Syntheses of high-spin and cluster molecules Hiroki OSHIO (University of Tsukuba) Syntheses and...

download Syntheses of high-spin and cluster molecules Hiroki OSHIO (University of Tsukuba) Syntheses and Magnetic measurements Dr. M. Nihei, A. Yoshida, K. Koizumi,

If you can't read please download the document

description

Single Molecule Magnets [Mn(III,IV) 12 O 12 (O 2 CR) 16 (H 2 O)](S = 10) (T. Lis, 1980) [Mn(III,IV) 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] - (S = 19/2) [Mn(III,IV) 4 O 3 X(O 2 CMe)(dbm) 3 ](S = 9/2) [Fe(III) 8 O 2 (OH) 12 (tacn) 6 ] 8+ (S = 10) [V(III) 4 O 2 (O 2 CR) 7 (L-L)] + (S = 3) D. N. Hendrickson, G. Christou, and D. Gatteschi (1993) S = 10, D = –0.46 cm -1 L. Thomas et al., Nature 1996, 383, 145 [Mn 12 O 12 (OAc) 16 (H 2 O) 4 ] [Fe II 4 (sae) 4 (MeOH) 4 ] H. Oshio et al., J. Am. Chem. Soc. 2000, 112, S = 8, D = cm -1

Transcript of Syntheses of high-spin and cluster molecules Hiroki OSHIO (University of Tsukuba) Syntheses and...

