Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

download Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

of 8

Transcript of Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

  • 8/10/2019 Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

    1/8

    WELDING RESEARCH

    S U P P L E M E N T T O T H E W E L D I N G J O U R N A L , J A N U A R Y , 19 78

    S p o n s o r e d b y t h e A me r i c a n We l d i n g S o c i e t y a n d t h e We l d i n g R e s e a r c h C o u n c i l

    i f 1)1

    Surfacing of 3.25% Nickel Steel with

    Inconel 625 by the Gas Metal Arc

    Weld ing-Pulsed Arc Process

    Inconel

    625

    can be surfaced onto 3.25 nickel steel with

    excellent weldability, equivalent mechanical properties

    and good corrosion and fatigue resistance

    BY D. F. HASSON, C. ZANIS, L. APRIGLIANO AND C. FRASER

    ABSTRACT. The resul ts of a metal lur

    g ica l charac te r iza t ion o f I ncone l 625

    we ld meta l su r faced on to 3 .25% n icke l

    s teel us ing the gas metal arc weld ing

    process are presented. I t was found

    tha t I ncone l 625 was d i rec t ly we lda b le

    on to 3.25 n ick el s teel . Ten si le p rope r

    t ies were genera l ly comparab le t o

    those for 3.25 n ick el s tee l , and the

    most f avorab le mechan ica l p roper t ies

    were ob ta in ed w i th a hea t inp u t o f

    1.77 MJ/m (45 k j / in . ) .

    The cor ros ion fa t igue s t reng th o f t he

    sur face weld metal at 10 cycles was

    found to be 10.34 MPa (15 ks i) , which

    is lower than values repor ted for

    mu l t ip le pass Incone l 625 we lds bu t i s

    s ign i f i can t ly h igher t han the cor ros ion

    fat igue st rength of the steel . Fat igue

    crack growth rates for the sur face weld

    meta l were found to be h igher t han

    t h e w r o u g h t

    lnconel-625

    base metal

    and the steel .

    The seawater cor ros ion res is tance of

    t he sur face we ld meta l was equ iva len t

    to the wrought base metal at levels of

    i r on up to 9%, p rov ided the mo lyb

    denum concent ra t ion was g rea te r t han

    8%. St ress re l ie f heat t re atm en t d i d no t

    degrade cor ros ion o r f a t igue p roper

    ties.

    I n t r o d u c t i o n

    Many mar ine app l ica t ions requ i re

    bo th h igh s t reng th and cor ros ion res is

    t an t mater ia ls f o r long te rm re l iab i l i t y

    and per fo rmance. O f ten the s t reng th

    can

    best

    be achieved by the use of

    steels which do not possess the

    required res is tance to seawater cor ro

    s ion damage. A possib le mater ia ls

    s o lu t i o n t o p r o v id i n g s t r u c t u r a l c o m

    p o n e n t s wh i c h c o m b in e t h e a t t r i b u t e s

    o f h igh s t reng th and seawater cor ro

    s ion is to we ld sur face th e steel w i t h a

    m e t a l l u r g i c a l l y c o m p a t i b l e c o r r o s io n

    res is tan t a l loy . Among the charac te r is

    t ics desira ble in such a sur fa c ing a l loy

    are reasonab le s t reng th , we lda b i l i t y t o

    the steel , res is tance to general and

    loca l ized cor ros ion a t t ack and good

    cor ros ion fa t igue p roper t ies . A cand i

    da te mater ia l f o r su r fac ing wh ich has

    D. F. HASSON is Assistant Professor,

    Mechanical Engineering Department,

    United States Naval Academy, and

    C

    ZANIS, L. APRIGLIANO and

    C FRASER

    are

    with the Materials Department of the David

    W. Taylor Naval Ship

    Research

    and Devel

    opment

    Center

    Annapolis, Maryland.

    exce l len t co r ros ion res is tance ' and

    we ld a b i l i t y

    2

    -

    1

    is lncone l -625* ( IN-625) .

    There are, however , several factors

    wh ich shou ld be inves t iga ted p r io r t o

    using IN-625 to sur face steel . Since the

    m a x im u m a l l o wa b le i r o n c o n c e n t r a

    t ion is 5% for

    IN-625

    and higher levels

    may be an t ic ipa ted due to p ick -up

    f rom the steel base metal , the ef fect of

    i r on con ten t on the seawater cor ro

    s ion res is tance of IN-625 weld metal

    mus t be de te rm ined . A lso , t he fa t igue

    crack growth res is tance of the IN-625

    weld metal appears sensi t ive to the

    microst ructure (gra in s ize and shape).

    5

    Thus, the cor ros ion fat igue st rength of

    t he sur faced IN-625 we ld meta l shou ld

    be establ ished.

    Th e c o m p o s i t i o n , m e c h a n i c a l p r o p

    er t ies and cor ros ion res is tance of the

    sur faced we ld meta l may be a l t e red by

    we ldi ng heat inp ut . I t is , the refo re, of

    in te res t t o de te rm ine the l im i t ing

    c h e m ic a l c o m p o s i t i o n (e.g., i r on c o n

    cent ra t ion) o f IN-625 sur face we ld

    meta l on the basis o f m echa n ica l and

    cor ros ion p roper t ies w i th a v iew to

    *lnconel is a registered trademark of the

    International Nickel Company.

    W E L D I N G R E S E A R C H S U P P L E M E N T I 1-s

  • 8/10/2019 Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

    2/8

    Table1Chemical Analyses of IN-625

    Filler Metal, Base Metal, and 3.25 Nickel

    Steel,

    wt-%

    Table2-Welding Parameters for Surfacing of IN-625 on 3.25 Nickel Steel

    N i

    Cr

    M o

    Fe

    Nb & Ta

    Si

    Al

    Ti

    C

    M n

    IN-625

    f i l ler

    meta l

    60.66

    22.18

    9.14

    3.42

    3.69

    0.24

    0.22

    0.29

    0.04

    0.01

    IN-625

    base

    meta l

    62.00

    21.41

    8.64

    2.73

    4.15

    0.30

    0.24

    0.27

    0.03

    0.15

    3.25

    n icke l

    s teel

    3.27

    0.40

    0.43

    Bal.

