Systems Coursework

download Systems Coursework

of 13

Transcript of Systems Coursework

  • 8/22/2019 Systems Coursework

    1/13

    1.Question1

    AnalyticalSolution:

    TheLaplaceformoftheequationcanbewrittenas:

    ! ! !!+ 3! + 2 =

    1

    !

    ! ! =1

    2!+

    1

    2(! + 2)

    1

    ! + 1

    ! ! =1

    2+1

    2!!!!

    !!!

    SimulinkSolution:

  • 8/22/2019 Systems Coursework

    2/13

    2.Question2

    AnalyticalSolution:

    !! + !!"! + !" = ! !

    ! ! !!!+ !!"! + ! = ! !

    SubstitutingM=10,b12=0.5andk=1

    ! ! =!(!)

    !(!)=

    0.1

    !! + 0.05! + 0.1

    !!= 0.1 , ! = 0.05

    2 0.1

    !! = 1+ exp !"

    1 !!= 1.779 1.8

    SimulinkSolution:

  • 8/22/2019 Systems Coursework

    3/13

    3.Question3

    (a) Theplotofpart(a)isdepictedbythebluecurve.(b) Aswecanseefromthegraphabove,fora10stepinput,aswe

    decreasetheparameterJ,thetransientresponseissignificantly

    changed.Theovershoot,risetimeandsettlingtimedecreasesaswe

    reduceJ.Wecanconcludethatasthemomentofinertiaisdecreased,

    theeffectofdamping(dampingratio)increasesandhencethe

    dampedfrequencywillalsodecrease,causingtheresponsetosettle

  • 8/22/2019 Systems Coursework

    4/13

    faster.Withthatbeingsaid,thechangeinparameterJ,hasnoeffecton

    thesteady-stateresponseofthesystem.

    4.Question4

    (a)AnalyticalSolution:

    Objectiveistofindsensitivityofsystemtoparametera.

    ! ! =!(!)

    !(!)=

    2

    ! ! + 2

    Whena=1,foraunitstepresponse:

    ! ! = 21

    !

    1

    ! + 1

    !! = 2 2!

    !!

    !!!= lim

    !!

    ! ! = 2

    ! 4 = 2 2!!!= 1.9633

    ! 4

    ! 100% = 98.17% > 98%

    Thereforeitcanbeverifiedthatat4secondstheresponseiswithin2%ofthe

    steadystateresponse.

    (b)

    Whena=0.5,

    !(!)

    !(!)=

    2

    ! + 1.5

    Weseethatthesystemwillbehaveasafirst-ordersystemsinceithas

    onlyonepole.Solvingfory(t),wehave:

    ! ! =4

    3(1 !!!.!!)

  • 8/22/2019 Systems Coursework

    5/13

    AsshownontheplotusingSimulink,thesystembehavesasasimplefirst-

    ordersystemwithatimeconstantof1.5sandamplitudeof4/3.Thiswas

    expectedsincethepolesofthetransferfunctionliesontheleftsideofthe

    imaginaryaxisandhencethesystemisstable.

    Whenweincreasetheparameteratoa=2,!(!)

    !(!)=

    2

    !

    ! ! = 2!

    Weseethatthesystemisnolongerstable.Thepoleofthetransfer

    functionliesontheimaginaryaxis.Thiscanbeviewedasthecriticalpoint

    ofinstability,where! < 2inorderforthesystemtobestable.Fromthe

    graphitcanbeseenthattheresponseincreaseslinearlywithtimeand

    doesnotconvergetoasteady-statefinitevalue.

  • 8/22/2019 Systems Coursework

    6/13

    Whenwefurtherincreaseparameteratoa=5,!(!)

    !(!)=

    2

    ! + 1.5

    ! ! =2

    3(1+ !!!)

    Weseethattheresponsetendstoinfinityexponentially,withtime.Thisis

    becausethepoleofthetransferfunctionliesontherighthandsideofthe

    imaginaryaxisandhencethesystemisunstable.Therefore,wecanconcludethattheparameterahastobekeptlessthan2forthesystemto

    remainstable.

    5.Question5

    (a)Theopen-loopresponseforaunit-stepdisturbanceis,! ! =

    1

    5[

    5

    ! !! + 0.9! + 5

    ]

    ! ! =!

    ! (11

    .

    02089!!!.!"!

    sin 2.

    190! + 1.

    3682 )

  • 8/22/2019 Systems Coursework

    7/13

    (b)Theclosedloopresponsetoaunitstepdisturbancecanbewrittenas:! ! =

    1

    55[

    55

    ! !! + 0.9! + 55

    ]

    ! ! =1

    55(1 1.001846!!!.!"! sin 7.4025! + 1.51 )

  • 8/22/2019 Systems Coursework

    8/13

    (c)

    Anopen-loopsystemoperateswithoutfeedbackanddirectly

    generatestheoutputinresponsetoaninputsignal.Whereasaclosed-

    loopsystemusesameasurementoftheoutputsignalanda

    comparisonwiththedesiredoutputtogenerateanerrorsignalthatis

    usedbythecontrollertoadjusttheactuator,inthiscasethe

    disturbance.Hencewecanseethattheclosedloopgreatlyimproves

    thedisturbancerejection,minimisingthesteadystatedisturbance

    from1/5intheopen-loopto1/55intheclosedloop.

