Synthesis and Characterization of Novel Cellulosics

14
Synthesis and Characterization of Novel Cellulosics

Transcript of Synthesis and Characterization of Novel Cellulosics

Page 1: Synthesis and Characterization of Novel Cellulosics

Synthesis and Characterization of Novel Cellulosics

Page 2: Synthesis and Characterization of Novel Cellulosics

Problem statement

Petroleum based polymeric materials• Limited existing quantities of fossil supplies • Escalating cost • Problem of non biodegradability of petroleum based polymers Th t i t ti l ti• The recent environment conservative regulations. 

Natural polymers Renewable Renewable Environment friendlyContain many functional groups suitable to chemicalfunctionalization

Cost effective 

2

Page 3: Synthesis and Characterization of Novel Cellulosics

Background

Cellulose is the most abundant renewable biopolymer. Over ~1010 tons are produced per year and only 3% are explored.and only 3% are explored.

‐ Linear homopolymer of D‐anhydroglucopyranoseunits connected by β(1‐4) glycosidic linkages u ts co ected by β( ) g ycos d c ages

Cellulose source DP

Cotton 8000-15000Cellulose

WoodPulpValoniaRayon

8000-9000500-210025000-27000300

‐ Semicrystalline in nature‐ High degree of polymerization (DP)

RayonBagasseAcetobacter xylinum

300700-9002000-6000

3

Page 4: Synthesis and Characterization of Novel Cellulosics

Cellulose

Cellulose exists in four different polymorphs I (Iα, Iβ), II, III, IV

Hydrogen bonds of cellulose I cellulose II

4

Hydrogen bonds of cellulose I cellulose II

S. Kamel et al.  Polymer Letters, 2008, 2, 758–778M. De Souza Lima et al.. Macromolecular Rapid Communication, 2004, 25, 771‐787 

Page 5: Synthesis and Characterization of Novel Cellulosics

Cellulose I and II particle types 

Particle TypeParticle size 

Length (μm)    Width(nm)                                                Crystallinity (%)      

Wood fiber &Plant fiber

>2000               20‐50 43‐65

Microcrystalline cellulose

Mi fib il t d

10‐50                 10‐50(μm)

0 5 10’ 10 100

80‐85

45 58Microfibrilated

Nanofibrilated Cellulose

0.5‐10’s              10‐100

0.5‐2                   4‐20

45‐58

51‐69

Cellulose nanocrystals

Algae cellulose

0.05‐0.5              3‐8

>1                       20‐30

54‐88

>80

Bacterial cellulose

Cellulose II

>1                        6‐50   

Regenerated cellulose

65‐79

27‐43

5

g

R. J. Moon, A. Martini, J. Nairn,  J. Simonsen and J.  Youngblood, Chem. Soc. Rev., 2011, 40, 3941–3994

Page 6: Synthesis and Characterization of Novel Cellulosics

Applications of cellulose fiber derivatives

Cellulose esters Cellulose ethers  Oxidized cellulose

Films, fibers, explosivescoatings heat

Food additives, fibers, coatings, oil‐well drilling, 

Wound dressing, pharmaceuticalcoatings, heat 

resistant fabricsg , g,

gelling and foaming , paints, detergents, cosmetics controlled‐

pharmaceutical, skin care

cosmetics, controlledrelease drug tablets

6S. Kalia et al. (eds.), Cellulose Fibers: Bio‐ and Nano‐Polymer Composites, Springer‐Verlag Berlin Heidelberg 2011

Page 7: Synthesis and Characterization of Novel Cellulosics

Cellulose beads

Important features of bead cellulose•Excellent mechanical stability

Cellulose fiber solutionExcellent mechanical stability •Rigid spherical particles•Narrow particle size distribution•High chemical resistance and compatibility with

Regeneration

Bead cellulose•High chemical resistance and compatibility with most commonly used solvents  

•High temperature stability •High selectivity of separation

Bead cellulose

•High selectivity of separation

Application of bead celluloseMetal adsorption Immobilization support ChromatographyChromatography Drug delivery 

7D. Zhoua, L. Zhanga and S. Guo, Water Res. 39, 3755 (2005). W. De Oliveira and W. Glasser, J. Appl. Polym. Sci. 60, 63 (1996).V. Weber, I. Linsberger, M. Ettenauer, F. Loth, M. Höyhtyä and D. Falkenhagen, Biomacromolecules 6, 1864 (2005)

Page 8: Synthesis and Characterization of Novel Cellulosics

Cellulose nanowhiskers (CNWs)

Cellulose nanowhiskers are defined as crystalline rod‐like nanoparticles which are obtained by acid hydrolysis ofnanoparticles which are obtained by acid hydrolysis of cellulose fibers

Plant cell

Microfibril

Acidhydrolysis200nm

8G. Siqueira, J. Bras, A. Dufresne, Biomacromolecules 2009, 10, 425‐432. M. A. S. Azizi Samir, F. Alloin, A. Dufresne, Biomacromolecules 2005, 6, 612‐626.  S. Beck‐Candanedo, M. Roman, D. G. Gray, Biomacromolecules 2005, 6, 1048‐1054. M. M. de Souza Lima, R. Borsali, Macromol. Rapid Commun. 2004, 25, 771‐787.