    0.22

    -

    -

    0.26

    0.35

    using IN-625 for sur fac ing of a mar ine

    steel,

    such as 3.25 nickel steel.

    The approach for the present s tudy

    was to vary the heat input on a par t ic

    u la r we ld p rocess and eva lua te t he

    r e s u l t a n t c h e m ic a l c o m p o s i t i o n a n d

    mechan ica l p roper t ies . The hea t inpu t

    wh ich gave mechan ica l p roper t ies

    comparab le o r super io r t o t he 3 .25

    nickel s teel was selected for the cor ro

    s ion and fat igue tests.

    E x p e r i me n t a l P r o c e d u r e

    Materials

    The sur fac ing mater ia l was MIL-E-

    21562 1.1 mm (0.045 in. ) d iameter IN-

    625 f i l ler metal . The IN-625 was

    sur faced onto 50.8 mm (2 in. ) th ick by

    203.2 mm (8 in. ) wide by 609.6 mm (24

    in.) long plates of 3.25 nickel steel.

    A 25.4 mm (1 in. ) th ick hot ro l le d

    and annea led p la te o f IN-625 wh ich

    confo rmed to ASTM B-443

    7

    was used

    to establ ish base metal proper t ies. The

    chemical analyses of these mater ia ls

    are g iven in Table 1.

    Voltage

    peak/

    background,

    V

    33 34/26

    33 34/26

    35 38/25 28

    36 38/26 28

    Current,

    A

    200-220

    200-220

    190-210

    180-205

    Travel

    speed,

    mm/sec

    (ipm)

    6.8 (16.0)

    4.7 (11.0)

    3.6 (8.5)

    3.0 (7.0)

    Deposit ion

    rate,

    kg/h

    (Ib/h)

    22 (10)

    22 (10)

    24 (11)

    24 (I

    I)

    Heat

    input,

    MJ/m

    (kj/ in.)

    0.90 23)

    1.34 34)

    1.77 45)

    2.08 53)

    Weldment Preparation

    One and two layers of IN-625 were

    weld sur faced onto the steel p lates in

    the f la t posi t ion by the gas metal arc

    we ld in g - p u l s e d a rc ( G M AW - P) p r o

    cess. The hea t inpu ts and w e ld ing

    parameters are presented in Table 2.

    Since the 3.25% nickel s teel may

    requ ire a po stw eld st ress re l ie f hea t

    t rea tment , a l l su r faced p la tes were

    stress relief heat t reated at 649 C (1200

    F) for 4 hours (h).

    Evaluation

    Weldab i l i t y was es tab l ished by

    means of dupl icate, 180 deg 2T s ide

    bend tes t s a t room tempera tu re . Bend

    tes t spec imens con fo rmed to

    M I L -

    STD-00481C

    and were cu t norma l t o

    t h e we ld in g d i r e c t i o n , a s s h o w n i n F ig .

    1. The one layer sur faced spec imens

    included at least 3.2 mm (0.125 in.) of

    we ld meta l . Tw o layer spec imen s had

    at least 6.4 m m (0.250 in.) of w e ld

    metal .

    A f te r ben d ing , conve x sur faces were

    v isua l ly examined fo r ev idence o f

    c rack ing . I n add i t ion , sec t ions f rom a l l

    we ld m e n t s we r e e x a m in e d m e t a l l o -

    g raph ica l ly a f t e r e lec t rochemica l e t c h

    ing in a so lut io n of 12 ml H

    3

    PO.,, 47 ml

    H,SO, and 41 ml HNO., . The chemical

    compos i t ions o f a l l we ld meta ls were

    dete rm ined by X- ray f luo rescence

    analysis.

    A l l -we ld meta l t ens i le spec imens

    were removed f rom each w e l d , as

    show n in F ig. 1 , and co n fo rm ed to

    ASTM spec i f i ca t ion

    E8

    for subsize f la t

    t ens i le spec imens . Spec imens were

    tested at room temperature at a s t ra in

    r at e o f 0 .0 03 m m /m m /m in u t e . Fo u r

    Rockwell-C

    hardness measurements

    were a lso per fo rmed on each w e l d

    ment and the values were averaged.

    Up o n c o m p le t i o n o f t h e a b o v e

    we ld a b i l i t y , c h e m ic a l c o m p o s i t i o n a n d

    tens i le p roper t y measurements , w e l d

    ments were p repared a t a se lec ted

    heat inpu t f o r eva lua t ion o f seawater

    c o r r o s io n a n d c o r r o s io n - f a t i g u e p r o p

    er t ies of the sur faced IN-625 weld

    meta l .

    As i l lust rated in Fig. 1, a l l co r ro

    s ion pane ls and fa t igue spec imens

    we r e r e m o v e d c o m p le t e l y f r o m we ld

    meta l . For com par iso n in t he c or ros ion

    tes ts , wr ou gh t IN-625 base meta l spec

    imens were a lso eva lua ted . The sea

    water cor ros ion tes t ing may be sum

    mar ized as fo l lows :

    1.

    General Corrosion.