    6.Question6

    (a)Usingaproportionalcontroller,withGc(s)=2,wehave

    !(!)

    !(!)=

    20

    ! + 3

    ! ! = (120

    ! + 3)!(!)

    !!!= lim

    !!

    !"(!

    )=

    1

    3,

    !"#! ! = 1

    !(b)UsingaPIcontroller,withGc(s)=2+20/s,wehave

  • 8/22/2019 Systems Coursework

    9/13

    !(!)

    !(!)=

    20

    ! + 20

    ! ! = (120

    ! + 20)!(!)

    !!!= lim

    !!

    !"(!

    )= 0

    ,

    !"#! ! = 1

    !Plottingthegraphfor(a)and(b):

    (c)Thesteadystatetrackingerrorwasreducedfrom1/3,whenaproportionalcontrollerwasusedto0,whenaproportionalplus

    integralcontrollerwasused.HoweverthePIcontollerisfarmore

    complexthanasimpleproportionalcontroller.Designingsucha

    controllerwouldincurmorecost.Thereforetheengineerwouldhave

    toweighthemarginalbenefitsofreducingerrorbeforeimplementing

    suchcomplexcontrollers.Furthermore,ifaPIcontrollerwaschosen

    incorrectly,itmayleadtoinstabiltyofthesytem.

  • 8/22/2019 Systems Coursework

    10/13

    7.Question7(a)

    (b)

    Therampresponseswereplottedforbothpart(a)and(b).Fromthegraphwe

    canseehowtheactualresponsedeviationfromthedesiredrampresponse.The

    errorforagiventimecanbeevaluatedfromtheverticaldisplacementawayfrom

    thedesiredattitude.Foraunityfeedbackloop:

    ! ! = !! ! !(!)

    ! ! = !! !!(!)

  • 8/22/2019 Systems Coursework

    11/13

    HoweverfromSimulink,wecanplottheerroragainsttime.Thisgivesus

    abetterrepresentationoftheerrorsignalofthesystem.

    (a)Attitudeerrorafter10s=0.3(Usingproportionalcontroller)

    (b)Thesteadystateerrorforthesystemwhenaproportionalcontrollerwasusedwas0.3,andthesteadystateerrorforthe

    systemusingaPIcontrollerwaszero.Thereforeitcanbe

    concludedthattheproportionalplusintegralcontrollergreatly

    reducedtheerrorofthesystemresultingintheactualresponse

    tobeveryclosetothedesiredresponse.

    8.Question8! ! =

    !(!)

    !!(!)=

    10!!+ 510! + 500

    (! + 0.83)(!! + 11.6! + 600.44)

    Usinganalyticalformulasforsecond-ordersystem,wehave:

    !!= 600.44 = 24.5, ! = 11.6

    2 600.44= 0.2367

    !! = 1+ exp !"

    1 !!= 1.465

    !!=

    4

    !!!

    = 0.69!

    !! =!

    !!

    1 !!= 0.132!

  • 8/22/2019 Systems Coursework

    12/13

    UsingSimulinksolution:

    Fromthegraphabove,

    !! = 1.25

    !!= 2.55!

    !! = 0.13!

    Fromtheresults,itcanbeseenthat!!and!!wasclosetothepredictedresults

    ofthesecond-ordersystem,andtheactual!!wasverymuchhigherthanthatofthepredicted!

    !.Thiscanbeexplainedbyobservingthepolesofthetransfer

    function.Thesecond-orderpoleshavearealvalueof-5.58whereasthethird

    polehasarealvalueof-0.83.Sincethethirdpoleliesclosertotheimaginary

    axis,itisthemoredominantpole,sowecannotassumethesystemtobe

    approximatedasasecond-ordersystem.

    Furthermorewecanevaluatethetimeconstantofthethirdpole,! = !!.!"

    = 1.2.

    Anditrequiresthat!

    ! 10!!

    !forathird-ordersystemtobeapproximatedby

    thedominantrootsofthesecond-ordersystem.Thus,whatweobserveisthat

    transientresponseinitiallyfollowsasecond-ordersystem,andafter0.7s,of

    whichisthesettlingtimeofthesecond-ordersystem,theresponsefollows

  • 8/22/2019 Systems Coursework

    13/13

    closelytothatofafirst-ordersystem.Thisexplainspredictionsfor!!and!!

    wereclosetotheactualresults,whereas!!wasverydifferentfromthepredicted

    result.

    9.Question9

    Fromthegraph,

    !! = 0.9784

    !"#$%!"#$%,!" = 0.4995!"#$"%&'("!"#$%!!" =!! !"

    !"100% = 95.87%

    !"##$%&'!"#$,!!(!"#!"2%!"!") = 19.4!