Synchronization Using Phase-Locked Loops

76
EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 1 Synchronization Using Phase-Locked Loops Example: 16:1 Multiplexer Input parallel data 625 Mb/s Input reference clock 625 MHz Output serial data 10 Gb/s 16 10 GHz high-speed clock Clock multiplier unit (CMU) 16:1 How can we generate the 10 GHz clock to be synchronized with the 625 MHz reference clock?

description

Input parallel data 625 Mb/s. 16. 16:1. Output serial data 10 Gb/s. 10 GHz high-speed clock. Input reference clock 625 MHz. Clock multiplier unit (CMU). Synchronization Using Phase-Locked Loops. Example: 16:1 Multiplexer. - PowerPoint PPT Presentation

Transcript of Synchronization Using Phase-Locked Loops

Page 1: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 1

Synchronization Using Phase-Locked Loops

Example: 16:1 Multiplexer

Input parallel data

625 Mb/s

Input reference clock

625 MHz

Output serial data10 Gb/s

16

10 GHz high-speed clock

Clock multiplier unit

(CMU)

16:1

How can we generate the 10 GHz clock to be synchronized with the 625 MHz reference clock?

Page 2: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 2

Ideally, we wish to have Vout = 16·Vin.

Let the op-amp be modeled with a 1st-order transfer function:

p

A0

At DC:

Voltage Amplification

R

15R

Vin

VoutV

+

_

Vf

Page 3: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 3

Frequency Multiplication

Fin

Fout

Ff

Vc

frequencydetector

voltage-controlledoscillator

frequencydivider

frequency transfer function:

Since frequency ratio is not exactly N, exact synchronization is not possible.

feedforward

feedback

Page 4: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 4

Achieving Exact Synchronization (1)

Consider replacing the amplifier with an ideal integrator:

R

15R

Vin

VoutV

+

_

Vf

0

A0

Page 5: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 5

Achieving Exact Synchronization (2)

Consider a sine function:

Define instantaneous angular frequency:

If we can arrange to have the detector respond to phase difference (instead of frequency difference), then integration is naturally introduced into the loop ...

Page 6: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 6

Phase-Locked Loop

in

f

Vc

phasedetector

voltage-controlledoscillator

frequencydivider

feedforward

feedback

^

^

^

inherentintegration

exactsynchronization

jitter frequency

Jitter Transfer Function:

^

^

^

Page 7: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 7

Jitter-free clockcarrier frequency fc

Jitter amplitude = = 0.25 UI

Jitter frequency fj =

Illustration of Sinusoidal Jitter

Clock withadded jitter

Page 8: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 8

PLL Step Response

Vin

VcPD VCO

^Vout

Example for N = 1:

0

input phase step

^

^

^

^

Page 9: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 9

PLL Frequency Response

in

f

^Vc

PD VCO out

N

NClosed-looptransfer function:

Unity-gainfrequency:

^

Loop gain:^

Page 10: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 10

Jitter Transfer Functions

in

f

^Vc

PD VCO out

vco

++

lowpasscharacteristic

highpasscharacteristic 0

N

1

Page 11: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 11

Disadvantages of 1st-Order PLL

• Higher-order transfer function would provide better attenuation of jitter.

• Kpd & Kvco have circuit-related constraints; designer would prefer more degrees of freedom.

• Phase detector operation requires filtering, which adds poles/zeros to the transfer function.

Page 12: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 12

Phase Detectors

1. Analog Multiplier

Detector characteristic is sensitive to bothphase and amplitude.

Vin, Vf

Vd

- +

Page 13: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 13

CMOS Multiplier Realization

ISS

RLRL

Vf+ Vf-

Vin+ Vin-Vin- Vin+

_ +Vout

M2 M2

M1 M1 M1 M1

VDD

Large input amplitudes:

Describes an “XNOR” gate...

Small input amplitudes: linear operation

Page 14: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 14

Vin

Vf

Vd

Vin

Vf

Vd

2. XNOR (“Digital Multiplier”)

+-

Kpd negative

Kpd positive

Digital operation allows limiting Vd independent of input amplitudes

Page 15: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 15

Properties of XNOR Phase Detector

+-

unstable equilibrium

stable equilibrium

Vswing

Vin

Vf

Vd

• Useful PD range is [-, 0]

• Vd = 0 corresponds to = -/2 steady-state phase offset

• In order to extract the average value of Vd, a loop filter is needed...

