Swarm bots

58
1 21 de Abril de 2006 – Carlos Lourenço Swarm bots Vida Artificial 21 de Abril de 2006

description

Swarm bots. Vida Artificial 21 de Abril de 2006. Enquadramento Robótica Biologia Biomimetics Swarm bots Aplicações Conclusão. Agenda. Robótica Biologia Objectivos: Execução de tarefas complexas Modelação de comportamentos de insectos Colaboração simbiótica Metamorfose. - PowerPoint PPT Presentation

Transcript of Swarm bots

Page 1: Swarm bots

121 de Abril de 2006 – Carlos Lourenço

Swarm bots

Vida Artificial

21 de Abril de 2006

Page 2: Swarm bots

221 de Abril de 2006 – Carlos Lourenço

Agenda

Enquadramento Robótica Biologia Biomimetics Swarm bots Aplicações Conclusão

Page 3: Swarm bots

321 de Abril de 2006 – Carlos Lourenço

Enquadramento

• Robótica• Biologia• Objectivos:

– Execução de tarefas complexas• Modelação de comportamentos de insectos• Colaboração simbiótica

– Metamorfose

“ A robot is a mechanical device that can perform preprogrammed physical tasks.”, in en.wikipedia.org

Page 4: Swarm bots

421 de Abril de 2006 – Carlos Lourenço

Robótica

• Perspectiva histórica– Em 450 BC o matemático grego Archytas

postula um pássaro mecânico denominado “o pombo”;

– Um dos primeiros desenhos de um robot humanóide são feitos por Leonardo Da Vinci em 1495, possivelmente baseados no homem vitruviano;

– A palavra robot é introduzida pelo escritor checo Karel Capek em 1920

Page 5: Swarm bots

521 de Abril de 2006 – Carlos Lourenço

Robótica

• Perspectiva histórica– Nos anos 30, Westinghouse constroi um robot humanóide

conheçido como Elektro, exibido nas feiras mundiais de 1939 e 1940;

– Nos anos 40, Isaac Asimov enuncia as três leis da robótica:• A robot may not injure a human being or, through inaction, allow a

human being to come to harm;

• A robot must obey the orders given it by human beings except where such orders would conflict with the First Law;

• A robot must protect its own existence as long as such protection does not conflict with the First or Second Law

Page 6: Swarm bots

621 de Abril de 2006 – Carlos Lourenço

Robótica

• Perspectiva histórica– 1948, Grey Walter cria o primeiro robot autónomo;– 1961, Heinrich Ernst constroi o MH-1, uma mão

mecânica operada por computador;– 1966, é construido “shakey”, o primeiro robot que

actua e reage a acções;– 1986, Honda inicia um programa de investigação

robótica com a premissa• “robot should coexist and cooperate with human

beings, by doing what a person do and by cultivating a new dimension in mobility to ultimately benefit society”

Page 7: Swarm bots

721 de Abril de 2006 – Carlos Lourenço

Robótica

• Perspectiva histórica– 1994, Dante II desce a cratera do vulcâo do Monte

Spurr;– 1996, Honda apresenta o robot humanóide P3, fruto

de uma década de investigação;– 1997, Pathfinder aterra em Marte, o rover robot

Sojourner navega no solo de Marte;– 1998, Tiger Electronics introduz o brinquedo Furby

nos brinquedos de Natal;

Page 8: Swarm bots

821 de Abril de 2006 – Carlos Lourenço

Robótica

• Perspectiva histórica– 1999, Sony lança o AIBO– 2000, Honda estreia ASIMO

• Números– 1995, Existem 700.000 robots na indústria– 1999, O preço de um robot médio é 5x inferior

ao de um robot equivalente em 1990– Hoje, Existem mais de 1.000.000 robots

Page 9: Swarm bots

921 de Abril de 2006 – Carlos Lourenço

Robótica

• Funcionalidades básicas– Locomoção

• Como construir um robot que se possa movimentar em terrenos naturais com obstáculos transponíveis de distintas formas ?