    T w o w e l d

    metal panels and two IN-625 base

    metal panels each 203.2 X 76.2 x 2.5

    S T R E S S - C O R R O S I O N

    SPECIMEN

    I NCO NE L 625

    W E L D C L A D D I N G

    T E NS I LE S P E CI M E N

    C O R R O S I O N - F A T I G U E

    G E N E R A L A N D

    C R E V I C E - C O R R O S I O N

    S P E CI M E N

    3 . 25 N I C K E L S T E E L

    SIDE-BEND

    W E L D A B I L I T Y S P E C IM E N

    Fig.1Orientation of specimens removed from Inconel 625surface welds

    2 -s I J A N U A R Y 1 9 7 8

  • 8/10/2019 Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

    3/8

    4 . 7 MM ( 3 / 16 ) D I A . SUPPORT R OD

    _TEST P A N E L W I T H

    12 . 7 MM (1/2 )

    C E N T E R H O L E

    22 MM

    (7/8 i

    D E L R I N W A S H E R

    E X T E R N A L L Y T H R E A D E D 1 2 .7 M M

    ( 1 / 2 ) O . D . D E L R I N S L E E V E

    Fig.2Multiplecre

    vice corrosion test

    assembly: A (left)

    multiple crevice

    test assembly; B

    (right) grooved

    Delrin washer

    12.7 RADIUS

    NOTE:

    ALL DIMENSIONS IN

    MM

    THICKNESS

    =

    2.54

    mm

    Fig.

    4Single-edge

    notch crack growth rate specimen

    Table3-Chemical Analyses of IN-625 Surface Weld Metal Surfaced onto 3.25 Nickel Steel

    by the GMAW-P Process

    Heat

    i npu t ,

    MJ/m

    ( k j / i n . )

    0.90 (23)

    1.34 (34)

    1.77 (45)

    2.08 (53)

    0.90 (23)

    1.34 (34)

    1.77 (45)

    2.08 (53)

    I N -625 we l d

    m

    spec i f i ca t ion

    N o .

    o f

    layers

    1

    1

    1

    1

    2

    2

    2

    2

    etal

    N i

    58.74

    56.78

    55.30

    60.57

    61.72

    60.97

    60.77

    62.53

    Bal.

    corr

    Cr

    20.97

    20.60

    20.17

    21.25

    21.32

    21.10

    21.52

    21.50

    20/23

    Chem i c a l

    p o s i t i o n ,

    w t

    M o

    8.90

    8.87

    8.32

    9.04

    9.07

    9.11

    9.14

    9.12

    8 / 10

    o

    Fe

    8.46

    9.76

    10.85

    6.14

    5.12

    4.64

    4.00

    3.67

    5.00

    Max

    C b

    3.62

    3.40

    3.20

    3.71

    3.56

    3.58

    3.75

    3.77

    3.15/

    4.15

    A s -depos i t ed

    th ickness ,

    mm ( in . )

    4.0 (5/32)

    4.4 (11/64)

    4.0 (5/32)

    4.8 (3/16)

    7.1 (9/32)

    8.0 (5/16)

    8.3 (21/64)

    8.3 (21/64)

    Fig. 3Bent-beam-type

    specimen. (X0.165)

    stress-corrosion

    mm (8 x 3 x 0.1 in. ) were exposed for

    s ix months in f lowing (0.6 m/s)

    seawater.

    2. Crevice Corrosion. Du p l ica te t est

    panels of the weld metal and base

    meta l were eva lua ted fo r c rev ice

    cor ros ion res is tance us ing the mu l t ip le

    c rev ice t ype con f igur a t ion s how n in

    Fig. 2. Aga in tests we re pe r for me d in

    f lowing seawater f o r s ix months .

    3. Stress Corrosion. Du p l i c a t e b e n t -

    beam type specimens, 304.8 x 76.2 X

    3.2 mm (12 x 3 X 0.125 in.) were used

    for s t ress-cor ros ion evaluat ion of the

    sur faced we ld meta l .

    Figure 3 shows the apparatus in

    wh ich spec imens were loaded to a

    surface stress of 379 MPa (55 ksi).

    Spec imens were exposed in f lowing

    seawater f o r 8 months a f t e r wh ich they

    were examined for cracks or other

    corrosion

    damage.

    4. Corrosion-Fatigue.

    Fat igue char

    ac te r iza t ion was per fo rmed us ing bo th

    Krouse- t ype p la te spec imens to es tab

    l ish an S-N curve and s ingle-edge

    no tch ed (SEN) specim ens (Fig. 4) for

    fa t igue c rack g rowth ra te measure

    ments . Krouse- t ype spec imens were

    tested in seawater at a cyc l ic f re qu en

    cy of 23.3 Hz and a stress rat io R = 1

    These spec imens were tes ted un t i l

    f racture or unt i l the number of cyc les

    exceeded

    IO .

    8

    The SEN specimens were used to

    measure the ef fect of pro longed st ress

    relief t ime at 649 C (1200 F) on crack

    gro wth ra te . The c rack g row th d i rec

    t ion was para l le l t o t he co lumnar

    dendr i t es o f t he we ld meta l . G rowth

    ra tes were de te rm ined by measur ing

    crack exten sion , Aa, oc cu rr in g af ter a

    spec i fi c n um ber o f cyc les , AN . A l l SEN

    specimens were tested in a 3.5% N a C I /

    Fi.O

    so lu t ion un t i l f r ac tu re .

    Results and Discu ss ion

    Composit ion and Microstructure

    The che mic al analyses of the IN-625

    sur face we ld meta ls p roduced a t f our

    heat input levels for one and two layer

    sur faces are g iven in Table 3. The

    s p e c i f i e d l im i t i n g c h e m ic a l c o m p o s i

    t ion f o r IN-625 we ld

    m e t a l

    is also

    listed in Table 3.

    T h e c h r o m i u m , m o l y b d e n u m a n d

    c o lu m b iu m c o n c e n t r a t i o n i n t h e s in

    g le and doub le layer sur face we ld

    meta l were w i th in t he IN-625 we ld

    metal speci f icat ions for a l l heat inputs.