Page 16: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 16

Loop Filters (1)

A loop filter is used to average the PD output and provide a higher-order jitter transfer function.

Vd VcR

C

Consider a simple RC LPF:

0 reduced, but phase margin also reduced!Resulting jitter peaking is undesirable.

−20 dB/decade

−40 dB/decade

0 dB

Page 17: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 17

Loop Filters (2)

Vd VcR1

C

R2

LPF with added transmission zero:

• 0 once again in 1-pole rolloff region no jitter peaking• Parasitic elements will add high-frequency poles;

detailed loop simulations required in practice.• Any PLL with one pole at s = 0 is said to be “Type 1.”

p z

−20 dB/dec.

−40 dB/dec.

−20 dB/dec.

Page 18: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 18

Steady-State Phase Error^

Loop gain:

Errortransfer function:

Input frequency step:

If

then locking cannot occur!

R1

R2 CActive loop filter:

additional pole at 0

Type II PLL

|G|

0

−40 dB/decade

−20 dB/decade

Page 19: Synchronization Using Phase-Locked Loops

Vin

Vf

Lock Acquisition (1)

Consider the case where fin > ff and both (constant) frequencies are applied to an XOR:

If the frequencies are close together, periods where Vpd is mostly positive or mostly negative can be observed.

Page 20: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 20

Lock Acquisition (2)

^

out increases (correct direction)

out decreases (wrong direction)

in - out

Suppose initially out < in :

Then phase difference moves to the right in the PD characteristic:

When out increases, decreases, and slows down.When out decreases, increases, and speeds up.

Page 21: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 21

Lock Acquisition (3)

t

t

VC

slows down

speeds up

speeds up

VP = “Pull-in voltage”

Since VP > 0, on average out will increase, thereby moving closer to lock

After many of these cycles, the frequency is “pulled in.”

Pull-in time:int loop filter integration time constant

initial frequency difference

Page 22: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 22

Lock Acquisition (4)

fin = 1 GHzKvco = 5 MHz/VK = 106 rad/sec = 100 ns

fout(0) = 1.002 GHz

Control voltage transient showing pull-in:

cycle slips

Page 23: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 23

3. Combinational circuit version

To lengthen the stable region of PD characteristic, we use edge detection instead of level detection:

Idea:

Vin

Vf

Vd

Vin

Vf

Vd

Realization:

+-

PD characteristic:

Entire region [0,2] now usable!

Page 24: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 24

4. Phase-Frequency Detector (PFD)

Vin

Vf

Vup

Vdn

Vin

Vf

Vup

Vdn

Phase detection behavior:

Vin leads Vf Vin in phase with Vf

Page 25: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 25

+2 +4

-4 -2

PFD Response to Frequency Difference:

Vin

Vf

Vup

Vdn

PFD exhibits faster frequency acquisition than conventional phase detector.

Page 26: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 26

Charge Pump Phase Detector

Iout

Ich

-Ich

2

-2

Vin

Vfb

Vup

Vdn

Ich

Ich

VCIout

R

C Cp

|Zf|

z p

−20 dB/dec.

Page 27: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 27

CMOS Charge Pump Realizations

Ich

Ich

Iout

Vdn

Vup

Single-ended:

cmfb

IchIch

Vdn

VdnVup

VupVdn

Vup Vdn

Vup

Differential:

Iout+ Iout-

Page 28: Synchronization Using Phase-Locked Loops

PFD

Ich

Ich

VCO

KVCO

VC

in

out

fb

|G|

z p

−20 dB/dec.

−40 dB/dec.

−40 dB/dec.

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 28

Type II PLL with PFD & Charge Pump

^

For :

Page 29: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 29

Effect of Parasitic Pole

Larger Cp lower p jitter peaking

p = 0

p = 0/10

p = 100

p = 0/10

p = 100

p = 0

Open-Loop Freq. Response:

Closed-Loop Freq. Response:

Page 30: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 30

Measured PLL Locking

Design parameters:

Settling time (10%) ≈ 15 µs

Page 31: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 31

Motivation for CDR: Deserializer (1)

If input data were accompanied by a well-synchronized clock, deserialization could be done directly.