– Navegação• Qualquer robot deverá conseguir determinar a sua posição num

espaço pelo menos idêntico às suas dimensões de forma a interagir com o seu meio envolvente.

– Visão• O reconhecimento visual de formas, objectos e texturas com os fins

de navegação e outras funcionalidades mais complexas.

Page 10: Swarm bots

1021 de Abril de 2006 – Carlos Lourenço

Robótica - locomoção

– Em situações normais, nós podemos: • mudar de direcção;

• evitar outras pessoas;

• entrar em plataformas em movimento, etc.

– Comum às tarefas supra mencionadas está uma fácil e suave interacção com o meio ao nosso redor

– Para que um robot consiga executar estas tarefas torna-se necessário um casamento eficiente da informação de distintos sensores.

• Robots que andem necessitam de percepção

“ Perception as the process of computing a percept, or an element of knowledge about the robot-environment relationship”, in Perception Driven Robot Locomotion from Journal Robot Society of Japan, 2002

Page 11: Swarm bots

1121 de Abril de 2006 – Carlos Lourenço

Robótica - locomoção

• Características– Estabilidade

• Número de pontos de contacto

• Centro de gravidade

• Estabilização estática/dinâmica

• Inclinação do terreno

– A complexidade da locomoção é inversamente proporcional ao número de pernas.

– O número mínimo de graus de liberdade no movimento de uma perna são dois (levantar, balançar). Quanto mais graus de liberdade quisermos implementar maior é a complexidade do dispositivo de controlo da locomoção

Page 12: Swarm bots

1221 de Abril de 2006 – Carlos Lourenço

Robótica - locomoção

• Características– Contacto

• Área

• Ângulo

• Fricção

– Tipo de ambiente• Estrutura

• Textura/consistência

Page 13: Swarm bots

1321 de Abril de 2006 – Carlos Lourenço

Robótica - navegação

• Categorização– Navegação global

• Navegação entre duas localizações– Navegação local

• Desempenhar uma tarefa numa localização– Navegação pessoal

• Monitorização do próprio robot e tudo o que esteja em contacto com ele

Page 14: Swarm bots

1421 de Abril de 2006 – Carlos Lourenço

Robótica - navegação

• Navegação global– Existe a necessidade de determinar a posição em termos

absolutos (GPS) ou através de referências em mapa e deslocar até o ponto destino.

• Navegação local– Existe a necessidade de determinar a posição em relação a

objectos (estacionários ou em movimento), e interagir com eles correctamente.

– Pode ser satisfeita com sensores visuais de curto/médio alcançe.

Page 15: Swarm bots

1521 de Abril de 2006 – Carlos Lourenço

Robótica - navegação

• Navegação pessoal– Existe a necessidade de conhecer a posição de todos os

componentes do seu próprio ser, em relação a cada um dos outros e aquando do tratamento de objectos.

– Pode ser satisfeita com sensores visuais de curto alcançe

Page 16: Swarm bots

1621 de Abril de 2006 – Carlos Lourenço

Robótica - navegação

• Temos exemplos de esforços nas três categorias de navegação:– Navegação global: aviões de espionagem não tripulados– Navegação local: Qualquer robot autónomo móvel– Navegação pessoal: Qualquer robot autónomo

Page 17: Swarm bots

1721 de Abril de 2006 – Carlos Lourenço

Robótica - visão

• Reconhecimento de objectos– Problema de segmentação, quando o número de objectos

aumenta o reconhecimento torna-se deficiente.– Problema dos objectos não estacionários– Necessidade de implementação de visão estereoscópica

• Recorrência a soluções simples para navegação– Infra-vermelhos (problema da interposição)– Radares

Page 18: Swarm bots

1821 de Abril de 2006 – Carlos Lourenço

Biologia - evoluçãoMilhões de anos Eventos climáticos e físicos Vida vegetal / tipo de paisagem Vida animal

600 Clima quente e seco Diversificação das algas Diversificação dos invertebrados

450 a 500 Glaciação Invasão da terra pelas plantas Diversificação dos moluscos

400 a 450 Mares cobrindo os continentes   Invasão dos primeiros artrópodes

400 Aquecimento. Continentes Diversificação das plantasIdade dos peixes; primeiros anfibios e insectos

250 a 400 Clima subtropical. Relevos. Plantas com sementesIdade dos repteis. 1ª e 2ª radiação dos insectos

200 Clima quente. Deriva Atlântica CicadáceasIdade dos dinossáurios. Primeiros mamíferos e aves.

100 a 200Clima húmido e quente. Separação da América e África Primeiras Angiospérmicas.