    Th e m a x im u m i r o n c o n c e n t r a t i o n o f

    5%, how eve r , was exce eded in a l l

    s ingle layer sur face weld metal wi th a

    W E L D I N G R E S E A R C H

    SUPPLEMENT I

    3-s

  • 8/10/2019 Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

    4/8

    2nd LAYER IN-625

    5 Id LAYER IN-6 25

    i n LAYER IN-625

    INCREASING IRON

    CO NTE NT,

    RELATIVE

    INCREASING IRON

    CONTENT,

    RELATIVE

    Fig.5Microprobe traces across two-layer C M A W IN-625surface

    weld showing relative iron levels: A (left)scan across both

    interfaces of steel surface welds;

    B (right)~closeup

    scan of

    steel/

    Inconel 625 interface

    0 . 9 0 M J / m

    2 3

    k j / i n

    1 . 3 4 MJ/m

    3 4 k j / i n

    1 . 7 7 MJ/m

    4 5

    k j / i n

    2 .08 M J /m

    5 3

    k j / i n

    ^HfP^imt

    F/g. 6Structureoi C M A W Inconel 625

    surface weld (heatinput-1.77 Ml/m (45 kll

    in.)): A (top)transverse to welding direc

    tion; B

    (bottom)normal

    to A. X250

    (reduced

    50

    on reproduction)

    high value of 10.85% for the 1.77 kj /m

    (45 kj / in . ) heat inpu t .

    I t was noted that sur face welds

    prepared wi th a heat input o f 2 .08

    k j /

    m (53

    k|/in.

    had the lowest i ron

    content in both sing le and two layer

    deposi ts. Th is fact is a t t r ibuted to the

    low amperage used at th is heat input ,

    and par t icu lar ly to the slow weld t rave l

    speed used to generate th is heat input

    (Table 2). The slow travel speed results

    in the weld ing arc be ing more

    comp le te l y i n con tac t w i th the mo l ten

    weld puddle than was the case at

    h igher speeds and lower heat inputs.

    At h igher w eld t rave l speeds, the arc

    contacts more base meta l and h igher

    leve ls o f i ron are p icked up in the

    in i t ia l layer o f weld deposi t . The i ron

    content o f the second layer o f sur face

    weld appears to ver i fy that the amount

    o f d i l u t i on decreased as the we ld in g

    travel speed was decreased and as heat

    input was increased.

    Examina t ion o f the above chemica l

    co mp o s i t i o n , a n d a s - d e p o s i t e d

    thickness data in Table 3 indicates that

    ViYJ

    2 INCHES 3

    4 5

    ihlilililihhhlrtrtiWl

    f f f / d i l i l i l i i i l

    Fig.7Bend test specimens from C M A W (pulsed-arc) single layer Inconel 625 overlays

    two- layer IN-625 welds can be sur

    faced wi th a f ina l th ickness greater

    than 6.4 mm

    (V A

    i n. ) and w i t h a che m

    ica l composi t ion in the second sur face

    laye r wh ich con fo rms to IN-625 .

    Elect ron microprobe scans for i ron

    were pe r fo rmed on samp les wh ich

    included the stee l base meta l and two

    layers o f sur face weld meta l . The

    results of these scans are presented in

    Fig.

    5. I t is obs erv ed tha t the lev el of

    i ron con tent is cons tant for a l l prac

    t ica l purposes through the th ickness of

    the f i rst layer o f the weld meta l .

    How ever, there is a very na rrow zon e

    at the weld meta l -stee l in ter face in

    wh ich a d ist inc t grad ient in i ron

    con ten t was obse rved . The appearance

    of th is narrow zone is i l lust ra ted in

    Fig.

    5B.

    As shown in F ig . 5 , the t ransi t ion

    f rom the in i t ia l layer o f weld meta l to

    the second layer is marked by an

    abrup t reduct ion i n i ron con ten t .

    Ag a in ,

    the i ron leve l is constant

    through the th ickness of the second

    layer o f weld meta l . I t should be noted

    that s imi lar t raverses on d i f ferent

    samp les f rom the same we ldmen t

    revealed ident ica l t rends. There were

    di f ferences in the leve l o f i ron content

    be tween beads in the we ld me ta l , bu t

    the i ron con ten t was constan t th rough

    the th ickness of each

    bead.

    Typ ica l micros t ruc tu res o f the IN-

    625 sur face weld meta l prepared by

    the GMAW-P process are presented in

    Fig. 6 . The mic ros t ruc ture t ransverse to

    the we ld ing d i rec t i on cons is ts o f

    co lumnar dendr i tes wh ich g row no r

    mal to the weld meta l /base meta l

    in ter face wi th second phase par t ic les

    concen t ra ted in the i n te rde ndr i t i c

    regions. I t was noted that the

    co lumnar dendr i tes were , i n some

    cases, con t inuo us th roug h the i n te r

    face of layers 1 and 2 of the surface

    we ld me ta l . Thus, there appears to be a

    h igh degree of gra in d i rect iona l i ty in

    the sur face microst ructure.

    Figure 6B i l lustrates the surfacing

    deposi t microst ructure t ransverse to

    the co lumnar dendr i t i c s t ruc tu re d i s

    cussed above and shows a f ine, ra ther

    un i form d ispersion of severa l phase

    part ic les in the weld meta l st ructure.

    These part icles may be carbides r ich in

    n icke l ,

    c o l u m b i u m , o r m o l y b d e n u m ,

    as sugges ted in the l i t era tur e. '

    Examina t ion o f micros t ruc tu res

    f rom the GMAW-P su r faced we ld

    meta ls revealed that the dendr i te arm

    spacing genera l ly increased wi th in

    creasing heat input. This resulted in a

    re la t ive ly coarse microst ructure in the

    weld deposi ts fabr icated at the h ighest

    heat input . I t should be noted that

    me ta l l og raphy o f the we ld depos i t s

    and of the HAZ of the base meta l d id

    not show any evidence of cracking.

