t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural...

12
.' NASA Technical Memorandum 100147 . e .* ' t Ultrasonic NDE of Structural Ceramics for I Power and Propulsion Systems (6ASA-TR-100147) ULTKASCIIC hl;E CE ~~87-2~3~2 smucTuRaL CEEABICS FCB ECIEL ALC PROPULSION SYSIEUS (SASA) 12 p Avail: 611S HC aC2/HF A01 CSCL 14D Unclas G3/38 00906 34 Alex Vary, Edward R. Generazio, Don J. Roth Lewis Research Center Cleveland, Ohio and George Y. Baaklini Cleveland State University Cleveland, Ohio Prepared for the 4th European Conference on Non-Destructive Testing sponsored by the British Institute of Non-Destructive Testing London, England, September 13- 18, 1987 https://ntrs.nasa.gov/search.jsp?R=19870016929 2018-07-14T14:58:19+00:00Z

Transcript of t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural...

Page 1: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

.' NASA Technical Memorandum 100147 . e .* '

t

Ultrasonic NDE of Structural Ceramics for I Power and Propulsion Systems

(6ASA-TR-100147) ULTKASCIIC hl;E CE ~ ~ 8 7 - 2 ~ 3 ~ 2 s m u c T u R a L CEEABICS F C B E C I E L ALC PROPULSION S Y S I E U S (SASA) 12 p A v a i l : 611S HC a C 2 / H F A01 CSCL 14D Unclas

G3/38 00906 34

Alex Vary, Edward R. Generazio, Don J. Roth Lewis Research Center Cleveland, Ohio

and

George Y. Baaklini Cleveland State University Cleveland, Ohio

Prepared for the 4th European Conference on Non-Destructive Testing sponsored by the British Institute of Non-Destructive Testing London, England, September 13- 18, 1987

https://ntrs.nasa.gov/search.jsp?R=19870016929 2018-07-14T14:58:19+00:00Z

Page 2: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

ULTRASONIC NDE OF STRUCTURAL CERAMICS FOR POWER AND PROPULSION SYSTEMS

A lex Vary , Edward R . Generaz io , Don J . Roth N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n

Lewis Research Cen te r C leve land, O h i o 44135

and

George Y . Baak.1 i n i C leve land S t a t e U n i v e r s i t y

C leve land, Oh io 44112

SUMMARY

A r e v i e w i s p resen ted on research i n v e s t i g a t i o n s o f s e v e r a l u l t r a s o n i c e v a l u a t i o n techn iques a p p l i c a b l e t o s t r u c t u r a l ceramics f o r advanced h e a t eng ines . T h i s r e v i e w h i g h l i g h t s r e c e n t work conducted under t h e sponsorsh ip o f and a t t h e Lewis Research Cen te r . R e s u l t s o b t a i n e d w i t h scann ing a c o u s t i c mic roscopy , scann ing l a s e r a c o u s t i c mic roscopy , p h o t o a c o u s t i c m ic roscopy , and scann ing e l e c t r o n a c o u s t i c microscopy a r e compared.

I imag ing techn iques , m i c r o s t r u c t u r e c h a r a c t e r i z a t i o n by a n a l y t i c a l u l t r a s o n i c s i s d e s c r i b e d . The techn iques were eva lua ted by a p p l i c a t i o n t o r e s e a r c h samples of m o n o l i t h i c s i l i c o n n i t r i d e and s i l i c o n c a r b i d e i n t h e form o f d i s c s and b a r s c o n t a i n i n g n a t u r a l l y - o c c u r r i n g and d e l i b e r a t e l y - i n t r o d u c e d f l a w s and m i c r o - s t r u c t u r a l anomal ies . S t r e n g t h s and l i m i t a t i o n s o f t h e techn iques a r e d i scussed .

I n a d d i t i o n t o these f l a w

INTRODUCTION

M o n o l i t h i c s i l i c o n c a r b i d e and s i l i c o n n i t r i d e a r e c u r r e n t l e a d i n g s t r u c - t u r a l m a t e r i a l s for many components i n advanced power and p r o p u l s i o n systems. Bu t , a l t h o u g h b o t h have good h i g h tempera ture s t r e n g t h and o x i d a t i o n r e s i s t a n c e , t h e y c u r r e n t l y e x h i b i t low toughness ( b r i t t l e n e s s ) and unaccep tab le v a r i a b i l i t y i n t h e i r mechanical p r o p e r t i e s (Sheppard, 1986). The b r i t t l e n e s s o f ceramics can l e a d t o sudden c a t a s t r o p h i c f a i l u r e under work ing s t r e s s e s . These f a c t o r s l e a d t o u n p r e d i c t a b l e performance which i s t h e most s e r i o u s hand icap t o t h e use of m o n o l i t h i c ceramics i n load-bear ing s t r u c t u r e s . Moreover, t hese problems a r e aggrava ted by and u s u a l l y t r a c e a b l e t o poor c o n t r o l o v e r f l a w p o p u l a t i o n s and n o n u n i f o r m i t y o f m i c r o s t r u c t u r e . M o n o l i t h i c ceramics a r e v e r y s e n s i t i v e t o m i n u t e f l a w s so t h a t even f l a w s i n t h e 20 t o 50 pm s i z e range a r e l i k e l y t o be c r i t i c a l . appear i n f i g u r e 1 .