Syntheses of high-spin and cluster molecules Hiroki OSHIO (University of Tsukuba) Syntheses and Magnetic measurements Dr. M. Nihei, A. Yoshida, K. Koizumi, Yamashita ( Univ. of Tsukuba ) Dr. M. Nakano (Osaka Univ.) HF-EPR Prof. H. Nojiri (Okayama Univ.) Low-temperature Magnetic measurements Profs. A. Yamaguchi and Ishimoto (ISSP, Univ. of Tokyo) Solid State NMR Profs Y. Fujii (Fukui Univ.) and T. Goto (Kyoto Univ.) Workshop on Nano-magnets at Kyoto, Dec , 2003 Syntheses of SMMs of Ferrous Cubes: Structurally controlled magnetic anisotropy Mixed Valence Fe clusters Hetero-metal SMM Single Molecule Magnets [Mn(III,IV) 12 O 12 (O 2 CR) 16 (H 2 O)](S = 10) (T. Lis, 1980) [Mn(III,IV) 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] - (S = 19/2) [Mn(III,IV) 4 O 3 X(O 2 CMe)(dbm) 3 ](S = 9/2) [Fe(III) 8 O 2 (OH) 12 (tacn) 6 ] 8+ (S = 10) [V(III) 4 O 2 (O 2 CR) 7 (L-L)] + (S = 3) D. N. Hendrickson, G. Christou, and D. Gatteschi (1993) S = 10, D = 0.46 cm -1 L. Thomas et al., Nature 1996, 383, 145 [Mn 12 O 12 (OAc) 16 (H 2 O) 4 ] [Fe II 4 (sae) 4 (MeOH) 4 ] H. Oshio et al., J. Am. Chem. Soc. 2000, 112, S = 8, D = cm -1 Syntheses of SMM EE Magnetization Direction E = |D|S z 2 E :Energy barrier to reorientate between two possible directions of magnetizations D : Zero Field Splitting parameters Relatively high-spin ground state Negative D value Strategy for the High-spin Molecule Ferromagnetic Interactions by LMCT interactions AGK Theory P. W. Anderson (1959), J. B. Goodenough (1958), J. Kanamori (1959) Strict orthogonality Accidental orthogonality High-spin Cluster Orthogonal arrangements of the magnetic orbitals Fe(II) Cube of [Fe II 4 (sae) 4 (MeOH) 4 ] triclinic P1- a = (7) , b = (7) , c = (7) = (1), = (1), = (1), V = (1) 3, Z = 2 R1 = , wR2 = J. Am. Chem. Soc S = 8 (4x2) AC measurements of [Fe II 4 (sae) 4 (MeOH) 4 ] Relaxation in [Fe 4 (sae) 4 (MeOH) 4 ] with S =8 Ground State = 0 exp( E/kT) = 1/(2 AC ) AC : Freq. of AC Field T : Temp. of max. in E = |D|S z 2 = 64|D| M s = -8M s = 8 M s = 0 E = |D|S z 2 Iron(II) cubes with S = 8 ground state SMM nonSMM nonSMM nonSMM [Fe 4 (sae) 4 (MeOH) 4 ] [Fe 4 (sap) 4 (MeOH) 4 ] [Fe 4 (3-MeO-sap) 4 (MeOH) 4 ] [Fe 4 (sapd) 4 ] Magnetization Experiments of High-spin Ferrous Cubes g D / cm -1 [Fe 4 (sae) 4 (MeOH) 4 ] [Fe 4 (sap) 4 (MeOH) 4 ] [Fe 4 (3-MeO-sap) 4 (MeOH) 4 ] [Fe 4 (sapd) 4 ] [Fe 4 (sae) 4 (MeOH) 4 ] Fe(1)-O(1) 1.978(2)Fe(1)-O(2) 2.094(2) Fe(1)-N(1) 2.053(2)Fe(1)-O(4) 2.078(2) Fe(1)-O(9) (18)Fe(1)-O(8) (17) [Fe 4 (sap) 4 (MeOH) 4 ]2H 2 O Fe(1)-O(1) 2.029(2)Fe(1)-O(2) 2.045(2) Fe(1)-N(1) 2.127(2)Fe(1)-O(2)* (15) Fe(1)-O(3) (17)Fe(1)-O(2)* (14) [Fe 4 (3MeO-msap) 4 (MeOH) 4 ]2MeOH Fe(1)-O(1) 1.991(5)Fe(1)-O(2) 2.037(4) Fe(1)-N(1) 2.104(6)Fe(1)-O(10) 2.137(4) Fe(1)-O(6) 2.238(4)Fe(1)-O(4) 2.242(5) [Fe 4 (bsap) 4 (MeOH) 4 ] Fe(1)-O(1) 2.036(3)Fe(1)-O(2) 2.056(3) Fe(1)-N(1) 2.123(3)Fe(1)-O(2)* 2.159(3) Fe(1)-O(2) 2.259(2)Fe(1)-O(3) 2.263(3) Selected coordination bond distances () in the cubes Equatorially less compressed: D < 0 Equatorially compressed: D > 0 Elongated octahedron strong ligand field week ligand field Angular Overplap Model calculations of Energy splitting of the 5 B 2g state The variable p changes the equatorial ligand field strengths. P = 0.5 week LF P = 1.0 strong LF D < 0D > 0 saesap week LFstrong LF Sign of D Cube values sap : equatorially less compressed: D Fe < 0: Orthogonal alignments of four ions with easy axis sae : Equatorially compressed: D Fe > 0: Orthogonal alignments of four ions with hard axis [Fe 4 (3,5-Cl 2 -sae) 4 (MeOH) 4 ] E = 26 K D = cm -1 T B = 1.1 K E = 30 K D = cm -1 T B = 1.2 K [Fe 4 (5-Br-sae) 4 (MeOH) 4 ] Summary Structurally controlled magnetic anisotropy Compounds in red are SMM. The g, C, and values were obtained from temperature dependence of the magnetic susceptibility. D values were estimated by the analyses of magnetization data at 1.8 K, supposing the only S = 8 being populated. E and T B values were estimated from the ac magnetic susceptibility measurements. gC [emu mol -1 K] [K] D [cm -1 ] E [K] T B [K] [Fe 4 (sap) 4 (MeOH) 4 ]2H 2 O [Fe 4 (5-Br-sap) 4 (MeOH) 4 ] [Fe 4 (3-MeO-sap) 4 (MeOH) 4 ] [Fe 4 (sapd) 4 ]4MeOH2H 2 O [Fe 4 (sae) 4 (MeOH) 4 ] [Fe 4 (5-Br-sae) 4 (MeOH) 4 ]MeOH [Fe 4 (3,5-Cl 2 -sae) 4 (MeOH) 4 ] [NaFe III 6 ] New Cluster Molecules with higher nuclearity [Fe II Fe III 6 ] [Fe III 2 ] [Fe III 3 ] [Fe II 3 Fe III ] [Fe III Fe II 6 ] Ferric wheel of [NaFe III 6 (5-MeO-sae) 6 ( 2 -OMe)]ClO 4 +NaClO 4 [Fe III 3 Cl 2 (5-MeO-sae) 3 ( 3 -OMe)(MeOH)] ( 3 -alkoxo bridges) [Fe II Fe III 6 (5-MeO-sae) 6 ( 2 -OMe) 6 ]Cl 2 7FeCl 2 4H 2 O + 6H 2 (5-MeO-sae) + 2/7(t-Bu 4 N)(MnO 4 ) ( 3 -alkoxo bridge) g(Fe 3+ ) = 2.0 and g(Fe 2+ ) =2.10(5) J(spoke) = -7.3 cm -1 and J(rim) = -8.7 cm -1 ? Spin frustrated system [Fe II 6 Fe III (5-MeO-saeH) 6 ( 3 -OMe) 6 ]Cl 3 7FeCl 2 4H 2 O + 6(5-MeO-saeH 2 ) + 1/21(t-Bu 4 N)(MnO 4 ) 2 -phenoxo bridges S = 29/2 and D = cm -1 Angew.Chem Next target molecules Air insensitive SMM Heteronuclear SMM The smallest SMM Hetero-nuclear SMM CuCl 2 2H 2 O [Mn III 3 ( -O)(Br-sap) 3 (H 2 O) 3 ]Cl + MnCl 2 4H 2 O [Mn III Cu II (Br-sap) 2 Cl(MeOH)] Selected Bond Distances () Mn-Cl 2.616(4) Mn-O1S 2.658(9) Other bonds 1.871(5) (6) Mn 3+ : Axially elongated octahedron for d 4 MnCu Magnetic susceptibility and magnetization data of [Mn III Cu II (Br-sap) 2 Cl(MeOH)] Ferromagnetic interactions between Mn 3+ and Cu 2+ ions S = 5/2 ground state MO diagram of Mn 3+ -Cu 2+ system Tetragonally elongated quasi D 4h Mn 3+ Square-planar quasi D 4h d xz d yz dz2dz2 d xy d x 2 -y 2 dz2dz2 d xy d xz d yz Cu 2+ O CuMn O LMCT from O - Strickt orthogonality Quasi-single Crystal HF-EPR OF [Mn III Cu II (Br-sap) 2 Cl(MeOH)] -5/2 -3/2 -3/2 -1/2-1/2 1/2 1/2 3/ GHz *Magnetic field is tilted 13 with respect to the principal axis. H. Nojiri (Okayama Univ.) Plots of resonance fields (H r ) vs. the value of Ms [Mn III Cu II (Br-sap) 2 Cl(MeOH)] g = 2.04 D = cm -1 B 4 0 = cm -1 Yamaguchi, Ishimoto (ISSP) Single Crystal AC magnetic susceptibility [Mn III Cu II (Br-sap) 2 Cl(MeOH)] Packing diagrams of [Mn III Cu II (Br-sap) 2 Cl(MeOH)] ac projection view bc projection view ab projection view Magnetization data for [Mn III Cu II (Br-sap) 2 Cl(MeOH)] with S =5/2 ground state Yamaguchi, Ishimoto (ISSP) Integer SpinHalf-Integer Spin No-spin tunneling at H ext =0 X T B = 500 mK E = 10.5 K Summary: Nano Magnets with different sizes Mn Cu Fe [Mn III Cu II ] S = 5/2 with T B = 0.8 K 4 :[Fe II 4 ] S = 8 with T B = 1.1K 6 :[Mn III 6 ] S = 12 with T B = 1.0 K [Fe II 6 Fe III ] with S = 29/2 [Mn III 4 Mn IV 2 Cu II 8 (O) 6 ] 1.5 nm 2.0 nm 2.5 nm [Mn III 8 Mn IV 4 Cu II 8 (O) 16 ] Strong correlated electron oxide clusters S N Tunneling M s = S N Nano magnets M s = -8 Organizer Tadashi Sugawara (University of Tokyo) General Secretaries Hiroki Oshio (Tsukuba University) Kunio Awaga (Nagoya University) Kazuhito Hashimoto (Unrsity of Tokyo)