    Weldability Testing

    Al l s ide bend test specimens f rom

    4 - s I JA N U A R Y 1 9 7 8

  • 8/10/2019 Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

    5/8

    Table4 Tensile and Hardi

    Heat input ,

    MJ/m (kj/in.)

    0.90 (23)

    1.34 (34)

    1.77 (45)

    2.08 (53)

    0.90 (23)

    1.34 (34)

    1.77 (45)

    2.08 (53)

    0.90 (23)

    3.25 Nickel Steel

    less

    Properties

    Layers

    1

    1

    1

    1

    2

    2

    2

    2

    3

    of IN-625 C M A W Pulsed Arc )

    U l t i m a t e

    tens i le s t rength ,

    MPa (ks i )

    801 (116.2)

    787 (114.1)

    77 6

    (112.6)

    790 (114.6)

    810

    (117,5)

    839 (121.7)

    818 (118.6)

    834 (120.9)

    793 (115.0)

    772 (112.0)

    751 (108.9)

    806 (116.9)

    869 (126.0)

    814 (118.0)

    849 (123.2)

    873 (126.6)

    775 (112.4)

    785 (113.8)

    80

    min

    Surface Weld Meta l on

    0.2%

    y ie ld s t rength ,

    MPa (ks i )

    461 (66.9)

    462 (67.0)

    443 (64.2)

    461 (66.9)

    512 (74.3)

    516 (74.9)

    498 (72.2)

    525 (76.2)

    517 (75.0)

    532 (77.2)

    515 (74.7)

    568 (82.4)

    553 (80.2)

    535 (77.6)

    550 (79.7)

    561 (81.4)

    539 (78.2)

    536 (77.8)

    55 min

    3.25

    Nickel Steel

    Elongation

    in 1 in. , %

    31

    28

    29

    28

    33

    28

    28

    28

    18

    21

    25

    31

    34

    23

    31

    36

    18

    14

    22

    min

    Hardness ,

    R,

    17

    16

    22

    22

    18

    21

    20

    24

    16

    t he GMAW sur fac ing depos i t s per

    f o rmed sa t is fac to r i l y , and there was no

    ev idence o f c rack ing in t he we ld meta l

    or HA Z as a resul t of app l ica t ion of 180

    deg ben d a ro und a 2T rad ius

    m a n

    dre l .

    Typical s ide bend test specimens

    f rom the GMAW sur face we ld meta ls

    are pres ente d in Fig. 7. These results

    a t t es t t o t he good we ldab i l i t y o f IN-

    625 to s teel . Fur ther , i t should be noted

    that a l l sur face welds were st ress- re l ie f

    hea t tr ea ted p r io r t o t es t ing . The ab ove

    resul ts indicated that the 649 C (1200

    F)

    for 4 h stress relief heat t reatment

    d id no t adverse ly a f f ec t we ldab i l i t y .

    Tensile Properties

    The tensi le proper t ies of the IN-625

    sur face we ld meta ls p repared by the

    GMAW-P process a re p resen ted in

    Ta b le 4, a l o n g w i t h t h e m i n im u m

    required tensi le proper t ies for the 3.25

    nickel s teel . For the s ingle- layer sur

    face welds, a l l measured IN-625 tensi le

    proper t ies exceeded the tens i le p rop

    er t ies speci f ied for 3.25 n ickel s teel .

    The bes t combina t ion o f s t reng th and

    duc t i l i t y was measured on spec imens

    f rom th e s ing le - layer surfaces p repare d

    at heat inpu ts of 1.77 and 2.08 M | / m

    (45 and 53 k j / in . ) .

    The we ld meta l s treng th p rope r t ies

    measured on spec imens removed f rom

    tw o layer sur faces ( inc l ud ing layers 1

    and 2 ) were genera l ly h igher t han the

    values measured for s ingle layers,

    par t icu la r ly w i t h respec t t o t he y ie ld

    s t reng th . Once aga in , t he bes t combi

    na t ion o f s t reng th and duc t i l i t y was

    observed in welds fabr icated at 1.77

    and 2.08 MJ/m (45 and 53 k j / in . ) . I t

    was noted in the tensi le data for the

    two- layer spec imen prepared a t a hea t

    inpu t o f 0 .90 M J / m (23 k j / i n . ) t ha t t he

    tens i le e longat ion va lues d id no t meet

    the m in imum requ i rement f o r 3 .25

    nickel steel of 22%.

    Examinat ion of the f racture sur faces

    o f t hese spec imens revea led a number

    o f lack o f f us ion de fec t s wh ich caused

    premature tens i le f rac tu re . Th is obser

    vat ion suggests that the 0.90 MJ/m (23

    kj / in . ) heat input is not suf f ic ien t to

    ob ta in t he requ i red degree o f f us ion

    with the in i t ia l layer of IN-625. There

    was some sca t te r be tween the u l t i

    mate tens i le s t reng th and e longat ion

    va lues measured on dup l ica te spec

    imens f rom the 1.34 and 1.77 MJ/m (34

    Fig.

    8Typical

    tensile fracture surface of

    Inconel 625 surface we ld metal on 3.25

    nickel steel by the GM AW (pulsed arc)

    process. A (top)-

    X

    225;

    6 (bottom)-

    X2000

    and 45 k j / in . ) su r face we lds .

    The var ia t ion on dup l ica te spec

    imens was p robab ly due to observed

    sca t te red in te rd end r i t i c m ic ro poro s i t y

    in t he spec imens . As shown in t he

    f ractographs of Figure 8, tensi le f rac

    tures of the specimens f rom the

    G M A W o v e rl a ys we r e d u c t i l e i n n a t u r e

    and occur red a long the dendr i t e in te r

    faces.