Extinção dos dinossáurios.Terceira radiação dos insectos

65 a 100Desparecimento dos mares continentais Polinização especializada

Prmeiros mamíferos insectívoros. Primatas

55 a 65 Separação da Austrália e Antártida. Manchas de pastagens Radiação dos mamíferos e aves

35 a 45

Separação da América do Sul e Antártida. Formação dos Alpes e Himalaias Especialização das Angiospémicas Primatas semelhantes a macacos

25Glaciações extensas no Hemisfério Sul

Grandes extensões de pastagense redução das florestas Herbívoros

5Clima frio. Junção da Américado Sul e do Norte Formação dos desertos Grandes carnívoros. Hominídeos

Page 19: Swarm bots

1921 de Abril de 2006 – Carlos Lourenço

Biologia

• Números– Os insectos sobrevivem no nosso planeta à 400 milhões de anos– Existem mais de 4 milhões de espécies de insectos– Em qualquer altura é estimado que existam 10^19 insectos vivos– Existem mais de 200 milhões de insectos por cada humano– As rainhas de uma espécie africana de térmitas colocam 43.000

ovos num dia (1 ovo cada dois segundos)

Page 20: Swarm bots

2021 de Abril de 2006 – Carlos Lourenço

Biologia

• Questões– Como é que uma barata consegue-se deslocar tão rápido

(50 comprimentos de corpo por segundo) ?– Como é que uma abelha encontra o caminho de volta para a

colmeia, que por vezes se encontra a vários kms ?– Como é que uma mosca voa com tanta precisão ?

“So little brain, so much skill”

Page 21: Swarm bots

2121 de Abril de 2006 – Carlos Lourenço

Biologia - sociedades

• Actividades– Construção, manutenção e defesa do ninho;– Localização, colecção e armazenamento de comida;– Manter a prole

• Coordenação– As actividades supra mencionadas são efectuadas num contexto social

envolvendo coordenação entre centenas, milhares ou mesmo milhões de seres, muitos executando a mesma tarefa, enquanto outros tarefas diferentes

Page 22: Swarm bots

2221 de Abril de 2006 – Carlos Lourenço

Biologia - sociedades

• Inter-dependência– Em muitos casos, as tarefas a desempenhar estão dependentes umas das outras.

Esta ligação dinâmica apresenta desafios organizacionais;– Uma colónia tem que possuir os mecanismos necessários para assegurar que os

trabalhores são alocados às distintas tarefas, da forma correcta;

• Complexidade– As necessidades da colónia e o ambiente envolvente estão em permanente

mudança;– Os trabalhadores têm capacidades de processamento limitadas.

Page 23: Swarm bots

2321 de Abril de 2006 – Carlos Lourenço

Biomimetics

• Modelações– Imitação da fabricação natural de compostos químicos;– Imitação de mecanismos encontrados na Natureza;– Estudo de princípios organizacionais com base no

comportamento social de organismos

“Application of methods and systems found in nature to study and design of engineering systems and modern technology”, in en.wikipedia.org

Page 24: Swarm bots

2421 de Abril de 2006 – Carlos Lourenço

Biomimetics

• Porquê insectos ?– Fáceis de manter em laboratório;– Possuidores de um exoesqueleto em vez de um esqueleto interno,

facilitando assim o estudo da sua locomoção;– Imensamente diversos, ofereçendo uma diversidade de estratégias

de locomoção, navegação e visão;– Avanços recentes em electrónica tornam a construção de robots com

o tamanho de insectos possível

Page 25: Swarm bots

2521 de Abril de 2006 – Carlos Lourenço

Biomimetics

• Porquê insectos ?– Estudos detalhados da locomoção de baratas reveleram alguns

principios de design passíveis de serem aplicados em robots, como um baixo centro de massa localizado na parte traseira do animal e umas pernas que o impulsionam para a frente em vez de permitirem apenas “longas passadas”;