Examples o f f l a w s t h a t p lague c u r r e n t m o n o l i t h i c ceramics

One approach t o r e l i a b i l i t y i s t o screen o u t those ceramic p a r t s t h a t con- t a i n ha rmfu l f l a w s . Another approach i s t o use n o n d e s t r u c t i v e e v a l u a t i o n (NDE) t echn iques f o r process c o n t r o l . This i n c l u d e s use o f NDE techn iques d u r i n g p r o c e s s i n g development r e s e a r c h t o d e t e c t f l a w s and t o h e l p d e v i s e ways t o reduce t h e i n c i d e n c e o f ha rmfu l f laws and a l s o t o ensure t h a t ceramics e x h i b i t c o r r e c t m i c r o s t r u c t u r e s and u n i f o r m p r o p e r t i e s . T h e r e a f t e r , NDE i s needed d u r i n g v a r i o u s stages o f p r o d u c t i o n t o ensure t h a t o n l y p a r t s c o m p l e t e l y f r e e o f d e t r i m e n t a l f l a w s and m i c r o s t r u c t u r a l anomal ies a r e i n s t a l l e d i n eng ines .

Page 3: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

T h i s r e p o r t desc r ibes the c a p a b i l i t i e s and l i m i t a t i o n s o f s e v e r a l a c o u s t i c mic roscopy techn iques f o r d e t e c t i n g m i n u t e f l a w s t h a t can reduce t h e r e l i a - b i l i t y o f m o n o l i t h i c s t r u c t u r a l ce ramics . I n a d d i t i o n , a n a l y t i c a l u l t r a s o n i c NDE for m a t e r i a l c h a r a c t e r i z a t i o n i s d i s c u s s e d i n c o n n e c t i o n w i t h p o t e n t i a l s f o r c h a r a c t e r i z i n g m i c r o s t r u c t u r e and t h e r e b y i n d i r e c t l y v e r i f y i n g t h e c o n s i s t - ency and u n i f o r m i t y of mechanical p r o p e r t i e s .

SCANNING LASER ACOUSTIC MICROSCOPY (SLAM)

Represen ta t i ve SLAM images of f l aws i n ceramic samples appear i n f i g u r e 2 . The r e l i a b i l i t y o f SLAM f o r f l a w d e t e c t i o n i n s i l i c o n c a r b i d e and s i l i c o n n i t r i d e was eva lua ted by i n t r o d u c i n g known p o p u l a t i o n s o f m i c r o v o i d s i n t o r e p r e s e n t a t i v e samples ( B a a k l i n i and Roth , 1986). Green ceramic powder com- pac ts were seeded w i t h p l a s t i c m ic rospheres from 50 t o 530 pm d i a m e t e r . Voids formed a f t e r v o l a t i l i z i n g t h e spheres i n a p r e h e a t t r e a t m e n t . The seeded v o i d s remained a f t e r s i n t e r i n g the compacts i n t o modu lus -o f - rup tu re (MOR) b a r s . The seeded m ic rovo ids were s i m i l a r t o n a t u r a l v o i d s t h a t account f o r r o u g h l y 2 5 p e r c e n t o f f r a c t u r e o r i g i n s found i n ceramic MOR specimens (Sanders and B a a k l i n i , 1986). S u f f i c i e n t numbers of seeded v o i d s o f v a r i o u s s i z e s were i n t r o d u c e d t o s a t i s f y t h e g e n e r a t i o n of p r o b a b i l i t y - o f - d e t e c t i o n (POD) s t a t - i s t i c s . POD r e s u l t s for SLAM a r e shown i n f i g u r e 3.

