Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4...

31
1 (c)2017 van Putten Synchrotron radiation - some observational aspects

Transcript of Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4...

Page 1: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 1(c)2017 van Putten

Synchrotron radiation - some observational aspects

Page 2: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 2

Theory of synchrotron radiation (summary)

(c)2017 van Putten

Page 3: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 3

Synchrotron radiation

B

21

ea

2

1

e

a

(c)2017 van Putten

Page 4: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 4

Synchrotron emission

1) Opening angle of emission cone ~ 2/gamma

2) Contraction of sweep time of the cone by 1-v~1/(2gamma^2)

3) Net result ~ (1-v)Delta t~1/gamma^3

t

(c)2017 van Putten

Page 5: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 5

Synchrotron radiation power

is the pitch angle

(c)2017 van Putten

Page 6: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 6

Emission spectrum

B

21

ea

Total power emitted:

Derives from EM radiation integral

(c)2017 van Putten

Page 7: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 7

Typical photon energies

Area=

Shape function F

(c)2017 van Putten

Page 8: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 8

Spectrum from radiation and self-absorption

Transition frequency condition:

Above, medium is optically thin:

Below, medium is self-absorbed:

(Rayleigh-Jeans!)

(c)2017 van Putten

Page 9: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 9

Brightness temperature

Black body temperature: temperature of a grey body emitting the observed intensity (at a given frequency)

One brightness temperature at all frequencies only for a genuine black body source

Emission spectrum of grey bodies is different: brightness temperature depends on choice of frequency bin

(c)2017 van Putten

Page 10: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 10

At low frequencies, source is optically thick (to own synchrotron photons)

The spectrum satisfies Rayleigh-Jeans law – just like a black body spectrum

Assign effective temperature of e’s (typically with a power law distribution):

Rayleigh-Jeans regime

(c)2017 van Putten

Page 11: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 11

Electron temperature

Dominant frequency of emission

Electron energy

EOS (relativistic fluid)

Electron temperature

(defines effective temperature)

(c)2017 van Putten

Page 12: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 12

Electron temperature

From the observed dominant frequency:

(c)2017 van Putten

Page 13: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 13

Brightness temperature Rayleigh-Jeans

Large optical depth

At thermal equilibrium

Full thermodynamic equilibrium

Brightness temperature

Rayleigh-Jeans at low frequencies

(c)2017 van Putten

~

Page 14: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 14

At low frequencies

Rayleigh-Jeans relativistic e’sLarge optical depth, self-absorbed (sum of BB-spectra,

one for each energy of the electron population)

(c)2017 van Putten

Page 15: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 15

Typical synchrotron spectrum

p=2.4

Independent of p

(c)2017 van Putten

Page 16: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 16

Observed radio spectra

Optically thin

Steepening (e.g. by cooling)

self-absorbed

Opacity increasing?

self-absorbed

opaque

self-absorbed?

Kellerman & Owen, 1998, in Galactic and Extragalactic radius astronomy, eds. Verschuur & Kellermann (Springer Verlag)

Optically thin

(c)2017 van Putten

Page 17: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 17

How much energy is in e’s or B?

e-energy density to synchrotron power

e-energy density associated with a given radiation frequency range

B-energy density

(keeping L fixed)

(c)2017 van Putten

Page 18: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 18

Total energy in particles and fields http://www.cv.nrao.edu/course/astr534/SynchrotronSrcs.html

(c)2017 van Putten

Page 19: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 19

Minimum total pressure in particle and fields

Total pressure

Total pressure minimum

Equilibrium p

(c)2017 van Putten

Page 20: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 20

Minimum pressure in particles and fields Total pressure

The minimum pressure is attained at approximate equipartition

(c)2017 van Putten

Page 21: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 21

Minimum pressure (2nd derivation)

Consider p=2 as before

(c)2017 van Putten

Page 22: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 22

Minimum pressure (2nd derivation)

Pressure in relativistic electron population

(c)2017 van Putten

Page 23: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 23

Total pressure

Total pressure minimum

“Minimum near equipartition”

Minimum pressure (2nd derivation)

(c)2017 van Putten

Page 24: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 24

Equipartition

Equipartition is natural if relaxation time is short

Here, equipartition argument leads to minimum energy

Useful to eliminate one parameter

e.g.http://www.cv.nrao.edu/course/astr534/SynchrotronSrcs.html

Thus,So, the “

So, the “4/3” relation between pressure of e’s and B holds at the minimum of the total pressure at given L or Tb.

(c)2017 van Putten

Page 25: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 25

Equilibrium magnetic field strength

Total pressure

Total pressure minimum

Total pressure minimumEquilibrium value depends on R

(c)2017 van Putten

Page 26: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 26

Results for moving blobs Transform by Doppler factor

Baryon number density, is zero in a leptonic jet

If electron-proton plasma, then

(c)2017 van Putten

Page 27: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 27

Results for moving blobs

Energy densities

(cold)(relativistic)

Lorentz factor of blob

(c)2017 van Putten

Page 28: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 28

Cyg A

(p=2.6)

(c)2017 van Putten

Page 29: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 29

Cyg A

Equivalent to the luminosity of a galaxy, at the size R of a small galaxy!

(c)2017 van Putten

Page 30: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 30

Cyg A

Indeed

Can show for each of the two lobes based on L:

(c)2017 van Putten

Page 31: Synchrotron radiation - some observational aspects · 2017. 4. 6. · (c)2013 van Putten 4 Synchrotron emission 1) Opening angle of emission cone ~ 2/gamma 2) Contraction of sweep

(c)2013 van Putten 31

Questions

1. In true thermal equilibrium with a thermal source, the e’s assume a Maxwell energy distribution. Can their temperature be larger than the brightness temperature? [Hint: What is the role of synchrotron self-absorption?]

2. Based on the cooling time of a few million years, the lobes in Cyg A are “light bulbs” powered instantaneously by energy transport from jets emanating from the nucleus. The jets are hardly visible. What does this say about the efficiency of the jets as power carriers?

(c)2017 van Putten