

    [1] G.L.Stuber,PrinciplesofMobileCommunication .Boston,MA:Kluwer,1996.

    [2] J.S. SadowskyandV.Kafedziski,OnthecorrelationandscatteringfunctionsoftheWSSUS

    channelformobilecommunication,IEEETrans.Vehic.Technol.,vol.47,pp.270-282,1998.

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    16/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page16of27

    [3] M. Patzold, Y. Li, and F. Laue, A study of a land mobile satellite channel model with

    asymmetrical Doppler power spectrum and lognormally distributed line-of-sight component,

    IEEETrans.Vehic.Technol.,vol.47,pp.297-310,1998.

    [4] M.Patzold,U.Killat,Y.Li,andF.Laue,Modeling,analysis,andsimulationofnonfrequency-

    selective mobile radio channels with asymmetrical Doppler power spectral density shapes,

    IEEETrans.Vehic.Technol.,vol.46,pp.494-507,1997.

    [5] F.P.Fontan,M.A.V.Castro,J.Kunisch,J.Pamp,E.Zollinger,S.Buonomo,P.Baptista,and

    B.Arbesser,A versatileframeworkfora narrow-andwide-bandstatisticalpropagationmodel

    fortheLMSchannel,IEEETrans.Broadcasting,vol.43,pp.431-458,1997.

    [6] W. R. Braun and U. Dersch, A physical mobile radio channel model,IEEE Trans. Vehic.

    Technol.,vol.40,pp.472-482,1991.

    [7] A.Kuchar,E.A.Aparicio,J.P.Rossi,andE.Bonek,Azimuth,elevation,anddelayofsignals

    at mobile station site, in Wireless Personal Communications: Emerging Technologies for

    Enhanced Communications.W.H.Tranter,T.S.Rappaport,B.D.Woerner,andJ.H.Reed,

    Eds.,Boston,MA:Kluwer,1999,pp.99-110.

    [8] J.P.Rossi,J.P.Barbot,andA.J.Levy,Theoryandmeasurementoftheangleofarrivaland

    timedelayofUHFradiowavesusingaringarray,IEEE Trans. Antennas Propagat.,vol.45,

    pp.876-884,1997.

    [9] J.Fuhl,J.P.Rossi,andE.Bonek,High-resolution3-Ddirection-of-arrivaldeterminationfor

    urbanmobileradio,IEEETrans.AntennasPropagat.,vol.45,pp.672-682,1997.

    [10] Q.Spencer,M.Rice,B.Jeffs,andM.Jensen,Astatisticalmodelforangleofarrivalinindoor

    multipath propagation, in Proc. IEEE Vehic. Technol. Conf., Phoenix, AZ, 1997, pp. 1415-

    1419.

    [11] P.C.FanninandA.Molina,Analysisofmobileradiochannelsoundingmeasurementsininner

    cityDublinat1.808Ghz,IEEProc.Commun.,vol.143,pp.311-316,1996.

    [12] J.G.Wang,A.S.Mohan,andT.A.Aubrey,Angles-of-arrivalofmultipathsignalsinindoor

    environments,inProc.IEEEVehic.Technol.Conf.,Atlanta,GA,1996,pp.155-159.

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    17/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page17of27

    [13] S.Guerin,Indoorwidebandandnarrowbandpropagationmeasurementsaround60.5GHzinan

    emptyandfurnishedroom,inProc.IEEEVehic.Technol.Conf.,Atlanta,GA,1996,pp.160-

    164.

    [14] T.LoandJ.Litva,Anglesofarrivalofindoormultipath,Electron. Lett.,vol.28,pp.1687-

    1689,1992.

    [15] D. O. Reudink, Large-scale variations of the average signal, in Microwave Mobile

    Communications.W.C.Jakes,Jr.,Ed.,NewYork:Wiley,1974,pp.79-131.

    [16] W.C.Y.Lee,Findingtheapproximateangularprobabilitydensityfunctionofwavearrivalby

    usingadirectionalantenna,IEEETrans.AntennasPropagat.,vol.21,pp.328-334,1973.