I t i s e v i d e n t f r o m f i g u r e s 2 and 3 t h a t s u r f a c e p r e p a r a t i o n by p o l i s h i n g or g r i n d i n g i s needed t o enhance t h e d e t e c t a b i l i t y even o f n e a r - s u r f a c e v o i d s t o the o r d e r of 50 pm d iamete r . Surface roughness a f f e c t s t h e s i n g l e - t o - n o i s e r a t i o i n SLAM images. Moreover, MOR b a r samples w i t h a s - f i r e d ( a s - s i n t e r e d ) s u r f a c e s show decreased f l a w d e t e c t a b i l i t y w i t h i n c r e a s e d t h i c k n e s s . Flaw d e t e c t a b i l i t y a l s o depends on t h e r e l a t i v e coarseness o f t h e m a t e r i a l m i c r o - s t r u c t u r e . I n s i l i c o n c a r b i d e samples f l a w d e t e c t a b i l i t y was found t o be s i g - n i f i c a n t l y less than i n s i l i c o n n i t r i d e samples t h a t had a much f i n e r g r a i n s t r u c t u r e (Roth and co l l eagues , 1986) .

SLAM i s an e x c e l l e n t r e s e a r c h tool b u t has somewhat l i m i t e d a p p l i c a b i l i t y t o complex shapes u s u a l l y f ound i n h e a t eng ines . Access to oppos ing s i d e s o f a t e s t o b j e c t i s needed. A p p l i e d t o s imp le geomet r i c shapes, SLAM does p e r m i t con t i nuous r e a l - t i m e imag ing ( a t v i d e o frame r a t e s ) . SLAM can form a b a s i s f o r assess ing u l t r a s o n i c imag ing methods and fo r v i s u a l i z i n g wave p r o p a g a t i o n modes and i n r e a c t i o n s (Generaz io and Roth , 1986).

SANNING ACOUSTIC MICROSCOPY (SAM)

The SAM method d e s c r i b e d he re i s a l s o c a l l e d r e f l e c t i o n a c o u s t i c micro- scopy (Nikoonahad, 1984) . A SAM image appears i n f i g u r e 4. U n l i k e SLAM images, SAM images a re n o t i ns tan taneous ( i . e . , n o t produced a t v i d e o frame r a t e s ) . SAM images a r e produced by mechanical m ic roscanners so t h a t i t may t a k e up t o 10 min t o image a 5 mm2 a rea w i t h a 10 pm l i n e r e s o l u t i o n . V ideo frame r a t e s a r e p o s s i b l e w i t h high-speed, acousto-mechanical d r i v e r s . Then, t h e scanned area must be s e v e r a l o r d e r s s m a l l e r . These l a t t e r SAM dev i ces ach ieve h ighe r m a g n i f i c a t i o n s and u s u a l l y o p e r a t e a t t r a n s d u c e r f r e q u e n c i e s approaching 1 GHz. T h i s c a l l s f o r m e t a l l u r g i c a l l y p o l i s h e d s u r f a c e s t h a t a re i m p r a c t i c a l for t h e i n s p e c t i o n needs contempla ted h e r e .

2

Page 4: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

With SAM, access to only one side of a test object is needed. SAM can be adapted to curved surfaces by means of articulated probes. for surface and substrate characterization. By digitizing and saving the sig- nals for each x-y coordinate point considerable flaw characterization data can be stored for future retrieval and analysis. There is no limit on part thick- ness but depth of penetration is limited by attenuation of the high ultrasonic frequencies needed to resolve microflaws. Although much slower than SLAM, SAM produces sharper images of flaws and allows easier estimation of flaw depth. Precision in flaw definition and flaw location are gained by sacrificing speed since repeated frame scans are needed with the focal spot positioned at a dif- ferent depth for each successive scan.

SAM can be used

PHOTO-ACOUSTIC MIRCOSCOPY (PAM)

PAM is a thermo-acoustic method that depends on laser excitation of acous- tic waves (Thomas and colleagues, 1980). The magnitude and phase of the acous- tic waves are related to thermal property variations and proximity of material anomalies to the surface. The depth to which flaws can be detected depends on the material's thermal diffusion length.

PAM is readily adapted to complex shapes by designing appropriate isola- tion cells to contain them. Of the techniques mentioned so far, only PAM is essentially noncontacting (SLAM and SAM required liquid coupling). Conceptu- ally, because it does not need liquid couplants that would be detrimental, PAM should be applicable to green samples. But PAM has a serious drawback. It has been found that laser beams with intensities sufficient to generate strong acoustic waves can mar the surface along the scan lines. Subsequent sintering of the marred samples apparently causes cracks in the scanned areas that do not appear in the unscanned areas (Klima and colleagues, 1986). Continued scanning of green samples tends to drive off substances that coat the cell window and occlude the laser beam. Hence, PAM seems inappropriate for green ceramics.

The spatial resolution of PAM images can be made comparable to that of either SLAM or SAM, but the resolution is obtained by sacrificing scan speed. For the same spatial resolution, PAM is the slowest of the three techniques. The ability to detect small flaws depends on scan line density and scan speed. The laser scan speed is limited by thermal inertia. The beam must dwell long enough at each point to produce a fixed number of thermal oscillations. may take roughly 4 hours to scan a 1 cm2 area with a line resolution of 25 pm.

