SUSCOS - Politehnica University of Timișoara

103
FIRE Concrete structures SUSCOS 1 22/10/2012 Jean-Marc Franssen

Transcript of SUSCOS - Politehnica University of Timișoara

Page 1: SUSCOS - Politehnica University of Timișoara

FIRE

Concrete structures

SUSCOS

122/10/2012

Jean-Marc

Franssen

Page 2: SUSCOS - Politehnica University of Timișoara

2

Page 3: SUSCOS - Politehnica University of Timișoara

3

EN 1992-1-2 : 2004

Content

1.General

2.Basis of design

3.Material properties

4.Design procedures

4.1. General

4.2. Simplified calculation methods

4.3. Advanced calculation methods

4.4. Shear, torsion, ancorage

4.5. Spalling

4.6. Joints

4.7. Protective layers

EN 1992-1-2 : 2004

Content

1.General

2.Basis of design

3.Material properties

4.Design procedures

4.1. General

4.2. Simplified calculation methods

4.3. Advanced calculation methods

4.4. Shear, torsion, ancorage

4.5. Spalling

4.6. Joints

4.7. Protective layers

Page 4: SUSCOS - Politehnica University of Timișoara

4

5. Tabulated data

5.1. Scope

5.2. General design rules

5.3. Columns

5.4. Walls

5.5. Tensile members

5.6. Beams

5.7. Slabs

6. High strength concrete

Annexes Informatives

A Temperature profiles

B Simplified calculation methods

C Buckling of columns under fire conditions

D Calculation methods for shear, torsion and anchorage

E Simplified calculation method for beams and slabs

5. Tabulated data

5.1. Scope

5.2. General design rules

5.3. Columns

5.4. Walls

5.5. Tensile members

5.6. Beams

5.7. Slabs

6. High strength concrete

Annexes Informatives

A Temperature profiles

B Simplified calculation methods

C Buckling of columns under fire conditions

D Calculation methods for shear, torsion and anchorage

E Simplified calculation method for beams and slabs

Page 5: SUSCOS - Politehnica University of Timișoara

5

Page 6: SUSCOS - Politehnica University of Timișoara

6

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

01 2 3 4

1000°C

800°C

20°C

200°C

400°C

600°C

Strain (%)

Normalized strength

� Concrete looses strength and

stiffness for temperature higher

than 100°C.

� It does not recover during

cooling.

� Properties at elevated

temperature depend on the

coarse aggregate (calcareous

better than siliceous).

Mechanical properties at high temperatures

Concrete

Page 7: SUSCOS - Politehnica University of Timișoara

7

Page 8: SUSCOS - Politehnica University of Timișoara

8

Page 9: SUSCOS - Politehnica University of Timișoara

9

Page 10: SUSCOS - Politehnica University of Timișoara

10

Stress-strain relationship in steel re-bars

Mechanical properties at high temperatures

Steel

Page 11: SUSCOS - Politehnica University of Timișoara

11

Page 12: SUSCOS - Politehnica University of Timișoara

12Note: Tempcore steel may be considered as hot rolled

Page 13: SUSCOS - Politehnica University of Timișoara

13

Page 14: SUSCOS - Politehnica University of Timișoara

14

Page 15: SUSCOS - Politehnica University of Timișoara

15

Thermal properties at high temperatures

Concrete

Page 16: SUSCOS - Politehnica University of Timișoara

16

Page 17: SUSCOS - Politehnica University of Timișoara

17

TABULATED DATA

Give recognised solutions for the fire resistance of members under ISO fire,

until 240 min.

Valid for normal weigth concrete (from 2000 to 2600 kg.m³) with siliceous

aggregates (if calcareous aggregates are used, minimum dimensions of the

section in beams and slabs can be reduced by 10%).

No check against spalling is required if the moisture content is less than 3%

by weight (N.D.P.).

No check is needed against shear and torsion capacity and anchorage

details.

Page 18: SUSCOS - Politehnica University of Timișoara

18

Page 19: SUSCOS - Politehnica University of Timișoara

19

COLUMNS

Two methods are proposed: Method A and Method B

Both methods are valid only for columns in braced frames.