– Cientistas na Universidade de Standford criaram um robot de nome iSprawl, implementando alguns princípios da locomoção das baratas. Uma versão do iSprawl tem cerca de 11 cm de comprimento e move-se a uma velocidade de 15 comprimentos de corpo por segundo.

Page 26: Swarm bots

2621 de Abril de 2006 – Carlos Lourenço

Biomimetics

• Porquê insectos ?– Uma abelha, facilmente se desloca de uma fonte de néctar de

volta para a sua colmeia, por vezes a vários quilómetros de distância – com um cérebro que contem menos de um milhão de neurónios. Um supercomputador ou mesmo um humano teriam dificuldades em cumprir esta tarefa;

– Cientistas australianos, fizeram vários estudos acerca da navegação das abelhas, descobrindo que:

• Utilizam o sol para determinar direcção do voo;

• Guardam informação acerca dos locais onde estiveram, e relembram-se deles aquando do regresso à colmeia.

– Adaptar estas estratégias à robótica poderia significar uma redução em equipamento dispendioso de localização

Page 27: Swarm bots

2721 de Abril de 2006 – Carlos Lourenço

Swarm intelligence

• Agentes– Entidade autónoma que pode interagir e alterar o seu ambiente.

• Swarm– Conjunto de agentes que comunicam directa ou indirectamente

uns com os outros e que em conjunto resolvem problemas distribuidos

“Artificial intelligence technique based around the study of collective behaviour in decentralized, self-organized, systems”, in en.wikipedia.org

Page 28: Swarm bots

2821 de Abril de 2006 – Carlos Lourenço

Swarm intelligence

• Características de um swarm– Conjunto de agentes simples;– Descentralizado (não existe um coordenador ou supervisor central);– Robusto (as tarefas são executadas mesmo que alguns agentes falhem);– Flexível (pode responder a alterações exteriores)

Page 29: Swarm bots

2921 de Abril de 2006 – Carlos Lourenço

Swarm robotics

• Características– Robots individuais são baratos– Swarms são grandes em tamanho– Swarms são escaláveis– Swarms são tolerantes a faltas– Podem lidar com tarefas de qualquer tamanho– Descentralização reduz ónus de comunicações

“Study of how large number of relatively simple physically embodied agents can be designed such that a desired collective behavior emerges from the local interactions among agents and between the agents and the environment ”,

in www.swarm-robotics.org

Page 30: Swarm bots

3021 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Collective robotics– Grupo de robots autónomos que interagem uns com os outros para

cumprirem uma tarefa. – Não possuem a capacidade de se ligarem uns aos outros através de

ligações físicas.

• Metamorphic robotics– Módulos interligados que embora autónomos nos seus movimentos

permaneçem ligados uns aos outros.

Page 31: Swarm bots

3121 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Design bottom up• SwarmOS

– Sistema de mensagens de feromona virtual;

– Conhecimento dos vizinhos;

– Funcionalidades de programação e debugging remoto

• Algoritmo comportamental distribuido• Swarm interface

“A swarm bot is an aggregate of s-bots that can explore, navigate and transport heavy objects on rough terrains in situations in which a single s-bot would have major problems to achieve this task alone”, in http://radio.weblogs.com

Page 32: Swarm bots

3221 de Abril de 2006 – Carlos Lourenço

Swarm bots – s-bot

– Construido entre 2001 e 2004, com a coordenação do Prof. Marco Dorigo no LIS da EPFL na Suiça;

– Robot de pesquisa com o objectivo de estudar trabalho colaborativo e comunicação entre robots:

• Tem um mecanismo físico de interligação com outros robots;