    [17] P.Petrus,J.H.Reed,andT.S.Rappaport,Effectsofdirectionalantennasatthebasestationon

    theDopplerspectrum,IEEECommun.Lett.,vol.1,pp.40-42,1997.

    [18] J.C.LibertiandT.S.Rappaport,Ageometricallybasedmodelforline-of-sightmultipathradio

    channels,inProc.IEEEVehic.Technol.Conf.,Atlanta,GA,1996,pp.844-848.

    [19] K.Anim-Appiah,Complexenvelopecorrelationsfornon-isotropicscattering,Electron. Lett.,

    vol.34,pp.918-919,1998.

    [20] M.D.AustinandG.L.Stuber,Velocityadaptivehandoffalgorithmsformicrocellularsystems,

    IEEETrans.Vehic.Technol.,vol.43,pp.549-561,1994.

    [21] K.V.Mardia,StatisticsofDirectionalData.London:Academic,1972.

    [22] M. K. Simon, S. M. Hinedi, and W. C. Lindsey,Digital Communication Techniques- Signal

    DesignandDetection.UpperSaddleRiver,NJ:PTRPrenticeHall,1995.

    [23] A. J. Viterbi, Phase-locked loop dynamics in the presence of noise by Fokker-Planck

    techniques,Proc.IEEE,vol.51,pp.1737-1753,1963.

    [24] H.LeibandS.Pasupathy,ThephaseofavectorperturbedbyGaussiannoiseanddifferentially

    coherentreceivers",IEEETrans.Inform.Theory,vol.34,pp.1491-1501,1988.

    [25] F.Ayres,Jr.andE.Mendelson, TheoryandProblemsofDifferentialandIntegralCalculus,3rd

    ed.,NewYork:McGraw-Hill,1990.

    [26] I.S.GradshteynandI.M.Ryzhik,TableofIntegrals,Series,andProducts,5thed.,A.Jeffrey,

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    18/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page18of27

    Ed.,SanDiego,CA:Academic,1994.

    [27] A.AbdiandM.Kaveh,Anewvelocityestimatorforcellularsystemsbasedonhigherorder

    crossings,inProc.AsilomarConf.Signals,Systems,Computers,PacificGrove,CA,1998,pp.

    1423-1427.

    [28] H. Allen Barger, Dynamic characteristics of a narrowband land mobile communication

    channel,IEEETrans.Vehic.Technol.,vol.47,pp.216-224,1998.

    [29] G.L.Stuber,privatecommunication,1999.

    [30] A.AbdiandM. Kaveh, On theutilityof the gamma PDF inmodelingshadow fading(slow

    fading),inProc.IEEEVehic.Technol.Conf.,Houston,TX,1999,pp.2308-2312.

    [31] A.V.OppenheimandR.W.Schafer,Discrete-Time Signal Processing.EnglewoodCliffs,NJ:

    PrenticeHall,1989.

    [32] S.H.Lin,Statisticalbehaviorofafadingsignal,Bell Syst. Tech. J.,vol.50,pp.3211-3270,

    1971.

    [33] A. Abdi, H. A. Barger, and M. Kaveh, Signal modeling in wireless fading channels using

    spherically invariant processes, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,

    Istanbul,Turkey,2000,pp.2997-3000.

    [34] R.GoninandA.H.Money,Nonlinear pL -NormEstimation.NewYork:MarcelDekker,1989.

    [35] R.VonMises,berdieGanzzahligkeitderAtomgewichtundverwandteFragen, Physikal.

    Z.,vol.19,pp.490-500,1918.

    [36] K.W.YipandT.S.Ng,Karhunen-LoeveexpansionoftheWSSUSchanneloutputandits

    applicationtoefficientsimulation,IEEEJ.Select.AreasCommun.,vol.15,pp.640-646,1997.

    [37] M.Visintin,Karhunen-LoeveexpansionofafastRayleighfadingprocess,Electron.Lett.,vol.