    Examinat ion of the hardness data in

    Table 4 reveals that there was a good

    cor re la t ion be tween the tens i le

    st rength of the over lay and the Rock

    wel l C hardness. I t appears that a

    m in imum average hardness o f Rock

    wel l C16 is indicat ive of a tensi le

    st rength greater than

    758

    MPa (110 ksi)

    in t he IN-625 sur face we ld meta l .

    Corrosion-Fatigue

    The resu l t s o f h igh-cyc le cor ros ion

    fat igue tests on IN-625 we ld me tal

    sur faced by the GMAW-P process a t a

    heat inp ut of 1.77 M | / m (45 k j / in . ) are

    presen ted in Fig. 9, wh ere the S-N

    curves for IN-625 mult ip le pass

    w e l d

    ments and for 3.25 n ickel s teel tested

    in seawater are a lso inc luded for

    c o m p a r i s o n .

    1

    The test resul ts on IN -

    625 sur face we ld meta l exh ib i t e d so me

    scat ter , but general ly l ie below the

    mul t ipass IN-625 we ld curve and

    above the steel curve. The fat igue

    st rength of the IN-625 sur face weld

    me tal in seaw ater is 103 MP a (15 ksi).

    The lower f a t igue s t reng th o f t he

    sur faced IN-625 weld metal may be

    due in par t t o t he d i rec t iona l i t y in t he

    mic ros t ruc tu res o f t he sur faced we ld

    meta l wh ich was d iscussed above .

    Work by

    Long'

    1

    indica tes that the

    rate of pro pa ga t ion of a fat ig ue crack

    in the IN-625 sur face weld metal is

    more rap id when the c rack is mov ing

    W E L D I N G R E S EA R C H SUPPLEMENT I 5-s

  • 8/10/2019 Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

    6/8

    -

    1

    1 ^v

    3.25

    NiSTEEL

    V

    SEAWATER (RCB

    SPECIMENS)

    ( R E F E R E N C E 101

    PRESENT

    o - IN 625 G MAW

    - IN-625 GMAW

    C O N T A I N I N G

    _ L

    I NCONEL 625

    M U L T I P L E

    1

    W E L D M E N T ,

    PASS

    SEAW ATER ( RCB

    ( R E F E R E N C E

    S t \ o

    I N V E S T I G A T I O N ^ s

    C L A D

    C L A D

    W E L D M E T A L

    W E L D M E T A L

    1 / 4 W ELD FLAW S

    0 /

    I

    SPECI MENS)

    10)

    ~S~

    I NCONEL

    C L A D D I N G

    1

    625 W ELD

    SEAW ATER

    ^-o

    1

    -

    STRESS- I NTENSI TY FACTOR RANGE AK . MPA ArT

    20 30 40 50 60 8 100

    I I I I I I 25 000

    CYCLES TO FA I LURE, N

    Fig.

    9High-cycle

    fatigue curve for Inconel 625 surface weld m etal in seawater

    para l le l t o t he dendr i t e ax is t han when

    moving normal to i t . I t has a lready

    been ment ioned tha t t he Krouse spec

    imens were removed so tha t c rack

    growth wou ld p roceed para l le l t o t he

    axis o f t he long co lu mn ar de ndr i t es o f

    the sur face w e l d . The mu l t ipass we ld

    spec imens , on the o ther hand,

    c o n

    s is ted o f a much more randomly

    or ien ted m ic ros t ruc tu re . The low er

    fat igue proper t ies of the sur face weld

    meta l compared to t he mu l t ip le pass

    we lds , t here fo re , appear t o resu l t f r o m

    t h e c o m b in e d e f f e c t o f

    microdefects

    n o r m a l l y e n c o u n t e r e d i n we ld m e t a l s

    and an un favora b ly a l igned m ic ro -

    st ructure.

    Another f ac to r wh ich mus t be no ted

    rega rding th e fa t igue resul ts in Fig. 9 is

    tha t t he Krouse spec imens used here in

    expose more weld metal sur face area

    to test than the t ransverse weld

    ro ta t ing can t i lever beam (RCB) spec

    imens used to deve lop the mu l t ipass

    we ldm en t curve . Thus , t he Krouse

    test s a re cons id ered more conserva t ive

    and shou ld be more represen ta t ive o f

    t he fa t igue p roper t ies o f su r faced we ld

    metal than the RCB data.

    The e f f ec t s o f macroscop ic we ld

    f laws , de tec tab le by bo th rad iogra ph ic

    and penet ran t t es t ing , we re e xamine d

    by tes t ing spec imens con ta in ing we ld

    defects up to 6.4 mm (0.25 in.)

    long ,

    or ien ted bo th para l le l and norma l t o

    the specimen axis, at stress levels of 41

    MPa (6 ksi) and 103 MPa (15 ksi) in air

    and seawa ter . As indi ca ted in Fig. 9,

    these specimens surv ived 10

    s

    cyc les

    wi th no de tec tab le inc rease in f law

    size.

    The ef fects of pro longed st ress re l ie f

    hea t t r ea tment on fa t igue c rack in i t ia

    t ion and p ropagat ion were a lso inves

    t iga ted .

    Ro t a t i n g c a n t i l e v e r - b e a m f a t i

    gue spec imens were removed f rom IN-

    625 base p la te t ha t had undergone a

    simulated st ress- re l ie f heat t reatment

    of 64 h at 649 C (1200 F), and were

    tested at 276 MPa (40 ks i) an d 414 MPa

    (60 ksi) in seawater. Test results were

    comparab le t o h igh-cyc le f a t igue da ta

    on annealed (982 C or 1800 F, 1 h,

    A. C.) base metal tested in air

    Fatigue-Crack Growth

    Sing le edge no tch- t ype c rack p ropa

    ga t ion spec imens cu t f r om sec t ions o f

    a s ing le - layer sur face we ld w ere sub

    jected to s t ress re l ie f heat t reatments

    of 649 C (1200 F) for 4 and 64 h. These

    spec imens were in tended to measure

    the ef fect , i f any, of pro longed st ress-

    re l ie f heat t reatment on fat igue crack

    growth rates in the sur face weld

    metal .

