Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the...

29
Symmetry Energy within the Brueckner-Hartree-Fock approximation “International Symposium on Nuclear Symmetry Energy” Smith College, Northampton ( Massachusetts) June 17 th -20 th 2011 Isaac Vidaña CFC, University of Coimbra

Transcript of Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the...

Page 1: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Symmetry Energy within theBrueckner-Hartree-Fock

approximation

“International Symposium on Nuclear Symmetry Energy”Smith College, Northampton ( Massachusetts) June 17th-20th 2011

Isaac VidañaCFC, University of Coimbra

Page 2: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

In collaboration with:

U. Coimbra: C. Providência, C. Ducoin

U. Barcelona: A. Polls

U. Surrey: A. Rios

IPN, Orsay: J. Margueron

Page 3: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Isospin asymmetric nuclear matter is present in:

Nuclei, especially those far away from thestability line & in astrophysical systems

(neutron stars)

Motivation

A well-grounded understanding of the properties of isospin-richnuclear matter is necessary for both nuclear physics & astrophysics

However, some of these properties are notwell constrained. In particular the densitydependence of the symmetry energy is stillan important source of uncertainties.

Page 4: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Some properties of asymmetric nuclear matter can be obtained from:

the analysis of experimental data inheavy ion collisions

(e.g., ID, double n/p ratios, GDR, …)

the analysis of existing correlationsbetween different quantities in bulk

matter & finite nuclei(e.g. δR versus L)

PREX experiment @ JLAB

A major effort is being carried out to studyexperimentally the properties of asymmetric nuclearsystems. Experiments at CSR , GSI (FAIR), RIKEN,GANIL, FRIB can probe the behavior of the symmetryenergy close and above saturation density.

Astrophysical observations of compact objects window into nuclear matter at extreme isospin asymmetries

Page 5: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

In this talk …

Study of density dependence of the symmetryenergy within the BHF approximation andcomparison with effective models (Skyrme & RMF).

Phys. Rev. C 80, 045806 (2009)

Analysis of correlations between L and Ksym.Special attention to correlations of L with neutronskin thickness and crust-core transition point inneutron stars.

based on:

Phys. Rev. C 83, 045810 (2011)

Page 6: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Equation of State of Asymmetric Nuclear Matter

!

E

A(",#) = E

SNM(") + S2(")#

2+ S4 (")#

4+O(6)

Charge symmetry expansion of (E/A)ANM on even powers of isospin asymmetry β=(ρn-ρp)/(ρn+ρp)

!

S2(") =

1

2

# 2E /A

#$ 2$ = 0

,

!

S4(") =

1

24

# 4E /A

#$ 4$ = 0

!

ESNM(") =

E

A(",# = 0),

!

S2(") ~

E

A(",# =1) $

E

A(",# = 0)

In good approximation:

Page 7: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

!

ESNM(") = E0 +

K0

2

" # "03"0

$

% &

'

( )

2

+Q0

6

" # "03"0

$

% &

'

( )

3

+O(4)

!

K0

= 9"0

2#2ESNM(")

#"2"= "0

$ 240 ± 20MeV

!

Q0 = 27"03#

3ESNM(")

#"3"= "0

$ %500 ÷ 300MeV

!

E0 = ESNM(" = "0) # $16MeV

Similarly S2(ρ) can be also characterized with few bulk parameters around ρ0

!

S2(") = Esym + L" # "03"0

$

% &

'

( ) +

Ksym

2

" # "03"0

$

% &

'

( )

2

+Qsym

6

" # "03"0

$

% &

'

( )

3

+O(4)

!

L = 3"0

#S2(")

#""= "0

!

Ksym = 9"0

2#2S2(")

#"2"= "0

!

Qsym = 27"0

3#3S2(")

#"3"= "0

Less certain & predictions of different models vary largely

ESNM(ρ) commonly expanded around saturation density ρ0

Page 8: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Combining the expansions of ESNM(ρ) and S2(ρ) one arrives at

where

!

"0(#) = "

0$ 3"

0

L

K0

# 2 +O(4)

!