    32,pp.1712-1713,1996.

    [38] P.A.BelloandB.D.Nelin,Theinfluenceoffadingspectrumonthebinaryerrorprobabilities

    ofincoherentand differentiallycoherent matchedfilterreceivers,IRE Trans. Commun. Syst.,

    vol.10,pp.160-168,1962.

    [39] W.C.Jakes,Jr.,Ed.,MicrowaveMobileCommunications.NewYork:Wiley,1974.

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    19/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page19of27

    [40] M.D.Yacoub,FoundationsofMobileRadioEngineering.BocaRaton,FL:CRC,1993.

    [41] T.B.Welch,M.J.Walker,andR.E.Ziemer,Effectsofdirectionalantennaswithrealizable

    beampatternsonthespaced-timecorrelationfunction,in WirelessPersonalCommunications:

    Emerging Technologies for Enhanced Communications.W.H.Tranter,T.S.Rappaport,B.D.

    Woerner,andJ.H.Reed,Eds.,Boston,MA:Kluwer,1999,pp.1-9.

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    20/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page20of27

    TABLEI

    ESTIMATEDVALUESFORTHEPARAMETERSOFTHESIMPLENON-ISOTROPICANDCOMPOSITENON-

    ISOTROPIC/ISOTROPICMODELS,TOGETHERWITHTHEESTIMATIONERRORS

    Clarkesmodel

    Thesimplenon-isotropicmodel

    Thecompositenon-isotropic/isotropmodel

    Recordno.

    Approximateorientationto

    transmitter MSEClarke p min(MSESimple) p min(MSECompo

    0011 Perpendicular 1.2E-1 2.4 19.8o 3.3E-4 38 280.8o 0.80 3.3E-40012 Perpendicular 9.3E-2 3.0 36.0o 1.1E-3 29 266.4o 0.78 2.5E-4

    0013 Parallel 4.6E-2 1.2 0o 1.5E-2 700 0o 0.50 3.0E-3

    0014 Parallel 1.6E-1 2.4 0o 7.0E-3 12 331.2o 0.80 2.9E-4

    0015 Perpendicular 1.6E-1 2.4 0o 1.7E-2 36 331.2o 0.72 9.7E-4

    0016 Perpendicular 2.3E-2 1.2 36.0o 9.8E-3 700 108.0o 0.42 3.1E-3

    0017 Perpendicular 5.2E-2 1.5 19.8o 8.9E-3 700 79.2o 0.56 4.1E-40018 Parallel 2.5E-1 3.3 0o 3.4E-3 88 252.0o 0.86 7.8E-40019 Perpendicular 6.7E-3 0.6 0o 2.7E-3 700 237.6o 0.30 7.6E-4

    0020 Perpendicular 1.1E-1 2.1 14.4o 1.5E-3 59 79.20o 0.74 1.5E-40021 Parallel 1.2E-1 2.1 10.8o 2.0E-4 39 259.2o 0.80 1.8E-4

    0022 Perpendicular 6.9E-2 1.5 0o 1.1E-2 700 252.0o 0.60 1.3E-3

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    21/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page21of27

    Fig.1. VonMisesPDFfortheangleofarrivalofscattercomponentsatthemobilestation( 0=p ). 0=

    5.0=

    ----- 3= ---- 10=

    Fig.2. Von Mises PDF inpolarcoordinates for the angle of arrivalof scatter components at the

    mobilestation( 0=p ).

    0=

    5.0=

    ----- 3= ---- 10=

    3 2 1 0 1 2 3

    0

    0.2

    0.40.6

    0.8

    1

    1.2

    p

    tacs

    0 0.2 0.4 0.6 0.8 1 1.2

    0.2

    0.1

    0

    0.1

    0.2

    p

    tacs

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    22/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page22of27

    Fig.3. ThePDFofangleofarrivalofscattercomponentsatthemobilestationfordifferenturban

    scenarios.