It

SCANNING ELECTRON ACOUSTIC MICROSCOPY (SEAM)

SEAM requires that the object to be examined be placed in a high vacuum scanning electron mircoscope (SEM) enclosure. Of the acoustic microscopy methods mentioned thus far, it is the least accommodating to heat engine com- ponents (Klima, Baaklini, and Able, 1986).

The SEAM technique is certainly appropriate for material research and for inspecting microelectronic circuit components and similar articles. and other nonconductors need to be coated with a conducting layer to attract the beam electrons. A carbon deposit on silicon carbide or silicon nitride samples also enhances image contrast.

Ceramics

The need for a high vacuum environment 3

Page 5: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

can pose a problem of some t y p e s of ceramic p a r t s , e s p e c i a l l y i f t h e y t e n d t o ou tgas . SEAM images can be produced a t r a t e s i n t e r m e d i a t e between SLAM and PAM. The image o f a 5 mm2 a r e a can be genera ted i n r o u g h l y 1 m in . The l i n e r e s o l u t i o n o f SEAM i s o f t h e o r d e r of 5 pm. The s p a t i a l r e s o l u t i o n o f SEAM images depend on the thermal wave leng th w h i l e t h e dep th o f d e t e c t i o n depends on t h e thermal d i f f u s i o n l e n g t h i n t h e m a t e r i a l (Rosencwaig, 1980) . Pre- l i m i n a r y i n v e s t i g a t i o n s on s i l i c o n c a r b i d e and s i l i c o n n i t r i d e samples i n d i c a t e t h a t SEAM r e a d i l y images s u p e r f i c i a l p i t s , nodu les , and n a t u r a l c r a c k s .

ANALYTICAL ULTRASONICS

The p r i m a r y o b j e c t i v e o f a n a l y t i c a l u l t r a s o n i c s i s n o t t o d e t e c t or cha r - a c t e r i z e i n d i v i d u a l f l a w s b u t t o c h a r a c t e r i z e m a t e r i a l m i c r o s t r u c t u r e and d i f - f u s e m i c r o f l a w p o p u l a t i o n s ( e . g . , mean g r a i n s i z e , g r a i n s i z e d i s t r i b u t i o n , p o r o s i t y , m ic roc rack d e n s i t y ) . By c h a r a c t e r i z i n g t h e f a c t o r s t h a t govern e x t r i n s i c p r o p e r t i e s a n a l y t i c a l u l t r a s o n i c s can p r o v i d e t h e b a s i s f o r i n d i r e c t l y v e r i f y i n g mechanical p r o p e r t i e s and assess ing s e r v i c e d e g r a d a t i o n o f ceramic components (Vary , 1986, 1987).

One approach to a n a l y t i c a l u l t r a s o n i c s i s based on c o n t a c t , pu l se -echo methodology where broadband, h i g h f requency p u l s e s a r e i n t r o d u c e d i n t o a sample (Generaz io and co l l eagues , 1987). R e f l e c t i o n s from t h e back s u r f a c e o f t h e sample a r e analyzed t o o b t a i n p r e c i s e v e l o c i t y and a t t e n u a t i o n d a t a o v e r a wide f requency range . The d a t a may be o b t a i n e d by t a k - i n g a s e r i e s o f samp l ing measurements or by s y s t e m a t i c scann ing . I n t h e l a t t e r case, t h e d a t a a r e assembled i n t o mappings o f v e l o c i t y and a t t e n u - a t i o n v a r i a t i o n s , f i g u r e s 5 and 6 . These mappings can be c o r r e l a t e d w i t h v a r i a t i o n s i n m o d u l i , w i t h m i c r o - s t r u c t u r e , and u l t i m a t e l y w i t h mechanical p r o p e r t i e s ( s t r e n g t h , t oughness ) .

The pulse-echo approach r e q u i r e s access t o o n l y one s i d e of a t e s t p i e c e , b u t mean ing fu l s i g n a l a c q u i s i t i o n depends on p a r t shape and c e r t a i n accom- modat ions between t h e probe and p a r t . I d e a l l y , t h e pu lse-echo s i g n a l shou ld be o b t a i n e d between smooth, f l a t , and v e r y p a r a l l e l s u r f a c e s . Samples l i k e d i s c s or modulus-o f - rup ture (MOR) b a r s , w i t h f l a t , p o l i s h e d sur faces a r e i d e a l and p r e f e r r e d . For p a r t s w i t h complex shapes i t i s necessary e i t h e r - t o adapt probes or , o c c a s s i o n a l l y , t o d e s i g n p a r t s t o accommodate t h e p robes .