E0(") = E

0+ Esym"

2+O(4)

!

K0(") = K0 + Ksym # 6L #Q0

K0

L$

% &

'

( ) "

2+O(4)

!

Q0(") =Q

0+ Qsym # 9L

Q0

K0

$

% &

'

( ) "

2+O(4)

!

E

A(",#) = E0(#) +

K0(#)

2

" $ "0(#)

3"0(#)

%

& '

(

) *

2

+Q0(#)

6

" $ "0(#)

3"0(#)

%

& '

(

) *

3

+O(4)

Page 9: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

BHF approximation of ANM

Bethe-Goldstone Equation

!

G "( ) =V +VQ

" # E # E ' + i$G "( )

Energy per particle

!

E

A(",#) =

1

A

h2k

2

2m$

+1

2Re U$ (

r k )[ ]

%

& '

(

) *

k+kF$

,$

,

!

E" (k) =h

2k

2

2m"

+ Re U" (k)[ ]

!

U" (k) =r k

r k ' G # = E" (k) + E" '

(k ')( )r k

r k '

Ak '$kF" '

%" '

%

Infinite sumation of two-hole line diagrams

Partial sumation of pp ladder diagrams

Pauli blocking Nucleon dressing

Page 10: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Few words on the NN and NNN forces used …

Argonne V18 (Av18) NN potential

!

Vij = Vp (rij )Oij

p

p=1,18

"

!

Oij

p=1,14 = 1,r " i #

r " j( ),Sij ,

r L #

r S ,L

2,L2 r " i #

r " j( ),

r L #

r S ( )

2$ % &

' ( ) * 1,

r + i #

r + j( )[ ]

!

Oij

p=15,18 = Tij ,r " i #

r " j( )Tij ,SijTij , $ zi + $ zj( )[ ]

Urbana IX (UIX) NNN potential

!

Vijk

UIX=Vijk

2"+Vijk

R

!

Vijk

2": Attractive Fujita-Miyazawa force

π

π

!

Vijk

2" = A Xij ,X jk{ }r # i $

r # j ,

r # j $

r # k{ } +

1

4Xij ,X jk[ ]

r # i $

r # j ,

r # j $

r # k[ ]

%

& '

(

) *

cyclic

+

!

Xij =Y m" rij( )r # i $

r # j + T m" rij( )Sij

!

Y (x) =e"x

x1" e

x2

( )

!

T(x) = 1+3

x+3

x2

"

# $

%

& ' e(x

x1( ex

2

( )2

!

Vijk

R = B T2rij( )T 2 rjk( )

cyclic

"

!

Vijk

R: Repulsine & Phenomenological

!

VNN

eff r r ij( ) = V

UIX r r i,

r r j ,

r r k( )n

r r i,

r r j ,

r r k( )d3

r r k"

Reduced to an effectivedensity-dependent 2BF

A, B fit to reproduce the saturation point

Page 11: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

!

Un ~U0+Usym"

!

Usym =Un "Up

2#

BHF nucleon mean field in ANM

Symmetry potential

Isospin splitting of mean field in ANM

!

Up ~U0"Usym#

Page 12: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

G-matrix gives access to in-medium NN cross sections

!

"## ' =m#*m# '*

16$ 2h4

2J +1

4$G## '%## 'LL 'SJ

2

, ## '= nn, pp,npLL 'SJ

&

Page 13: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Phenomenological approaches

Skyrme

Relativistic mean field models

Non-linear Walecka models (NLWM) with constant coupling constants: NL3, TM1, GM1, GM3 & FSU Density dependent hadronic models (DDH) with density dependent coupling constants: TW, DD-ME1, DD-ME2, DDHδ

Quark meson coupling model QMC

Lyon group SLy SkI family

Nuclear matter: system of non-overlaping MIT bags interacting through exchange of scalar and vector mean fields

Page 14: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Bulk parameters of ESNM(ρ) & S2(ρ)

0.92

0.56

0.62

1.00

1.05

0.67

0.46

0.47

0.59

0.66

0.65

γ

-339.6-159.8-27.863.135.8-225.1213.6-17.300.240BHF (2BF)