Page 20: SUSCOS - Politehnica University of Timișoara

20

Page 21: SUSCOS - Politehnica University of Timișoara

21

Columns – Method A

Effective length = 3,0 meters

Page 22: SUSCOS - Politehnica University of Timișoara

22

Columns – Method A

Page 23: SUSCOS - Politehnica University of Timișoara

23

Columns

Method B

Page 24: SUSCOS - Politehnica University of Timișoara

24

Columns

Method B

Page 25: SUSCOS - Politehnica University of Timișoara

25

Annexe C (Informative)Columns

Method B

Page 26: SUSCOS - Politehnica University of Timișoara

26

NON LOAD-BEARING WALLS

Reduce by 10% if

calcareous

aggregates

L / b ≤ 40

For cantilevered walls, it is adviced to check stability (JMF)

Page 27: SUSCOS - Politehnica University of Timișoara

27

LOAD-BEARING WALLS

Utilisation of this table may be unsafe for cantilevered walls (JMF)

Page 28: SUSCOS - Politehnica University of Timișoara

28

BEAMS

Page 29: SUSCOS - Politehnica University of Timișoara

29

Page 30: SUSCOS - Politehnica University of Timișoara

30

Note:

Moment redistribution at room temperature should not be greater than 15%.

If not, the beam must be treated as simply supported.

Page 31: SUSCOS - Politehnica University of Timișoara

31

Page 32: SUSCOS - Politehnica University of Timișoara

32

Page 33: SUSCOS - Politehnica University of Timișoara

33

SOLID SLABS

Page 34: SUSCOS - Politehnica University of Timișoara

34

FLAT SLABS

Page 35: SUSCOS - Politehnica University of Timișoara

35

SIMPLY SUPPORTED RIBED SLABS

Page 36: SUSCOS - Politehnica University of Timișoara

36

RIBED SLABS WITH AT LEAST ONE RESTRAINED EDGE

Page 37: SUSCOS - Politehnica University of Timișoara

37

SIMPLE CALCULATION METHOD

Two methods are proposed:

1)Method of the 500°C isotherm

2)Method by zones

More simple mechanical properties are used for the simple calculation method.

Page 38: SUSCOS - Politehnica University of Timișoara

38

Page 39: SUSCOS - Politehnica University of Timișoara

39

Page 40: SUSCOS - Politehnica University of Timișoara

40

The existence of curves 1 and 2, on one hand, and 3, on the other hand, is due to the fact

that the stress strain diagram has no defined horizontal plateau. The Yield strength

considered, and hence the factor kS (θ), depends on the strain that can be developed at the

ultimate limit state.

Utilisation of curves 1 or 2 is allowed only if it can be explicitly demonstrated that εs, fi ≥ 2 %.

Page 41: SUSCOS - Politehnica University of Timișoara

41

0

100

200

300

400

500

600

0 0,5 1 1,5 2 2,5

déformation (%)

Température (°C)

acier 20°C

acier 500°C

0,2

fs,y,20°C

fs,2%,500°C

fs,0,2%,500°C

Page 42: SUSCOS - Politehnica University of Timișoara

42

Page 43: SUSCOS - Politehnica University of Timișoara

43

Method 1: 500°C isotherm method

This method is applicable only if the section has a minimum width.

Principle of the method:

1)Concrete inside the 500°C isotherm is not affected by fire.

2)Concrete outside the 500°C isotherm is completely neglegted.

3)Each bar is considered with the strength corresponding to its own temperature.

Page 44: SUSCOS - Politehnica University of Timișoara

44

Page 45: SUSCOS - Politehnica University of Timișoara

45

Page 46: SUSCOS - Politehnica University of Timișoara

46

Method 2: method by zones

More laborious, valid only for ISO fire, more precise especially for columns.

Divide the section in zones of equal width.

Exclude external damaged zones.

Estimate the average properties of the internal

zone.