• Tem um sensor de força, que pode ser utilizado para coordenar a deslocação de um objecto para uma localização X sem ser necessária comunicação explícita

Page 33: Swarm bots

3321 de Abril de 2006 – Carlos Lourenço

Swarm bots – s-bot

• Detalhes técnicos– 12 cm de diâmetro, 15 cm de altura e 660g de peso;– 2 baterias de lithium ion, dando uma hora de autonomia;– CPU customizado de 400 Mhz, 64 MB RAM, 32 MB Flash;– 12 micro-controladores PIC;– Linux customizado;– Comunicação sem fios;– 15 sensores de infra-vermelhos à volta do torreão;– 4 sensores de infra-vermelhos por baixo do robot;– 2 sensores de temperatura e 2 de humidade;– 8 sensores de luminosidade à volta do torreão.

Page 34: Swarm bots

3421 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Capacidades– S-bot tem força suficiente para levantar outro s-bot;– S-bots podem se ligar a outros s-bots de forma a criarem uma

estrutura maior de nome swarm-bot. Para o fazerem, eles conectorizam-se com uma espécie de braço rígido;

– O swarm-bot tem a capacidade de se mover como uma estrutura coerente;

– O swarm-bot pode efectuar re-configurações de forma a ultrapassar obstáculos.

Page 35: Swarm bots

3521 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Capacidades– O swarm-bot utilizando o seu tamanho pode ultrapassar

obstáculos impossíveis para um s-bot;– O swarm-bot pode também deslocar objectos com uma

dimensão e/ou peso superiores aos que um s-bot poderia deslocar;

Um s-bot que pretende deslocar um objecto pesado pede ajuda e através da interligação com outro s-bot, podem criar um swarm-bot capaz de executar a tarefa.

Page 36: Swarm bots

3621 de Abril de 2006 – Carlos Lourenço

Swarm bots – s-bot

• Locomoção– Os s-bots possuem rodas e carris;– As rodas e os carris do lado X são movidas pelo motor do lado

X;– Temos uma rotação eficiente devido ao maior diâmetro e

posição das rodas;– O sistema de tracção fica com um formato cilindrico, parecido

com o torreão, melhorando assim a mobilidade do s-bot.

Page 37: Swarm bots

3721 de Abril de 2006 – Carlos Lourenço

Swarm bots – s-bot

• Visão– Capacidades limitadas, apenas conseguindo distinguir objectos

com cores à distância máxima de 40 cm;– De forma a facilitar uma tarefa de obtenção de um objecto, os s-

bots constroem um caminho de um ponto de partida até ao local onde o objecto se encontra.

Page 38: Swarm bots

3821 de Abril de 2006 – Carlos Lourenço

Swarm bots – s-bot

• Estados– Explorador

• Quando o s-bot navega numa cadeia explorando o ambiente;

– Membro da cadeia• Quando o s-bot faz parte de uma cadeia;

– Perdido• Quando o s-bot perdeu contacto com a cadeia ou com outros s-bots.

– O estado de um s-bot é determinado pelo seu estado anterior e pelas suas percepções actuais.

Page 39: Swarm bots

3921 de Abril de 2006 – Carlos Lourenço

Swarm bots – s-bot

• Comportamento colectivo– Cada s-bot tem o seu controlador de redes neuronais que gera

outputs relacionados com o motor como resposta a inputs dos seus sensores;

– Colocando s-bots num ambiente com obstáculos, observa-se que os s-bots evitam os obstáculos individualmente e colectivamente;

Isto é explicado considerando que a colisão com obstáculos, gera uma força de tracção no sentido oposto ao movimento.

Page 40: Swarm bots

4021 de Abril de 2006 – Carlos Lourenço

Swarm bots – s-bot

• Cooperação– Para termos cooperação entre robots necessitamos de

coordenação;

• Coordenação– As decisões têm que ser tomadas de forma colectiva:

• Uma forma de implementação é através de principios de auto-organização baseados em interacções locais entre os membros de um grupo.

• Necessitamos de comunicação entre os membros.