-343.8-162.8-23.466.933.6-224.9185.9-14.620.176BHF (3BFb)

-446.428.0-10.093.533.7-387.5291.0-15.700.150QMC

-332.1535.2-124.755.332.7-540.1240.1-16.250.153TW

-276.6424.1-51.360.532.6-523.4230.0-16.300.148FSU

-518.7-66.433.6110.836.8-285.2281.0-16.320.145TM1

-698.4181.2100.9118.537.4203.1271.6-16.240.148NL3

-322.5358.8-43.459.929.6-335.7250.3-16.150.162SkI4

-292.7602.8-98.443.931.8-364.2229.9-15.980.160SLy230a

-320.4520.8-119.845.331.8-362.9229.8-15.970.159SLy4

-334.7-112.8-31.366.534.3-280.9195.5-15.230.187BHF (3BFa)

KtQsymKsymLEsymQ0K0E0r0Model

!

S2(") = Esym

"

"0

#

$ %

&

' (

)

* ) =L

3Esym

HIC at intermediate energiesconsistent with

Page 15: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

(Adapted from M. B. Tsang et al,Phys. Rev. Lett. 102, 122701 (2009))

Symmetry Energy versus L

(Adapted from D. V. Shetty & S. J.Yennello, Pramana 75, 259 (2010))

Recent extracted values of L

BHF

Page 16: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Density dependence of S2 and L

Spin-Isospin contributions to Esym and L

66.534.3Total29.214.3F.G.13.41.4(1,1)52.228.4(1,0)-4.3-3.9(0,1)-24.0-5.9(0,0)

LEsym(S,I)

Larger contribution to Esym and Lfrom S=1 channel (tensor)

!

L(") # 3"0

$S2(")

$"

Page 17: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Effect of three-body forces

3BF increase the slope of S2(ρ) astrophysical consequences:

larger Yp earlier onset of direct URCA

stiffer EoS larger Mmax of neutron star

Page 18: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Correlation of Ksym & Kτ with L

• BHFSkyrme RMF

• BHF

S2: crossing at ρ ~ 0.11 fm-3, S2(0.11)~24±4 MeV (expected from finite nuclei constraints at ρ<ρ0)

L : tendency to cross at ρ ~ ρ0/3

Ksym: no crossing observed

S 2 (M

eV)

S 2 (M

eV)

Page 19: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Neutron Skin Thickness & Symmetry Energy

Neutron skin thickness

!

"R = rn2# rp

2

Typel & Brown showed that δRcalculated in mean field modelsis very sensitive to the slope ofthe symmetry energy.

Typel-Brown correlation

Den

sity

ρ (

fm-3

)

r (fm)

Page 20: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Fully self-consistent finite nuclei calculation based on BHF approach toodifficult δR estimated to lowest order in the diffuseness corrections (Steineret al., Phys. Rep. 411, 325 (2005))

!

"R #3

5t

!

t ="c

#0("c )(1$"c

2)

Es

4%ro2

d# # Esym /S2(#) $1( ) ESNM (#) $ E0( )$1/ 2

o

#0 (" c )

&

d# # ESNM (#) $ E0( )1/ 2

o

#0 (" c )

&

thickness of semi-infiniteasymmetric matter

Page 21: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Correlation of the Neutron Skin Thickness δR with L & Ksym

Linear increase of δR with L & Ksym

!

P ",#( ) ="2

3"0

L# 2 + K0+Ksym#

2( )" $ "

0

3"0

+L

%

& '

(

) *

Not surprising:

Pressure δR

In n-rich matter pressure increases with L at fixed ρ

Page 22: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Neutron Stars & Symmetry Energy:Crust-Core transition density

The crust of a neutron star is very importantfor a number of observable properties :

thermal evolution glitches X-ray burst ….

(Picture from Nicolas Chamel )

It is very important to understand well thecrust-core transition region

Which constraints are set by the isospin dependence of the nuclear EoS on the transition region ?

How sensitive is to the symmetry energy ?

Page 23: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

!

