Sustainable Fishery Management / Sustainable and Optimum

40
1 Sustainable and Optimum Fishery Yield Takashi Matsuishi At SERD, AIT, Thailand 24Feb-14Mar, 2014

description

How to find a sustainable and optimal fishery. Surplus production model per Recruit analysis Yield per Recruit

Transcript of Sustainable Fishery Management / Sustainable and Optimum

Page 1: Sustainable Fishery Management / Sustainable and Optimum

1

Sustainable and Optimum

Fishery Yield

Takashi Matsuishi At SERD, AIT, Thailand 24Feb-14Mar, 2014

Page 2: Sustainable Fishery Management / Sustainable and Optimum

Surplus Production Model

2

Page 3: Sustainable Fishery Management / Sustainable and Optimum

3

Surplus Production Model

Calculate Sustainable Yield from Russell’s Equation

Ye: Sustainable Yield V: Natural Growth

V depends on Biomass

V= 0 if B= 0

B have the upper limit K. V=0 at K

Ye =V will have a maximum point between B=0 and B= K

Maximum Sustainable Yield / MSY

MGAVYe

Page 4: Sustainable Fishery Management / Sustainable and Optimum

MSY and MSYL

4

K 0

V

B

MSY

MSYL

Page 5: Sustainable Fishery Management / Sustainable and Optimum

5

Assumption of the Model

1. Equilibrium condition: Factors affecting the Population

dynamics is stable

2. Single Population: Population is single and closed

3. Fishable population constant:The variance of age

composition can be Ignored

4. Constant catchability

5. No time lag:

Page 6: Sustainable Fishery Management / Sustainable and Optimum

6

The formulation of the Model

Without Fishing

rtae

KtB

1

K

BrB

dt

dB1

B(t

)

t

Page 7: Sustainable Fishery Management / Sustainable and Optimum

7

With Fishing

Basic Equation

r: intrinsic growth rate

B:Biomass

K:Carrying Capacity

q:Catchability Coefficient

E:Fishing Effort

At Sustainable Yield

qEBK

BrB

dt

dB

1

K

BrBqEBSY

dt

dB

1

0

quP

PqXYu e

/

V

B

SY

K

BrB 1

Page 8: Sustainable Fishery Management / Sustainable and Optimum

8

CPUE and E at equilibrium

r

qEKB

r

qE

K

B

K

B

r

qE

K

BrqE

K

BrBqEBY

1

1

1

1

1

Er

KqqK

E

Y

Er

KqqKEY

r

qEqEKqEBY

2

22

1

Er

KqqKCPUE

2

Page 9: Sustainable Fishery Management / Sustainable and Optimum

9

Effort and SY

K

BrBqEBSY 1

Biomass

Sust

ainab

le Y

ield

Surp

lus

Pro

duct

ion

Fishing Effort

22

Er

KqqKESY

Page 10: Sustainable Fishery Management / Sustainable and Optimum

10

MSY

22

Er

KqqKESY

E vsSY

SY

E

B vs SY

K

BrBSY 1

B

SY

K

2K

4rK

qr 2

4rK

Page 11: Sustainable Fishery Management / Sustainable and Optimum

11

Estimation of MSY from CPUE

Er

KqqKCPUE

Er

KqqKESY

2

22

bEaCPUE

brKq

aqK

2

b

a

Kq

rqK

q

rE

b

a

rKq

qKrKMSY

MSY22

1

2

444

2

2

2

2

baE

baMSY

MSY 2

42

E

CPU

E CPUE=a-bE

Page 12: Sustainable Fishery Management / Sustainable and Optimum

12

Example

King 1995

Page 13: Sustainable Fishery Management / Sustainable and Optimum

Per Recruit Analysis

13

Page 14: Sustainable Fishery Management / Sustainable and Optimum

14

Overfishing

Overfishing

A form of overexploitation in which fish stocks are depleted to unacceptable levels

Growth overfishing

Biomass is depleted because fish are caught in small size.

Mainly the age at first capture is too small.

Recruit Overfishing

Biomass is depleted because the spawning stock size is too small to make a sufficient next generation

Mainly the fishing mortality (fishing effort) is too large

Page 15: Sustainable Fishery Management / Sustainable and Optimum

15

Yield per Recruit Analysis

Yield per Recruit analysis is mainly for evaluate the stock

is in the state of Growth overfishing or not

It can be calculated from

Growth curve parameters

natural mortality

age at first capture

fishing mortality

small YPR means growth overfishing

It does not consider the spawning biomass.