Pulse-echo measurements were made on a s e r i e s o f s i n t e r e d s i l i c o n c a r b i d e MOR b a r s t h a t were f a b r i c a t e d w i t h d e l i b e r a t e l y v a r i e d m i c r o s t r u c t u r e s ( g r a i n s i z e ) , d e n s i t i e s ( p o r o s i t y ) , and s u r f a c e c o n d i t i o n s ( roughness ) . F i g u r e 7 summarizes c o r r e l a t i o n s among v e l o c i t y , a t t e n u a t i o n , and m i c r o s t r u c t u r a l f a c - tors such as g r a i n s i z e and p o r o s i t y . I t i s seen t h a t l a r g e changes i n t h e a t t e n u a t i o n spectrum accompany changes i n m i c r o s t r u c t u r e w h i l e c o r r e s p o n d i n g changes i n v e l o c i t y a r e c o m p a r a t i v e l y s m a l l . These f i n d i n g s i n d i c a t e t h a t u l t r a s o n i c a t t e n u a t i o n measurements a r e p i v o t a l i n sens ing m i c r o s t r u c t u r a l v a r i a t i o n s and assoc ia ted f a c t o r s t h a t govern s t r e n g t h , toughness and o t h e r e x t r i n s i c mechanical p r o p e r t i e s .

DISCUSSION

The f o u r acous t i c mic roscopy techn iques compared i n t h i s paper have t h e a b i l i t y t o d e t e c t m inu te f laws i n m o n o l i t h i c ce ramics . The p rob lem i s t o d e f i n e the r e l a t i v e s t r e n g t h s and l i m i t a t i o n s o f t h e t e c h n i q u e s . I d e a l l y ,

4

Page 6: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

each t e c h n i q u e shou ld be e v a l u a t e d i n terms o f p r o b a b i l i t y o f d e t e c t i o n (POD) s t a t i s t i c s . O the rw ise , i t i s imposs ib le t o a s s e r t t h e e s s e n t i a l m e r i t o f any g i v e n techn ique o v e r a n o t h e r . Accompl ish ing t h i s p roves t o be q u i t e d i f because known p o p u l a t i o n s of d i f f e r e n t k i n d s o f l i k e l y f l a w s need t o be a t i c a l l y embedded i n r e p r e s e n t a t i v e t e s t samples. One f r e q u e n t l y - o c c u r r f a i l u r e - c a u s i n g f l a w t y p e can be rep resen ted by a r t i f i c i a l l y i m p l a n t e d m v o i d s . T h i s r e p o r t cove rs POD s t a t i s t i c s f o r o n l y one t e c h n i q u e , namely t o i l l u s t r a t e i t s m i c r o v o i d d e t e c t i o n c a p a b i l i t y . The SLAM example p rov touchs tone f o r assess ing t h e r e l a t i v e m e r i t s o f t h e r e m a i n i n g a c o u s t i c m scopy techn iques d i scussed h e r e i n .

i c u i t ys t e m - ng c r o - SLAM, des a c ro-

4 ,cous t ic mic roscopy techn iques should be c o n s i d e r e d fo r r e s o l v i n g f l a w s i n the range from tens o f m ic rons t o seve ra l hundred m i c r o n s . To ach ieve s u f - f i c i e n t s p a t i a l r e s o l u t i o n i t i s necessary t o r e s t r i c t t h e a rea t o be imaged, t y p i c a l l y from 1 mm2 t o about 1 cm2. reas lms t o i n s p e c t c e r t a i n c r i t i c a l areas t o t h e 10 pm l e v e l o f r e s o l u t i o n , i t i s c u r r e n t l y i m p r a c t i c a l to demand t h a t e v e r y square m i l l i m e t e r o f a ceramic hea t eng ine p a r t be scanned t o r e s o l v e e v e r y 10 prn f l a w .

A l though t h e r e may be c o m p e l l i n g

A l though SAM appears to be t h e b e s t t echn ique fo r s i n t e r e d ceramics no s i n g l e a c o u s t i c mic roscopy techn ique can be c i t e d as t h e p r e f e r r e d one and none o f t h e techn iques shou ld be comp le te l y e l i m i n a t e d from c o n s i d e r a t i o n . I f a techn ique i s n o t s u i t a b l e fo r hardware i n s p e c t i o n , t hen i t may be s u i t a b l e as a resgarch t oo l . Each t e c h n i q u e has a t l e a s t one d e s i r a b l e f e a t u r e l a c k i n g i n t h e o t h e r s . For example, SAM g i v e s b e t t e r f l a w d e t e c t i o n and d e f i n i t i o n than SLAM, b u t SLAM g i v e s immediate images w h i l e SAM takes more t i m e t o image t h e same area .