Input clock

Input data

channel

1:2DMUX

1:2DMUX

1:2DMUX

Page 32: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 32

• Providing two high-speed channels (for data & clock) is expensive.

• Alignment between data & clock signals can vary due to different channel characteristics for the different frequency components. Hence retiming would still be necessary.

Clock

Data

Motivation for CDR (2)

input data ClockRecovery

circuit

retimed data

recovered clock

PLLs naturally provide synchronization between external and internal timing sources.A CDR is often implemented as a PLL loop with a special type of PD...

Page 33: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 33

f

Return-to-Zero vs. Non-Return-to-Zero Formats

NRZ

RZ

1 0 1 1 0 1 0

Tb

RZ spectrum has energy at 1/Tb conventional phase detector can be used.

NRZ spectrum has null at 1/Tb ??

f

Page 34: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 34

Phase Detection of RZ Signals

Vdata

VRCK

Vd

Vdata

VRCK

Vd

• Phase detection operates same as for clock signals for logic 1.

• Vd exhibits 50% duty cycle for logic 0.

• Kpd will be data dependent.

Page 35: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 35

Phase Detection of NRZ Signals

Vdata

VRCK

Vd

Vdata

VRCK

Vd

Since data rate is half the clock rate, multiplying phase detection is ineffective.

• RZ signals can use same phase detector as clock signals

• RZ data path circuitry requires bandwidth that is double that of NRZ.

• Different type of phase detection required for NRZ signals.

Page 36: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 36

Idea: Mix NRZ data with delayed version of itself instead of with the clock.

Example: 1010 data pattern (differential signaling)

X X

= =

Tb

fundamental generated

Page 37: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 37

Operation of D Flip-Flips (DFFs)

CMOS transmission gate:

D

CK

CK

CK

CK

QI

latch:

D

CK

CK

CK

CK

QICK

CK CK

CK

Q

Master Slave

DFF:

Ideal waveforms:

D

CK

Q

D0 D1 D2

D0 D1 D2

Symbol:

D Q

No bubble Q changes following rising edge of CK

Page 38: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 38

DFF Setup & Hold Time

tsetup thold

When a data transition occurs within the setup & hold region, metastability occurs.

D

CK

Q

At CK rising edge, the master latches and the slave drives.

Page 39: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 39

DFF Clock-to-Q Delay

D

CK

CK

CK

CK

QICK

CK CK

CK

Q

Master Slave

D0 D1 D2

D0 D1 D2

D

CK

Q

tck-q

tck-q is determined by delays of transmission gate and inverter.

Page 40: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 40

Din

RCK

P

Q

Delay between Din to Q is related to phase between Din & RCK

Realization of Data/Data Mixing :

Q

P

D0

D0

D1

D1

D2

D2

D3

D3

D4

D1 D2 D3

D0 D1 D2 D3

Din

RCK

RCK early:

D0 D1 D2 D3

D0 D1 D2 D3

D0

D1

D1

D2

D2

D3

D3

D4

RCK synchronized:

Same as Din, synchronized with RCK

Page 41: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 41

Define zero phase difference as a data transition coinciding with RCK falling edge; i.e., RCK rising edge is in center of data eye.

Q

P

Din

RCK

RCK early ( < 0): RCK synchronized ( = 0):

Tb

t

Tb

t

Page 42: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 42

Din

RCK

P

Q

Phase detector characteristic also depends on transition density:

0011… pattern:

In general,

where average transition density

0101… pattern:

Q

P

Din

RCK

Vswing

Page 43: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 43

Both slope and offset of phase-voltage characteristicvary with transition density!

Constructing CDR PD Characteristic

- +

= 0.25 = 0.5

= 1

slope:

intercept:

Page 44: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 44

To cancel phase offset:

Din

RCK

P

Q

R

QR

D0 D1 D2 D3

D0 D1 D2 D3

Q

RCK

QR

R

C. R. Hogge, “A self-correcting clock recovery circuit,” IEEE J. Lightwave Tech., vol. 3, pp. 1312-1314, Dec. 1985.

Always 50% duty cycle;average value is

Kpd still varies with ,but offset variation cancelled.