Tr(C ) > 0, Det(C ) > 0

Curvature Matrix:

Crust-core transition estimated from crossing of β-equilibrium EoSand spinodal instability line

Thermodynamical spinodal upperbound of the the real ρt ( ~ 15%larger than TF calculation ofnuclear pasta )

(Figures courtesy of C. Ducoin & C.Providência)

positive definite:

!

C =

"µn/"#n "µ

n/"#p 0

"µp /"#n "µp /"#p 0

0 0 "µe /"#e

$

%

& & &

'

(

) ) )

!

+k2

Dnn Dnp 0

Dpn Dpp 0

0 0 0

"

#

$ $ $

%

&

' ' '

+4(e2

k2

0 0 0

0 1 )1

0 )1 1

"

#

$ $ $

%

&

' ' '

ρtt: we consider first this point

ρtd

Page 24: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Correlation of Ypt and ρt with LPr

oton

frac

tion

Ypt

Density ρt [fm-3]

Prot

on fr

actio

n Y

pt

Prot

on fr

actio

n Y

ptDensity ρt [fm-3]L [MeV]

Den

sity

ρt [

fm-3

]

40 60 20 80 100 120 140

L [MeV]

spinodal

β−stability

Clear decreasing correlations

Dispersion of Ypt due to dispersion of Esym

Higher L { Lower Ypt

Lower ρt

!

µn "µp = 4#S2($) = µe "µ% e

&Yp1/ 3

(1" 2Yp )=

4S2($)

hc 3' 2$( )1/ 3

(

)

* *

+

,

- -

Page 25: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

L- Pt correlation: an open issue

Xu et al., PRC, 2009 Decrease of Pt

Moustakidis et al., PRC, 2010 Increase of Pt

!

P ",#( ) ="2

3"0

L# 2 + K0+Ksym#

2( )" $ "

0

3"0

+L

%

& '

(

) *

BUT …

40 60 80 100 120 L (MeV)

ρ t (f

m-3

)

Ypt

Increase of Pwith L in n-richmatter at fixeddensity

Page 26: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Role of other bulk parameters Dynamical vs Themodynamical spinodal

Transition point well correlated

Fits on pairs of parameters

!

Pt= aX

1+ bX

2+ c

P dt(M

eV fm

-3)

P dt(M

eV fm

-3)

0

0.1

0.2

0.3

0.4

0.5

P dt(M

eV fm

-3)

0

0.1

0.2

0.3

0.4

0.5

L (MeV) [Esym-0.127L] (MeV)

[L01-0.343Ksym01] (MeV)

Unclear L-Pt correlation

Inclusion of Esym more reliable corelation

Good correlation with L and Ksym at ρ=0.1 fm-3 Relativistic

Skyrme

Page 27: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Neutron Skin Thickness & The Crust-CoreTransition Density

Inverse correlation between δR and ρt(Horowiz & Piekarewicz)

an accurate measurement of neutronskin in neutron rich nuclei can provideconsiderable & valuable information onthe crust-core transition density.

(PREX exeriment @ JLAB)

Neutron Star Crust & Neutron Skin aremade out of neutron rich matter at similardensities

Both are governed by EoS at subnucleardensities in particular by S2(ρ) & its

derivativesNeutron Star Heavy nucleus

Page 28: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter

Summary & Conclusions

Study of S2(ρ) within the BHF approximation & comparison with effective models (Skyrme & RMF).

Correlation of ρt & Ypt with L:

Robust correlation of ρt with L. Correlation L-Ypt more disperse due to dispersion on Esym.

Correlation of Pt with L:

Opposite contributions difficult prediction. Improvement with combination of L & Ksym at ρ ~ 2/3ρ0.

L=66.5 MeV compatible with values deduced from different observables.

Larger contribution to Esym & L from S=1 channels (tensor).

3BF increase the slope of S2(ρ).

Page 29: Symmetry Energy within the Brueckner-Hartree-Fock ... · Symmetry Energy within the Brueckner-Hartree-Fock approximation ... IPN, Orsay: J. Margueron. Isospin asymmetric nuclear matter