    Resul ts of fat igue crack growth rate

    tests on the IN-625 sur face weld metal

    are presente d in Fig. 10. Also s ho wn in

    Fig. 10 are resul ts of ea r l ier wo rk on

    wrought IN-625 p la te and 3 .25 n icke l

    steel.

    5

    It is no ted that the crack gr ow th

    rates of the c lad weld metal are h igher

    than ra tes f o r bo th t he wr ou gh t IN-625

    and the 3.25 n ickel s teel .

    The h igher g rowth ra tes in t he IN-

    625 sur face we ld meta ls compared to

    the wrought p la te a re a t t r ibu ted

    pr imar i l y t o t he m ic ros t ruc tu ra l d i f f e r

    ences be tween the two p roduc t f o rms .

    The weld metals are character ized by

    a n e lo n g a t e d d e n d r i t i c s t ru c t u r e w h i c h

    was essent ia l ly paral le l to the crack

    growth d i rec t ion . I n con t ras t , t he

    wro ugh t mater ia ls a re charac te r ized by

    an equ iaxed g ra in s t ruc tu re .

    The e f f ec t s o f o r ien ta t ion and g ra in

    s t ruc tu re on c rack g rowth ra te were

    note d e lsewhere. ' Th e di f feren ces in

    c rack g rowth ra tes be tween the sur

    face weld metals heat t reated for 4 h

    10 15 20 25 30 40 50 60 80 100

    STRESS- I NTENSI TY FACTOR RANGE. AK . KS I / i N

    Fig.

    70

    Crackgrowth rate, da/dN, vs. stress-

    intensity range,

    AK,

    for IN-625 surface weld

    metal

    and 64 h at 649 C (1200 F) are not

    cons idered s ign i f i can t . Fur ther , t he

    relat ive posi t ion of the curves is in ter

    preted to mean that pro longed st ress

    rel ief heat t reatment does not a l ter

    cor ros ion fat igue crack growth rates of

    the c lad IN-625 sur face weld metal .

    General Corrosion Tests

    The chem ica l comp os i t io ns o f the

    wrought IN-625 base meta l and o f t he

    a l l -we ld meta l genera l co r ros ion tes t

    panels are sh ow n in Tables 1 and 5,

    respec t ive ly . The compos i t ion o f t he

    wr o u g h t b a s e - a n d we ld - m e t a l s a m

    p les co n fo rm ed to t he IN-625 base-

    and we ld -m eta l spec i f i ca t ions . Fur

    t her , t he com po s i t io n measured o n

    both sur faces o f t he we ld -meta l pane ls

    ind ica ted tha t t here was no s ign i f i can t

    chemica l va r ia t ion th rough the spec

    imen th ickness .

    The genera l co r ros ion o f bo th t he

    IN-625 base metal s tandards and the

    sur face we ld m eta l , as de te rm ine d by

    weight loss (Table 7), was v ir tual ly n i l

    a f ter 6 months in seawater . Visual

    examinat ion d id not reveal any s igns of

    genera l co r ros ion .

    As t h e c h e m ic a l c o m p o s i t i o n o f

    these panels was s imi lar to the IN-625

    6-s

    I

    JANUARY 1978

  • 8/10/2019 Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

    7/8

    Table

    5-Partial

    Chemical Analysis of IN-625 Surface Weld Metal Seawater Corrosion Specimens

    Composit ion, wt-%

    Specimen type

    General corro

    sion

    Side of surfacing analyzed

    Free surface of weld

    Side of weld closest to base metal

    Cr

    21.63

    21.38

    M o

    9.37

    8.53

    Fe

    4.42

    4.64

    C b

    3.62

    3.69

    Crev ice cor ro- F ree sur face o f we ld

    s ion S ide o f we ld c loses t t o base me ta l

    St ress cor ros ion Free surface of w el d

    I N -625 W e l d M e t a l S pec i f i c a t ion

    20.70

    20.61

    20.95

    20 / 23

    9.28

    9.34

    9.28

    8 / 10

    8.60

    9.44

    5.80

    5.00 Max

    3.51

    3.54

    3.43

    Cb and Ta

    3.15/4.15

    Table

    6-Results

    of General and Crevice Corrosion Tests on IN-625 Surface Weld Metal

    and Base Metal

    G ene ra l

    c o r ros i on

    Crev ice

    c o r ros i on

    S pec i m en

    type

    Sur face

    w e l d

    Base

    meta l

    Sur face

    w e l d

    Base

    meta l

    O r i g i na l

    293.05

    293.87

    270.20

    415.15

    412.36

    262.15

    246.81

    415.95

    419.80

    Wei gh t , g ram s

    Final

    293.02

    293.80

    270.18

    415.12

    412.32

    261.62

    246.68

    415.92

    419.80

    Loss

    0.03

    0.07

    0.02

    0.03

    0.04

    0.53

    0.13

    0.03

    0.00

    mpy

    Ni l

    N i l

    Ni l

    N i l

    N i l

    0.2

    Ni l

    Ni l

    0.0

    Co r ros i on

    rate

    fiM/Year

    Ni l

    0.5

    Ni l

    Ni l

    Ni l

    3.9

    1.0

    Ni l

    0.0

    base plate, the resul ts indicate that the

    s t ruc tu re o f t he sur face and we ld

    metal and the st ress- re l ie f heat t reat

    ment d id no t have a de t r im enta l e f f ec t

    on the exce l len t genera l co r ros ion

    resis tance inherent to the IN-625 base

    meta l compos i t ion . The resu l t s o f

    cor ros ion tes t s on pane ls w i th h igher

    i ron contents are d iscussed in the

    f o l l o w in g s e c t i o n s .