-+

+1/2

-1/2

= 1

= 0.5

Page 45: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 45

Transconductance Block

ISS ISS

P+ P- R- R+

Iout+ Iout-

Page 46: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 46

Due to inherent mixing operation, Hogge PD is not a good frequency detector. A frequency acquisition loop with a reference clock is usually needed:

J. Cao et al., “OC-192 transmitter and receiver in 0.18 CMOS,” JSSC. vol. 37, pp. 1768-1780, Dec. 2002.

Page 47: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 47

Non-Idealities in Hogge Phase Detector:A. Clock-to-Q Delay (1)

Din

RCK

P

Q

R

QR

tck-Q

tck-Q

Page 48: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 48

Din

RCK

Q

QR

P

R

tck-Q

tck-Q

+

-os

Non-Idealities in Hogge Phase Detector:A. Clock-to-Q Delay (2)

Result is an input-referred phase offset:

Page 49: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 49

Din

RCK

tck-Q

CDRDin

Dout

RCK

Phase offset moves RCK away fromcenter of data, making retiming lessrobust.

Non-Idealities in Hogge Phase Detector:A. Clock-to-Q Delay (3)

Page 50: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 50

Non-Idealities in Hogge Phase Detector:A. Clock-to-Q Delay (4)

Din

RCK

P

Q

R

QR

tck-Q

tck-Q

t

Set

Dt

Din

Dt

RCK

Q

QR

P

R

Use a compensating delay:

Page 51: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 51

Non-Idealities in Hogge Phase Detector:B. Delay Between P & R (1)

Din

RCK

P

Q

R

QR

Din

RCK

Q

QR

P

R

P and R are offset by 1/2 clock period

Page 52: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 52

P

R

Din

RCK

P

Q

R

QR

Vcontrol

to VCO

Non-Idealities in Hogge Phase Detector:B. Delay Between P & R (2)

Average value of Vcontrol is well-controlled, but resulting ripplecauses high-frequency jitter.

Page 53: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 53

Idea: Based on R output, create compensating pulses:

Din

RCK DFF

latch

latch

latch

Din

RCK

Q

QR

P (up)

R (dn)

Vcontrol

Standard Hogge/charge pump operation for single input pulse:

Non-Idealities in Hogge Phase Detector:B. Delay Between P & R (3)

Page 54: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 54

Din

RCK DFF

latch

latch

latchQ4

Q3

Q2

Q1

Din

RCK

Q4

Q3

Q2

Q1

Vcontrol

P (up)

R (dn)

P’(dn)

R’(up)

Cancels out effect of next pulse

Non-Idealities in Hogge Phase Detector:B. Delay Between P & R (4)

Page 55: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 55

Other Nonidealities of Hogge PD (1)

PD

Dif

fere

ntia

l Out

put

(mV

)

0

-20

-40

-60

60

40

20

0 10p 20p 30p 40p 50p-30p-40p-50p

-20p -10p

Data Delay in regard to Clock (s)

response from ideal linear PD

simulated result of one linear PD

Page 56: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 56

Effect of Transition Density:

Other Nonidealities of Hogge PD (2)

Page 57: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 57

Effect of DFF bandwidth limitation:

Other Nonidealities of Hogge PD (3)

Page 58: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 58

Effect of XOR bandwidth limitation:

Since the PD output signals are averaged, XOR bandwidth limitation has negligible effect.

Other Nonidealities of Hogge PD (4)

Page 59: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 59

Effect of XOR Asymmetry:

Other Nonidealities of Hogge PD (5)

Page 60: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 60

Binary Phase Detectors

Idea: Directly observe phase alignment between clock & data

Clock falling edge early:Decrease Vcontrol

Clock falling edge late:Increase Vcontrol

Clock falling edge centered:No change to Vcontrol

Ideal binary phase-voltage characteristic:

+1/2

-1/2

Also known as “bang-bang” phase detector

Page 61: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 61

D Flip-Flop as Phase Detector

Early clock:Data transitions align

with clock low

Late clock:Data transitions align

with clock high

Din

RCK

Din

RCK

RCK VP

Realization using double-clocked DFF; note that RCK/Din connections are reversed:

VPRCK=

Top (bottom) DFF detects on Din rising (falling) edge; DFF selected by opposite Din edge to avoid false transitions due to clock-q delay.

Page 62: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 62

What happens if =0?

tsetup

thold

D

CK

Q

• If transition at D input occurs within setup/hold time, metastable operation results.