    Clarkesscenario: 0=

    S1scenario: 3=

    -----S2scenario: 3= ----S3scenario: 3=

    3 2 1 0 1 2 3

    0

    0.1

    0.20.3

    0.4

    0.5

    0.6

    p

    ta

    cs

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    23/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page23of27

    Fig.4. Realpartofthenormalizedautocorrelationfunctionofthecomplexenvelopeatthemobile

    stationduetomultipathcomponents(scatterandspecular),fordifferenturbanscenarios.

    Clarkesscenario: 0=K , 0=

    S1andS2scenarios: 0=K , 10=

    S3scenario: 0=K , 10=

    Fig.5. Realpartofthenormalizedautocorrelationfunctionofthecomplexenvelopeatthemobile

    stationduetomultipathcomponents(scatterandspecular),fordifferenturbanscenarios.

    Clarkesscenario: 0=K , 0=

    S1andS2scenarios: 1=K , 3= , 00 =

    S3scenario: 1=K , 3= , 20 =

    0 0.2 0.4 0.6 0.8 1fm

    1

    0.5

    0

    0.5

    1

    eR

    rr

    0 0.2 0.4 0.6 0.8 1fm

    0.75

    0.5

    0.25

    0

    0.25

    0.50.75

    1

    eR

    rr

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    24/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page24of27

    Fig.6. Normalized power spectrum of the complex envelope at the mobile station due to scatter

    components,fordifferenturbanscenarios.Clarkesscenario: 0=

    S1scenario: 10=

    S2scenario: 10=

    S3scenario: 10=

    Fig.7. Normalized power spectrum of the complex envelope at the mobile station due to scatter

    components,fordifferenturbanscenarios.

    Clarkesscenario: 0=

    S1scenario: 3=

    S2scenario: 3=

    S3scenario: 3=

    0.75 0.5 0.25 0 0.25 0.5 0.75ffm

    0

    1

    2

    3

    4

    fmS

    rr

    tacs

    f

    0.75 0.5 0.25 0 0.25 0.5 0.75f f

    m

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    fmSrr

    tacs

    f

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    25/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page25of27

    Fig.8. MapoftheArlingtonsiteforcollectionoftheurbandatacontainedinfiles#0019-#0022.

    S.NEDDERM A N

    WEST3R D ST.

    WESTFIR STSTREET

    WESTSECONDST

    W.BORDERST.

    W.SO UTHST.

    W.NEDDERMANDR.

    COOPERST.

    YATESST.

    COLLEGEST.

    S.

    WESTST.

    S.

    OAK

    ST

    .

    S.P

    EC

    AN

    ST

    .

    1/4MILE

    FILE0019

    15MPH

    AREAOF

    SIGNAL

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    26/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Page26of27

    Fig.9. Normalizedautocovarianceoftheenvelope-squaredatthemobile,fordifferentrecords.

    Empirical(obtainedbythetime-averagedestimatorofthecorrelationfunction[31,p.743])

    Thesimplemodelin(19),with ),( p estimatedbynonlinearleastsquares

    Thecompositemodelin(20),with ),,( p estimatedbynonlinearleastsquares

    Clarkesmodel

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Record #0011

    Normalizedautocovarianceofen

    velopesquared

    fm

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Record #0013

    Normalizedautocovarianceofen

    velopesquared

    fm

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Record #0014

    Normalizedautocovarianceof

    envelopesquared

    fm

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Record #0016

    Normalizedautocovarianceof

    envelopesquared

    fm

  • 7/28/2019 T VT NonIsoCorrSpec Revised

    27/27

    AParametricModelfortheDistributionoftheAngleofArrivalandtheAssociatedCorrelationFunctionandPowerSpectrumAliAbdietal.

    Fig.9.Continued.

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Record #0017

    Normalizedautocovarianceofen

    velopesquared

    fm

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Record #0018

    Normalizedautocovarianceofen

    velopesquared

    fm

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Record #0019

    Normalizedautocovarianceof

    envelopesquared

    fm

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Record #0022

    Normalizedautocovarianceof

    envelopesquared

    fm