use with SPR analysis

Page 16: Sustainable Fishery Management / Sustainable and Optimum

16

Instantaneous Catch

Yw:Yield

F: Fishing mortality

Nt: Population in number

wt: weight per fish

ttw wNF

dt

dY

Page 17: Sustainable Fishery Management / Sustainable and Optimum

17

Nt Population dynamics

Nt: Population

F:Fishing mortality

M:Natural mortality

tt NMF

dt

dN)(

Page 18: Sustainable Fishery Management / Sustainable and Optimum

18

wt weight growth

w∞: Asymptotic average maximum body size

K: growth rate coefficient

t0: hypothetical age which the species has zero length

3)()1( 0ttK

t eww

Page 19: Sustainable Fishery Management / Sustainable and Optimum

19

Yw Lifetime Yield

t

t

ww

cdt

dt

dYY

1,3,3,1

3,2,1,0

nA

n

)( 0ttMw

ceFRWY

3

0

))(()(

10

n

ttnKMFttnK

n c

c

enKMF

eA

Page 20: Sustainable Fishery Management / Sustainable and Optimum

20

YPR

Parameters

)( rc ttMw eFWR

YYPR

3

0

))(()(

10

n

ttnKMFttnK

n c

c

enKMF

eA

W∞, K, t0: Growth Curve Parameter

M : Natural Mortality

tr: age at recruit

tλ: max age

Page 21: Sustainable Fishery Management / Sustainable and Optimum

Calculation in Excel

21

Page 22: Sustainable Fishery Management / Sustainable and Optimum

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4

tc

F

2-2.2

1.8-2

1.6-1.8

1.4-1.6

1.2-1.4

1-1.2

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

22

YPR Contour

H

L Winf 14.8 K 0.19 t0 -0.73 M 0.25 tr 2 tl 10

Page 23: Sustainable Fishery Management / Sustainable and Optimum

23

2

4

6

8

10

0 0.2 0.4 0.6 0.8

1 1.2 1.4 1.6 1.8

2 2.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

tc

YP

R

F

2-2.2

1.8-2

1.6-1.8

1.4-1.6

1.2-1.4

1-1.2

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

Page 24: Sustainable Fishery Management / Sustainable and Optimum

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4

tc

F

2-2.2

1.8-2

1.6-1.8

1.4-1.6

1.2-1.4

1-1.2

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

24

YPR Contour

H

L tc=2.5

Page 25: Sustainable Fishery Management / Sustainable and Optimum

25

0

0.5

1

1.5

2

0 0.5 1 1.5

YP

R

F

tc=2.5

θ Fmax

MSY/R

Page 26: Sustainable Fishery Management / Sustainable and Optimum

26

0

0.5

1

1.5

2

0 0.5 1 1.5

YP

R

F

tc=2.5

θ Fmax F0.1

θ/10

Page 27: Sustainable Fishery Management / Sustainable and Optimum

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4

tc

F

2-2.2

1.8-2

1.6-1.8

1.4-1.6

1.2-1.4

1-1.2

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

27

YPR Contour

H

L F=0.5

Page 28: Sustainable Fishery Management / Sustainable and Optimum

28

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 4 6 8 10

YP

R

tc

F=0.5 MSY/R

tcmax

Page 29: Sustainable Fishery Management / Sustainable and Optimum

29

YPR/F

F∝E

Y/X=CPUE∝N

YPR/F ∝CPUE∝N in equilibrium

Page 30: Sustainable Fishery Management / Sustainable and Optimum

2

3

4

5

6

7

8

9.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

tc

F

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

YPR/F

30

H

L

Winf 14.8 K 0.19 t0 -0.73 M 0.25 tr 2 tl 10

Page 31: Sustainable Fishery Management / Sustainable and Optimum

31

7.3ct

Right fig. : YPR contour

Left fig. : Section at tc=3.7

MSY at F=0.22 if recruit is constant

growth over fishing at F>0.22

Page 32: Sustainable Fishery Management / Sustainable and Optimum

32

Increase biomass and catch together

• Simplified graph

• Curves at P(tc=3.7, F=0.73)

Area Yw/R Yw/RF

A + + B - + C - - D + -

Page 33: Sustainable Fishery Management / Sustainable and Optimum

33

SPR(Index for recruit overfishing)

Spawning stock Per Recruitment

SSB×RPS=Recruit

(SSB=Spawning Stock Biomass)

Recuirt×SPR=SSB

If SPR×RPS=1 then stable.

%SPR= SPRF=Fcurrent / SPRF=0

30%SPR or more is recommended

Page 34: Sustainable Fishery Management / Sustainable and Optimum

34

%SPR Contour

0

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

tc

F

90%-100%

80%-90%

70%-80%

60%-70%

50%-60%

40%-50%

30%-40%

20%-30%

10%-20%

0%-10%

H

L

Page 35: Sustainable Fishery Management / Sustainable and Optimum

35

0

3.5

7 0%

10% 20% 30% 40% 50% 60% 70% 80% 90%

100% 0

0.2

0.4

0.6

0.8

1

1.2

1.4

tc

F

90%-100%

80%-90%

70%-80%

60%-70%

50%-60%

40%-50%

30%-40%

20%-30%

10%-20%

0%-10%

Page 36: Sustainable Fishery Management / Sustainable and Optimum

Value per recruit analysis Pavarot, Matsuishi et al. (2011 FS)

36

Page 37: Sustainable Fishery Management / Sustainable and Optimum

37

VPR (Pavarot, Matsuishi et al. 2011)

Value per Recruit

Value = Yield x Unit price

Consider the price by size

max1 t

tttt

c

dtNFpR

VPR

max

c

exp11

t

ta

aaa NMFMF

Fp

RVPR

Page 38: Sustainable Fishery Management / Sustainable and Optimum

38

Price Curve of Kichiji

Page 39: Sustainable Fishery Management / Sustainable and Optimum

39

VPR and YPR

Page 40: Sustainable Fishery Management / Sustainable and Optimum

40

VPR Merit and Perspective

Bioeconomic Analysis

Including the size dependency of the price

Does not include the yield dependency

Equilibrium analysis