Each a c o u s t i c mic roscopy techn ique was viewed r e l a t i v e t o i t s a p p l i c a b i l i t y t o green s t a t e and f u l l y d e n s i f i e d ( e . g . , s i n e r e d ) ceramic components. Conven- i ence i n examin ing p a r t s h a v i n g complex shapes was a l s o consider-ed. Techniques t h a t do n o t r e q u i r e c o n t a c t probes are p r e f e r r e d for ease of i n s p e c t i o n and, p a r t i c u l a r l y , t o a v o i d p e r t u r b i n g green s t a t e compacts. U l t r a s o n i c methods u s u a l i y r e q u i r e probes t h a t make c o n t a c t t h rough a c o u p l i n g medium. Noncontac t methods t h a t use l a s e r s for p roduc ing and sens ing u l t r a s o n i c waves a r e a t t r a c - t i v e a l t e r n a t i v e s . Of t h e methods desc r ibed h e r e i n , PAM uses a l a s e r beam t o prQduce u l t r a s o n i c waves w h i l e SLAM uses a l a s e r beam t o d e t e c t u l t r a s o n i c s i g n a i s t h a t have propagated th rough a p a r t .

p r o v l d e s t o t a l l y p r a c t i c a l " l a s e r - i n , l a s e r - o u t " a c o u s t i c m ic roscopy or a n a l y t - i c a l u l t r a s o n i c s . One techn ique t h a t o f f e r s n o n c o n t a c t l a s e r imag ing capa- b i l i t y i s t h e s o - c a l l e d mi rage techn ique ( I n g l e h a r t , Thomas, and S c h u l d i e s , 1980). O the r noncon tac t approaches b e l o n g i n g t o t h i s the rma l wave imag ing genre u t i l i z e i n f r a r e d emiss ion or probe beam r e f l e c t i o n to d e t e c t f l a w s and anomal ies . These l a t t e r techn iques are under s t u d y and have r e p o r t e d r e s o l u - t i o n s o f t h e o r d e r o f 1 p m . O f course, t h i s r e s o l u t i o n c a p a b i l i t y i s won a t t h e expense o f l o n g t imes needed t o produce an image. Moreover, t h e y a r e sub- j e c t t o e f f e c t s o f s u r f a c e roughness, c u r v a t u r e absorded l a y e r s , and b i n d e r s / v o l a t i l i e s i n g reen s t a t e m a t e r i a l s .

assessement and v e r i f i c a t i o n o f mechanical s t r e n g t h and toughness and proper:y d e g r a d a t i o n i n m o n o l i t h i c , p a r t i c u l a t e or wh isker - toughened, and f i b e r r e i n - f o r c e d ceramic m a t r i x c o m p o s i t i e s . Combined w i t h a c o u s t i c m ic roscopy f o r f l a w

A t t h i s w r i t i n g , t h e r e e x i s t s no s i n g l e l a s e r u l t r a s o n i c s t e c h n i q u e t h a t

A n a l y t i c a l u l t r a s o n i c s promises t o be a key approach o f t h e n o n d e s t r u c t i v e

5

Page 7: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

detection and imaging, analytical ultrasonics should provide information needed to identify loci where isolated or clustered flaws are more likely to interact either with each other or with material microstructures in which they reside. Analytical ultrasonics complemented by mircofoucs radiography or computed tomo- graphy may be the only practical approach to assessing toughened ceramics and ceramic matrix composites in which individual flaws are too minute, numerous, and diffuse to justify attempts to image them separately using acoustic microscopy.

CONCLUSION

Two classes of ultrasonics techniques are reviewed in this paper: (1) acoustic microscopy techniques for flow detection and imaging; and (2) analyt- ical ultrasonics of characterizing material microstructure and morphology. The former class involves detection and mapping of individual flaws an clusters of discrete flaws. The latter class involves indirect assessment of mechanical property variations that are governed by diffuse flaws populations, microstruc- ture and morphology. The review given herein indicates merits and disadvantages of key ultrasonic approaches to ceramic NDE.

REFERENCES

1. Baaklini, G.Y., and D.J. Roth (1986). Probability o f Detection of Internal Voids in Structural Ceramics Using Microfocus Radiography. J. Mater. - Res., 1, 457-467.

2. Generazio, E.R., and D.R. Roth (1986). Quantitative Flaw Characterization With Scanning Laser Acoustic Microscopy. Mater. Eval., - 44, 863-870.

3. Generazio, E.R., D.J. Roth, and G.Y. Baaklini, (1987). Imaging Subtle Microstructural Variations in Ceramics With Precision Ultrasonic Velocity and Attenuation Measurements. NASA TM-100129, Washington, D.C.

4. Inglehart, L.J., R.L. Thomas, and J. Schuldies (1980). Photoacoustic Microscopy of Ceramic Engine Hardware. J. Nondestr. Eval., 1, pp. 287-293.

