SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

49

Transcript of SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Page 1: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.
Page 2: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Symmetric Cryptosystems

Symmetric Cryptosystems21/04/23 | pag. 2

Page 3: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Block Ciphers:Classical examples

Symmetric Cryptosystems21/04/23 | pag. 3

• Affine Cipher

• Affine Linear and Linear Cipher

• Vigenère

• Hill

Page 4: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Block Ciphers:Remark

Secure block ciphers must not be (affine) linear or easy to approximate by linear functions!!!

Cryptography 21/04/23 | pag. 4

Page 5: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Remark

Cryptography 21/04/23 | pag. 5

Implementation of a (non-linear!) substitution often occurs through a look-up table, called S-box.

Page 6: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Block Ciphers:Advanced examples

Symmetric Cryptosystems21/04/23 | pag. 6

• DES – Feistel Cipher

• AES – Rijndael

Page 7: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Feistel Cipher

Cryptography 21/04/23 | pag. 7

An iterated block cipher is a block cipher involving the sequential repetition of an internal function called rounds.

an iterated block cipher

Page 8: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Feistel Cipher

Cryptography 21/04/23 | pag. 8

Page 9: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Feistel Cipher

Cryptography 21/04/23 | pag. 9

Page 10: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 10

Page 11: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 11

Page 12: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 12

Page 13: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 13

Page 14: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 14

Page 15: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 15

Page 16: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 16

Page 17: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 17

Page 18: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 18

Page 19: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:S-Boxes

Cryptography 21/04/23 | pag. 19

Page 20: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 20

Page 21: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 21

Page 22: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 22

Page 23: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 23

Roundnumber

Number ofleft

rotations

1 1

2 1

3 2

4 2

5 2

6 2

7 2

8 2

9 1

10 2

11 2

12 2

13 2

14 2

15 2

16 1

Page 24: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 24

Page 25: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 25

Page 26: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

DES:Algorithm

Cryptography 21/04/23 | pag. 26

Page 27: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

AES:Rijndael Cipher

Cryptography 21/04/23 | pag. 27

We again need some algebra first!

Page 28: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Polynomials over Rings

Cryptography 21/04/23 | pag. 28

Page 29: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Example:Polynomials over Rings

Cryptography 21/04/23 | pag. 29

Page 30: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Polynomials over Rings

Cryptography 21/04/23 | pag. 30

Page 31: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Example:Polynomials over Rings

Cryptography 21/04/23 | pag. 31

Page 32: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Polynomials over Fields

Cryptography 21/04/23 | pag. 32

Page 33: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Polynomials over Fields

Cryptography 21/04/23 | pag. 33

Page 34: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Polynomials over Fields

Cryptography 21/04/23 | pag. 34

Page 35: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Polynomials over Fields

Cryptography 21/04/23 | pag. 35

Page 36: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Example:Polynomials over Fields

Cryptography 21/04/23 | pag. 36

Page 37: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Polynomials over Fields

Cryptography 21/04/23 | pag. 37

Page 38: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Polynomials over Fields

Cryptography 21/04/23 | pag. 38

Page 39: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Example:Polynomials over Fields

Cryptography 21/04/23 | pag. 39

Page 40: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Finite Fields

• Let R be a ring. If there is a least positive integer n such that nr=0 for all r in R, then we say that R has characteristic n and write char(R)=n. When no such integer exists, we set char(R)=0.

• Let F be a field with char(F)>0, then char(F) is prime.

• Any finite field F has char(F)=p, where p is prime.

• Let F be a finite field, where char(F)=p, then |F|=pn , with n a strictly positive integer.

Cryptography 21/04/23 | pag. 40

Page 41: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Construction of Finite Fields

Cryptography 21/04/23 | pag. 41

Hence we can also denote it by GF(p). Note that char(GF(p))=p.

Page 42: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Construction of Finite Fields

Cryptography 21/04/23 | pag. 42

Page 43: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Construction of Finite Fields

Cryptography 21/04/23 | pag. 43

2

Page 44: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Construction of Finite Fields

Cryptography 21/04/23 | pag. 44

Page 45: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Construction of Finite Fields

Cryptography 21/04/23 | pag. 45

For every prime p and positive integer n there is an irreducible polynomial of degree n in Zp[x] !

Page 46: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Construction of Finite Fields

Theorem

Let p be a prime and f(x) an irreducible polynomial of degree n in Zp[x]. Then

Zp[x]/ < f(x) > (or Zp[x] mod f(x) ) is a field with pn elements.

ProofAs we can choose as coset representatives polynomials of the form a0 + a1x + a2x2 + ... + an-1xn-1 , we get a ring of order pn. As in Zn we use the analogue of the Extended Euclidean algorithm to find the inverse of an element.Let g(x) be a coset representative of a non-zero element of the ring. Since f(x) is irreducible it is not divisible by any lower degree polynomial and so the gcd(g(x), f(x)) = 1. Then by the analogue of the Extended Euclidean algorithm 1 = a(x)g(x) + b(x)f(x) for some polynomials a(x), b(x). Then a(x) is a coset representative for the inverse of g(x).

Cryptography 21/04/23 | pag. 46

Page 47: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Example:Construction of Finite Fields

Cryptography 21/04/23 | pag. 47

Page 48: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Example:Construction of Finite Fields

Cryptography 21/04/23 | pag. 48

Page 49: SYMMETRIC CRYPTOSYSTEMS Symmetric Cryptosystems 20/10/2015 | pag. 2.

Intermezzo:Construction of Finite Fields

Cryptography 21/04/23 | pag. 49

Conclusion: For every prime p and positive integer n the field GF(pn) exists!