Page 41: Swarm bots

4121 de Abril de 2006 – Carlos Lourenço

Swarm bots – s-bot

• Comunicação– A comunicação tradicional utilizando rádio tem problemas de

consumo de energia e escalabilidade;– A comunicação local por infra-vermelho resolve alguns

problemas de escalabilidade;– A comunicação utilizando o próprio ambiente é uma possivel

solução, permitindo a escalabilidade pretendida e reduzindo as necessidades energéticas.

Page 42: Swarm bots

4221 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Interligação– A ligação entre os s-bots é baseada num formato 2D sem

penetração;– Cada s-bot tem dois grippers:

• Um gripper rigido

• Um gripper semi-flexivel

– Os grippers desempenham papéis distintos nas configurações de swarm-bots, sendo que por vezes complementam-se;

– Ambos os grippers têm LEDs e sensores de luz para detectarem quando um objecto foi agarrado e para comunicarem com outros s-bots.

Page 43: Swarm bots

4321 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Interligação– O anel que existe à volta de cada s-bot inclui o mesmo tipo de

LEDs e sensores de luz que o gripper, mas consegue emitir cores RGB:

• O objectivo desta funcionalidade é comunicação a longa distância através da emissão de uma cor que pode ser vista por outros s-bots utilizando uma câmara de video.

– Um s-bot consegue estabelecer uma ligação ao anel de outro s-bot apenas em terreno liso ou quase liso;

– O estabelecimento de uma ligação autónoma num terreno não liso (terra com socalcos, pedras, etc.) requere a modificação do programa de controlo e utilização de uma câmera de forma panorâmica.

Page 44: Swarm bots

4421 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Interligação rígida– Implementada através de um gripper montando num eixo

horizontal activo;– O gripper tem uma área de contacto bastante grande,

permitindo-o segurar um s-bot em qualquer ângulo e inclusivé levantá-lo;

– Utilizada para um swarm-bot ultrapassar por exemplo um buraco de grande dimensão.

Page 45: Swarm bots

4521 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Interligação semi-flexível– Implementada por braços flexíveis activados por dois motores;– Os braços possuem dois graus de liberdade, permitindo o seu

movimento ao comprimento e lateralmente.– Utilizada quando é necessário os s-bots terem alguma

mobilidade.

Page 46: Swarm bots

4621 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Performance– Medição do desempenho de um swarm-bot constituido por n s-

bots na execução de tarefas estritamente colectivas;– Utilização da equação a), em que:

• CS(n), factor de speedup colectivo de um grupo de n s-bots;

• P({n,m}), performance de um grupo de {n,m} s-bots;

• m, número minimo de s-bots necessários à execução da tarefa.

– Classificação da performance em:• Superlinear (quando CS(n) > 1)

• Linear (quando CS(n) = 1)

• Sublinear (quando CS(n) < 1)

a)

Page 47: Swarm bots

4721 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Performance– Escolhidas três tarefas:

• Arrastar um objecto

• Ultrapassar um buraco

• Descer um degrau

• Escalabilidade– Para além da medição da performance serão identificados

limites para o crescimento da mesma.

Page 48: Swarm bots

4821 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Arrastar um objecto

A tabela demonstra que em média um swarm-bot constituido por dois s-bots mostra performance superlinear comparativamente a um s-bot.

Apenas no tipo de terreno quatro é que a performance é quase linear.

Temos performances superlineares até n=5, embora a diferença nunca seja tão grande quando entre n=1 e n=2.

Page 49: Swarm bots

4921 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Ultrapassar um buraco– A quantificação da performance em relação ao número de s-bots é

efectuada medindo o tamanho máximo de um buraco que a estrutura swarm-bot consegue ultrapassar.

Para n>=4 o tamanho máximo de um buraco que o swarm-bot é capaz de passar poderá ser considerado constante, porque o gripper não suporta mais que dois s-bots suspensos horizontalmente.