5. Klima, S.J., G.Y. Baaklini, and P. B. Able (1986). Nondestructive Evaluation of Structural Ceramics. NASA TM-88978, Washington, D. C.

6. Nikoonahad, M . (1984). In R. S. Sharpe (Ed.) Research Techniques in Non- destructive Testing, Vol. 7, Academic Press, London, pp. 217-257.

7. Rosencwaig, A . (1980). Photoacoustics and Photoacoustic Spectroscopy. John Wiley and Sons, New York, 1980.

8.. Roth, D.J., S.J. Klima, J.D. Kiser, and G.Y. Baaklini (1986). Reliability of Void Detection in Structural Ceramics Using Scanning Laser Acoustic Microscopy. Mater. Eval., 4, 762-769, 761.

Sintering Variables With the Strength and Radiography of Silicon Nitride. Ceram. Eng. Sci. Proc., 1, 839-859. (NASA TM-87251).

9. Sanders, W.A., and G.Y. Baaklini (1986). Correlation of Processing and

6

Page 8: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

10. Sheppard, L.M. (1986) . R e l i a b l e Ceramics f o r Heat Eng ines . Adv. M a t e r . Processes , 2, 54-66.

1 1 . Thomas, R.L . , J . J . Pouch, Y .H . Wong, L.D. Fav ro , P.K. Kuo, and A . Rosencwaig (1980) . Subsurface F law D e t e c t i o n i n M e t a l s by Photo- a c o u s t i c M i c r o s c o p y , " J . App l . Phys. , s, 1152-1156.

12. Vary , A . ( 1986) . I n J.D. Achenbach and Y, Ra japakse (Eds . ) , S o l i d Mechanics Research f o r Q u a n t i t a t i v e N o n - D e s t r u c t i v e E v a l u a t i o n , M a r t i n u s N i j h o f f P u b l i s h e r s , D o r d r e c h t , The N e t h e r l a n d s , pp. 135-152.

13. Va ry , A . , ed . (1987) . M a t e r i a l s A n a l y s i s b y U l t r a s o n i c s : M e t a l s , Ceramics , Composi tes. Noyes Data Corp . , Pa rk R idge, NJ.

SURFACE OF SAMPLE-. .-

LARGE PORE -, ". SMALLER

PORE -' SATELLITE, 0

--7- /

/

-LARGE GRAINS

FIGURE 1, - REPRESENTATIVE FLAWS I N MONOLITHIC SILICON CARBIDE.

7

Page 9: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

~:-.:<;XC PKGE TS CF POOR QUALITY

AS-F IRED SURFACE POLISHED SURFACE DIAMOND-GROUND SURFACE

FIGURE 2. - SLAM (SCANNING LASER ACOUSTIC MICROSCOPY) IMAGES OF FLAWS IN SINTERED SILICON CARBIDE SPECIMENS.

SPECIMEN THICKNESS = 2 MM 3 MM 4 MM

1 .o E o .8

.6 n

t; . 4 2 2 .2

L

I-

W I- Id

LL 0 >

m

0 w a

0

POL I SHED -

AS-FIRED

-

L 40 80 120 160 200

I- u 0 40 80 120 160 200

POL I SHED L-r f AS-FIRED 1 , p/l I ,

0 40 80 120 160 200 VOID DIAMETER. pM

FIGURE 3 . - EFFECT OF SURFACE CONDITION AND SPECIMEN THICKNESS ON DETECTABILITY OF VOIDS IN SIN- TERED SILICON NITRIDE WITH SLAM (SCANNING LASER ACOUSTIC MICROSCOPY). CALCULATED AT 0.95 CONFIDENCE LEVEL.

PROBABILITY OF DETECTION

FIGURE 4. - SAM (SCANNING ACOUSTIC MICROSCOPY) IMAGES OF VOIDS IN SINTERED SILICON NITRIDE SPECIMEN. GROUND.

VOID DEPTH = 1 MM, DIAM = 20 p ~ , SPECIMEN SURFACE DIAMOND

8

Page 10: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

ORIGINAC PAGE IS OF P;?O? QUALITY

VELOCITY PROFILE ALONG DIAMETER

FIGURE 5 . - MAPPING OF VELOCITY VARIATIONS IN MONOLITHIC SILICON CARBIDE DISC SINTERED AT 2190 OC. THICKNESS = 5 MM, MEAN DENSITY = 3.12 g/m3.

POROSITY GRAIN STRUCTURE

c

i- 4

FIGURE 6 . - MAPPING OF ATTENUATION VARIATIONS I N MONOLITHIC S IL ICON CARBIDE DISC OF FIGURE 5 . PHOTOMICROGRAPHS SHOW POROSITY (POLISHED. UNETCHED) AND GRAIN STRUCTURE (POLISHED, ETCHED) I N TWO AREAS WITH DIFFERENT ATTENUATION.