• Q output can “hang’’ for an arbitrarily long time if zero crossings of D & CK occur sufficiently close together.

• Metastable operation is normally avoided in digital circuit operation(!)

Page 63: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 63

Dog Dish Analogy

???

A dog placed equidistant between two dog dishes will starve (in theory).

Page 64: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 64

Non-Idealities in Binary DFF Phase Detector

1. Metastable operation difficult to characterize & simulate, varies widely over processing/temperature variations. Kpd (and therefore jitter transfer function parameters) are difficult to analyze. Exact value of Kpd depends on metastable behavior and varies with input jitter.

2. Large-amplitude pattern-dependent variation is present in phase detector output while locked.

3. During long runs phase detector output remains latched, resulting in VCO frequency changing continuously:

VP

RCK

Page 65: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 65

Idea: Change VCO frequency for only one clock period

VP

RCK

RCK early RCK late

Circuit realization should sample data with clock (instead of clock with data)while maintaining bang-bang operation.

Page 66: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 66

Alexander Phase Detector

RCK

Q1Q2

Q3 Q4

UP

DN

RCKQ1

Q2

Q3

Q4

UP

DN

RCK early

Q1 leads Q3; Q2/Q4 in phase

RCK late

Q3 leads Q1; Q1/Q4 in phase

Page 67: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 67

Simulation Results: Alexander PD

DFF outputs

VCO controlvoltage

Page 68: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 68

Binary PDLinear PD

Simulation Comparison: Linear vs. Binary

• very small freq. acquisition range• low steady-state jitter

• high freq. acquisition range• high steady-state jitter

Vcontrol Vcontrol

Page 69: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 69

Half-Rate CDRs

To relax speed requirements for a given fabrication technology, a half-rate clock signal can be recovered:

Din

RCK

RCK2

input data

full-rate recovered clock

half-rate recovered clock

• Can be used in in applications (e.g., deserializer) where full-rate clock is not required.

• Duty-cycle distortion will degrade bit-error ratio & jitter tolerance compared to full-rate versions.

Page 70: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 70

Idea 1: Input data can be immediately demultiplexed with half-rate clock

Din

RCK2

DA

DB

Din

RCK2

DA

DB

D0 D1 D2 D3 D4

D0 D2 D4

D1 D3

synchronized withclock transitions

Page 71: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 71

Din

RCK2latch latch

latch latch

DAXA

XB DB

Splitting D flip-flopsinto individual latches:

synchronized with RCK2DB

RCK2

Din

XA

XB

DA

synchronized withboth RCK2 & Din

These pulse widths contain phase information.

Page 72: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 72

DB

RCK2

Din

XA

XB

DA

RCK2

Din

P R

XA

XB

DA

DB

Complete Linear Half-Rate PD

J. Savoj & B. Razavi, “A 10Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” JSSC, vol. 36, pp. 761-768, May 2001.

Page 73: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 73

Idea 2: Observe timing between Din, RCK and quadrature RCKQ

Din

RCK

RCKQ

S0 S1 S2

Clock late

Din

RCK

RCKQ

S0 S1 S2

Clock early

S0, S2 sampled with RCK transitions S1 sampled with RCKQ transitions

Phase logic:

clock early

clock late

no transition

Page 74: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 74

Din

RCK

RCKQ

DI

DQ

VPD

Din

RCK

RCKQ

DI

DQ

VPD

Din

RCK

RCKQ

DI

DQ

VPD

Clock early Clock late

J. Savoj & B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate binary phase detector,” JSSC, vol. 38, pp. 13-21, Jan. 2003.

Page 75: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 75

DLL-Based CDRs

fref CMUphase generator

phaseMUX

VC

C

PDDin

Dout

retimer

fck• CMU JBW can be optimized

to minimize fck jitter.

• No VCO inside CDR loop; less jitter generation.

• Can be arranged to have faster lock time.

CDR loop

Page 76: Synchronization Using Phase-Locked Loops

EECS 270C / Winter 2013 Prof. M. Green / Univ. of California, Irvine 76

Fast-Lock CDR for Burst-Mode Operation

Gated ring oscillator:EN

EN high: 7-stage ring oscillatorEN low: no oscillation

CDR based on 2 gated ring oscillators:

Din

RCK

Each ring oscillation waveform is forced to sync with one of the Din phases.