Page 9: Synthesis and Characterization of Novel Cellulosics

Cellulose nanowhiskers (CNWs)

OO O

OHO

HOOH

OH HO OOO

OH

HOHO

OHOH

H2SO4 /HCl

Acid Hydrolysis

O OHOOH

OOHOOH

OH OH

H2SO42 4

Chracteristics of CNWs

dNano dimensionHigh aspect ratioHigh surface areagHigh mechanical property

9Y. Li, A. Ragauskas, Advance in diverse applications of nanocomposites 2011, pp.17‐36.

Page 10: Synthesis and Characterization of Novel Cellulosics

Cellulose nanowhiskers

The geometric dimensions depend on the source of the cellulosicmaterial and hydrolysis conditions.

Cotton Ramie Wood Tunicate

L/D=67.0L/D=25.0L/D=11.8 L/D=28.6

Dimensions:Length: 100 – 1000 nm; Diameter: 4 – 50 nm. 

10

Habibi, Y.; Goffin, A.‐L.; Schiltz, N.; Duquesne, E.; Dubois, P.; Dufresne, A. J. Mater. Chem. 2008, 18, 5002. Azizi Samir, M. A. S.; Alloin, F.; Paillet, M.; Dufresne, A. Macromolecules 2004, 37, 4313. Roohani, M.; Habibi, Y.; Belgacem, N. M.; Ebrahim, G.; Karimi, A. N.; Dufresne, A. Eur. Polym. J. 2008, 44, 2489.Favier, V.; Canova, G. R.; Cavaille, J. Y.; Chanzy, H.; Dufresne, A.; Gauthier, C. Polym. AdV. Technol. 1995, 6, 351.

Page 11: Synthesis and Characterization of Novel Cellulosics

Effect of reaction parameters on cellulose nanowhiskers properties

Reaction diti

Length  Aspect ti

Sulfur  Surface charge d it ( / 2)

Effect of reaction conditions on whisker properties (H2SO4 hydrolysis, softwood pulp)

conditions(reaction time (min), acid/pulp)

(nm) ratio content(%) density (e/nm2)

25, 8.75 141±6 28.2 0.89±0.06 0.33±0.0245, 8.75 120±5 24.5 1.06±0.02 0.38±0.0145 17 5 105±4 23 3 1 26±0 01

Sample Amounts of acidic groups on

45, 17.5 105±4 23.3 1.26±0.01

Sample Amounts of acidic groups on surface (mmol kg‐1)

Strong acid groups

Weak acid groupsgroups groups

H2SO4 84 26

HCl 0 <18TEM images of (a) H2SO4 (b) HCl hydrolyzed whiskers

11J. Araki et. al. Colloids Surfaces A, 1998, 142, 75 – 82. J. Araki et. al. J. wood Sci. 1999, 45, 258 ‐ 261

TEM images of (a) H2SO4 (b) HCl hydrolyzed whiskers

Page 12: Synthesis and Characterization of Novel Cellulosics

Cellulose nanowhiskers potential areas of application

Nanocomposites Paper & Paperboard  Biomedicalp p p

Packaging, AdhesiveElectronic displays Foams

Bioimaging nanodevice drugElectronic displays, Foams

Aerogels, FilmsCoatings / barriers nanodevice, drug 

delivery technology, skin care

Arboranano* is a new Canadian Forest NanoProductsNetwork whose objective is to develop high value products from nanocrystalline cellulose.*C d ’ B i l d N t k f C t f E ll FPI ti

12

*Canada’s Business‐led Networks of Centers of Excellence program, FPInnovationsand NanoQuébec. 

Page 13: Synthesis and Characterization of Novel Cellulosics

Typical chemical modification of cellulose

SubstitutionOxidation

Acid hydrolysis

Oxidative cleavage of l l

SubstitutionOxidation

C2‐C3 glycol

Mild reactionHighly selectiveHighly selectiveDAC acts as a reactiveintermediateDialdehyde celluloseCellulose

13

Dialdehyde cellulose(DAC)

Page 14: Synthesis and Characterization of Novel Cellulosics

Research Studies

To investigate and explore the versatility of cellulose, a renewable resource of raw materials using periodate oxidativerenewable resource of raw materials using periodate oxidative fragmentation synthetic approach

Chemical modification of cellulose through periodate oxidation

Cellulose nanowhiskersCellulose fibers Cellulose beads

14