9

Page 11: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

I SINTERINF FY!F!T SAMPLE TEMPERATURE,

MEAN GRAIN,

CIM

MEAN VELOCITY.

CM/MS

ATTENUATION SPECTRUM

A

B

C

ATM 1 g/CM5 OC HR

2300 1 .o

2150 4.0

2200 0.5

1

1

1

3 I 054

3.058

3.117

I 12

4

1.165

1.167

6 1 1.180

MICROSTRUCTURE GRAIN POROSITY

'r A

0- U U 5 CIM 5 CIM 75 100 125 150

FREQUENCY, MHz

FIGURE 7. - REPRESENTATIVE ATTENUATION SPECTRA FOR THREE SAMPLES OF MONO- L ITHIC SILICON CARBIDE WITH DELIBERATELY VARIED MICROSTRUCTURES.

Page 12: t Ultrasonic NDE of Structural Ceramics for Power and ... · t Ultrasonic NDE of Structural Ceramics for ... The laser scan speed is limited by thermal ... The SEAM technique is certainly

1 Report No

NASA I H 1001111 ~ _ _ _.

U l t r a s o n i c NDE o f S t r u c t u r a l Ceramics for Power and P r o p u l s i o n Systems

2. Government Accession No.

-

- 7 . Author(s)

A l e x Vary, Edward R. Generazio, Don J . Roth, and George Y. B a a k l i n i

3. Security Classif. (of this report)

U n c l a s s i f i e d

9. Performing Organization Name and Address

N a t i o n a l Ae ronau t i cs and Space A d m i n i s t r a t i o n Lewis Research Center Cleveland, Ohio 44135

2. Sponsoring Agency Name and Address

N a t i o n a l Ae ronau t i cs and Space Admini s t r a t i o n Washington, D.C . 20546

20. Security Classif. (of this page) 21. No of pages 22. Price' Unc l a s s i f l e d 11 A02

5. Supplementary Notes

3 Recipient's Catalog No - --I

5 Report Date

6. Performing Organization Code

506- 43- 11

8 Performing Organization Report No

€-3705

IO. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

T e c h n i c a l Memorandum

14. Sponsoring Agency Code

Prepared f o r t h e 4 t h European Conference on N o n - D e s t r u c t i v e T e s t i n g sponsored by t h e B r i t i s h I n s t i t u t e on Non-Des t ruc t i ve T e s t i n g , London, England, September 13- 18, 1987. A lex Vary, Edward R . Generazio, and Don J . Roth, NASA Lewis Research Center ; George Y. B a a k l i n i , C leve land S t a t e U n i v e r s i t y , Cleveland, Ohio 44115.

b. ADStraCt

A r e v i e w i s p resen ted on research i n v e s t i g a t i o n s o f s e v e r a l u l t r a s o n i c e v a l u a t i o n techn iques a p p l i c a b l e t o s t r u c t u r a l ceramics f o r advanced h e a t engines. T h i s r e v i e w h i g h l i g h t s r e c e n t work conducted under t h e sponsorsh ip o f and a t t h e Lewis Research Center . R e s u l t s o b t a i n e d w i t h scanning a c o u s t i c microscopy, scanning l a s e r a c o u s t i c microscopy, photo a c o u s t i c microscopy, and scanning e l e c t r o n acous- t i c m ic roscopy a r e compared. I n a d d i t i o n t o these f l a w imaging techn iques , micro s t r u c t u r e c h a r a c t e r i z a t j o n by a n a l y t i c a l u l t r a s o n i c s i s d e s c r i b e d . l h e tech n iques were e v a l u a t e d by a p p l i c a t i o n t o research samples o f m o n o l i t h i c s i l i c o n n i t r i d e and s i l i c o n c a r b i d e t n t h e fo rm o f d i s c s and bars c o n t a i n i n g n a t u r a l l y o c c u r r i n g and d e l i b e r a t e l y - i n t r o d u c e d f laws and m i c r o s t r u c t u r a l anomal ies. S t r e n g t h s and l i m i t a t i o n s o f t h e techniques a r e d i scussed .

7. Key Words (Suggested by Author@)) N o n - d e s t r u c t i v e t e s t i n g / e v a l u a t i o n ; U l t r a - s o n i c s ; A c o u s t i c m ic rosc ropy ; Thermo- a c o u s t i c microscopy; U l t r a s o n i c a t t e n - u a t i o n / v e l o c l t y ; Ceramics; Flaw d e t e c t i o n / c h a r a c t e r i z a t i o n

18. Distribution Statement

U n c l a s s i f i e d - u n l i m i t e d STAR Category 38