Page 47: SUSCOS - Politehnica University of Timișoara

47

Annex A (Informative)

Temperature distributions

Page 48: SUSCOS - Politehnica University of Timișoara

48

Page 49: SUSCOS - Politehnica University of Timișoara

49

Page 50: SUSCOS - Politehnica University of Timișoara

50

Page 51: SUSCOS - Politehnica University of Timișoara

51

Page 52: SUSCOS - Politehnica University of Timișoara

52

Page 53: SUSCOS - Politehnica University of Timișoara

53

Page 54: SUSCOS - Politehnica University of Timișoara

54

Page 55: SUSCOS - Politehnica University of Timișoara

55

Page 56: SUSCOS - Politehnica University of Timișoara

56

Page 57: SUSCOS - Politehnica University of Timișoara

57

Page 58: SUSCOS - Politehnica University of Timișoara

58

Annexe E (Informative)

Simplified calculation method for beams and slabs

Page 59: SUSCOS - Politehnica University of Timișoara

59

APPLICATION EXAMPLES

1.Simply supported beam

2. Simply supported slab

3. Column

Examples by Thomas GERNAY

Page 60: SUSCOS - Politehnica University of Timișoara

60

Page 61: SUSCOS - Politehnica University of Timișoara

61

Page 62: SUSCOS - Politehnica University of Timișoara

62

Page 63: SUSCOS - Politehnica University of Timișoara

63

Page 64: SUSCOS - Politehnica University of Timișoara

64

Page 65: SUSCOS - Politehnica University of Timișoara

65

Page 66: SUSCOS - Politehnica University of Timișoara

66

Page 67: SUSCOS - Politehnica University of Timișoara

67

Page 68: SUSCOS - Politehnica University of Timișoara

68

Page 69: SUSCOS - Politehnica University of Timișoara

69

Page 70: SUSCOS - Politehnica University of Timișoara

70

Page 71: SUSCOS - Politehnica University of Timișoara

71

Page 72: SUSCOS - Politehnica University of Timișoara

72

Page 73: SUSCOS - Politehnica University of Timișoara

73

Page 74: SUSCOS - Politehnica University of Timișoara

74

Page 75: SUSCOS - Politehnica University of Timișoara

75

Page 76: SUSCOS - Politehnica University of Timișoara

76

Page 77: SUSCOS - Politehnica University of Timișoara

77

Page 78: SUSCOS - Politehnica University of Timișoara

78

Page 79: SUSCOS - Politehnica University of Timișoara

79

Page 80: SUSCOS - Politehnica University of Timișoara

80

Page 81: SUSCOS - Politehnica University of Timișoara

81

Page 82: SUSCOS - Politehnica University of Timișoara

82

Page 83: SUSCOS - Politehnica University of Timișoara

83

Page 84: SUSCOS - Politehnica University of Timișoara

84

Page 85: SUSCOS - Politehnica University of Timișoara

85

Page 86: SUSCOS - Politehnica University of Timișoara

86

Page 87: SUSCOS - Politehnica University of Timișoara

87

Page 88: SUSCOS - Politehnica University of Timișoara

88

Page 89: SUSCOS - Politehnica University of Timișoara

89

Page 90: SUSCOS - Politehnica University of Timișoara

90

Page 91: SUSCOS - Politehnica University of Timișoara

91

Page 92: SUSCOS - Politehnica University of Timișoara

92

Page 93: SUSCOS - Politehnica University of Timișoara

93

Page 94: SUSCOS - Politehnica University of Timișoara

94

Page 95: SUSCOS - Politehnica University of Timișoara

95

Page 96: SUSCOS - Politehnica University of Timișoara

96

Page 97: SUSCOS - Politehnica University of Timișoara

97

Page 98: SUSCOS - Politehnica University of Timișoara

98

Page 99: SUSCOS - Politehnica University of Timișoara

99

Page 100: SUSCOS - Politehnica University of Timișoara

100

Page 101: SUSCOS - Politehnica University of Timișoara

101

Page 102: SUSCOS - Politehnica University of Timișoara

102

Page 103: SUSCOS - Politehnica University of Timișoara

103