Page 50: Swarm bots

5021 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Descer um degrau– A quantificação da performance em relação ao número de s-bots é

efectuada medindo o tamanho máximo de um degrau que a estrutura swarm-bot consegue ultrapassar.

São obtidas performances superlineares crescentes até n=4. As razões para esta performance superlinear devem-se à melhoria na estabilidade da estrutura do swarm-bot.

Page 51: Swarm bots

5121 de Abril de 2006 – Carlos Lourenço

Swarm bots

• Resultados– Performance

• As três experiências demonstram resultados superlineares, indicando que a ligação física desempenha um papel construtivo na colaboração entre s-bots;

• A interacção construtiva entre os s-bots resulta em performances bastante superiores à soma das contribuições individuais.

– Escalabilidade• Os resultados estão limitados a um swarm de pequena dimensão (2 < n < 5), o que é

uma clara limitação deste sistema;• Os limites superiores estão claramente sujeitos às características físicas e mecânicas

do design do s-bot, o que significa que o designer influenciou estas performances.

Page 52: Swarm bots

5221 de Abril de 2006 – Carlos Lourenço

Aplicações

• Search for Rescue– Eventos catastróficos ou grandes acidentes geram ambientes complexos desprovidos de

estruturas e instáveis, onde existe uma necessidade de intervenção expedita de forma a serem salvas vidas;

– Robots são uma mais valia nestes cenários pois libertam a equipa de resgate de tarefas potencialmente perigosas. De forma a poderem ter algum grau de autonomia, necessitam de:

• Ser capazes de se movimentarem em terrenos difíceis;• Possuir a robustez necessária para tolerarem falhas;• Ser versátil na sua função e formato;• Ter um valor monetário não muito elevado;• Ter a capacidade de comunicar dados com rapidez e precisão.

Page 53: Swarm bots

5321 de Abril de 2006 – Carlos Lourenço

Aplicações

• Search for Rescue– Os swarm-bots apresentam:

• Tamanho reduzido;• Capacidade de reconfiguração dinâmica do seu formato com o intuito de

ultrapassarem obstáculos;• Controlo distribuido, sendo que cada s-bot é uma unidade simples e autónoma,

capaz de se deslocar, sentir e actuar baseada em informação local;• Sensores que auxiliam a detectar e a comunicar com outros s-bots;• Custo dos componentes não muito elevado.

Page 54: Swarm bots

5421 de Abril de 2006 – Carlos Lourenço

Futuro

• Standard IEEE para comunicação entre

self-assembly robots• Utilização em:

– Explorações:• Intra-planetárias• Inter-planetárias

– Vigilância:• Detecção de ameaças nucleares/biológicas/químicas• Combate anti-terrorismo

– Espionagem industrial– Terrorismo

Page 55: Swarm bots

5521 de Abril de 2006 – Carlos Lourenço

Conclusão

“So little brain so much skill”

Palavras-chave:

Swarm bot, biomimetics, self-assembling, metamorphic

Page 56: Swarm bots

5621 de Abril de 2006 – Carlos Lourenço

Bibliografia

• SWARM-BOT Pattern Formation in a Swarm of Self-Assembling Mobile Robots

• SWARM-BOT A Swarm of Autonomous Mobile Robots with Self-Assembling Capabilities

• Evolution of Collective Behavior in a Team of Physically Linked Robots

• A Review: Pattern Formation and Adaptation in Multi-Robot Systems

• The SWARM-BOT Project

• Measuring Coordination as Entropy Decrease in Groups of Linked Simulated Robots

• Physical connections and cooperation in swarm robotics

• Superlinear Physical Performance in a SWARM-BOT

• Search for Rescue: an Application for the SWARM-BOT Self-Assembling robot concept

• Agenda FCUL 2005/2006

Page 57: Swarm bots

5721 de Abril de 2006 – Carlos Lourenço

Links

• www.google.com • en.wikipedia.org• www.faculty.ucr.edu• robotics.megagiant.com• www.bsu.edu• www.si.edu• www.swarm-bots.org

Page 58: Swarm bots

5821 de Abril de 2006 – Carlos Lourenço

Obrigado