    Crevice Corrosion.

    The i ron and

    m o ly b d e n u m c o n t e n t s o f t h e c r e v i c e

    c o r r o s io n p a n e l s we r e b o t h a p p r o x i

    mate ly 9% (Tab le 5 ) . V isua l examina

    t ion of two test panels revealed that ,

    ou t of 40 po ten t ia l p i t s i tes, not on e p i t

    wa s p r o d u c e d .

    This resul t i l lust rates the excel lent

    crev ice-cor ros ion res is tance of the sur

    f ace we ld m eta l . The w e ig h t loss o f t he

    sur face we ld -meta l samples was neg l i

    g ib le ,

    as indicated in Table 6. The

    crevice-cor ros ion res is tance of these

    s u r fa c e we ld - m e t a l p a n e l s wa s e q u i v a

    lent to the base metal panels which

    had no p i t s and neg l ig ib le we igh t loss .

    Th is was expec ted s ince the mo lyb

    d e n u m c o n t e n t , wh i c h c o n t r o l s c r e

    v ice-cor ros ion res is tance , was ma in

    ta ined above 8% , even w i t h a 9% i ron

    c o n t e n t .

    The c rev ice-cor ros ion tes t a lso p ro

    v ides an indicat ion of the res is tance of

    the sur face weld metal to general

    cor ros ion at the 9% Fe level . Since the

    c rev ice-cor ros ion tes t pane ls showed

    no s igns of crev ice at tack or general

    cor ros ion and s ince the weight loss

    f rom these pane ls was neg l ig ib le , t he

    general cor ros ion res is tance of sur face

    we ld metal at the 9% Fe and 8% M o

    leve ls shou ld be exce l len t .

    Stress-Corrosion Cracking. Af ter 8

    months of exposure to seawater at 90%

    of y ie ld s t reng th , t he ben t -b ea m spec

    imens o f

    clad-weld

    meta l d id no t

    show s igns o f c rack ing o r cor ros ion .

    These specimens had an i ron level of

    5.8% and were stress relieved at 649 C

    (1200 F) for 4 and 64 h. Thus, we ld c lad

    IN-625 with th is i ron level and st ress-

    re l ie f cond i t ion does no t have an

    apparent s t ress-cor ros ion cracking

    p r o b le m .

    A p p l i c a t i o n C o n s i d e r a t i o n s

    A l t h o u g h t h e r es u lt s o f w e ld a b i l i t y ,

    mechan ica l p roper t y and seawater

    cor ros ion tes t s repor ted here in i n d i

    c a te t h e g o o d c o m p a t a b i l i t y b e t w e e n

    sur faced ' IN-625 we ld meta l a nd the

    s tee l ,

    t here a re cer ta in po in t s w h i ch

    must be assessed pr ior to sur fac ing:

    1. IN-625 is more noble than 3.25

    n icke l s tee l , and the sur faced we ld

    meta l shou ld represen t an impenet ra

    ble bar r ier to prevent local ruptures in

    the IN-625 and undes i rab le ga lvan ic

    cor ros ion . I nspec t ion requ i rements

    shou ld ensure tha t a l l accep tab le f laws

    are ben ign and wi l l no t p ropagate .

    2. The ap p l ica t io n o f aus ten i t i c

    sta in less steel hardfac ing has been

    repor ted to resu l t in un favorab le

    tensi le res idual s t resses in the weld

    deposi t , even af ter thermal s t ress

    relief.

    12

    The re ten t ion o f t ens i le res id

    ua ls in t he we ld meta l were a t t r ibu ted

    to d i f ferences in the coef f ic ient of

    t herma l expans ion be tween the s tee l

    and the sur faced we ld meta l . Thus ,

    coo l ing f rom the s t ress re l ie f t empera

    ture can restore tensi le res iduals in the

    sur faced we ld meta l wh ich may be

    d e t r im e n t a l t o f a t i g u e p e r f o r m a n c e .

    Sho uld such a s i tu at ion ar ise in the I N -

    625/3 .25 n icke l s tee l sys tem, cons ider

    a t ion o f co ld ro l l ing o r peen ing o f t he

    sur face s tee l t o m in im ize o r e l im ina te

    the tensi le res idual s t resses may be

    necessary.

    13

    C o n c l u s i o n s

    1. IN-625 is sat is fac tor i ly w eld ab le

    to 3.25 n icke l s tee l us ing the G M A W -P

    process. Stress relief heat t reatment at

    649 C (1200 F) d id not adversely af fect

    we ld a b i l i t y .

    2. The tensi le prop er t ies of IN-625

    sur face we ld meta l a re genera l ly com

    parab le w i th t he requ i rements o f 3 .25

    n icke l s tee l . The mos t f avora b le m e

    chan ica l p roper t ies were ob ta ined

    w it h a heat inpu t of 1.77 M J/ m (45

    k j / in . ) .

    3. The seawa ter cor ro s io n res is tance

    of IN-625 sur face weld metal is equiv

    a lent to that of wrought base metal at

    i r on con ten ts o f up to 9%, p rov ided the

    mo lybd en um c on te n t i s g rea te r t han

    8%. For weld metals in the above

    c o m p o s i t i o n l im i t s t h e c r e v i c e c o r r o

    s ion res is tance was excel lent to good.

    No suscept ib i l i t y to s t ress cor ros ion or

    general cor ros ion was noted. St ress

    relief heat t reatment at 649 C (1200 F)

    for t imes up to 64 hours d id not a l ter

    cor ros ion behav io r o f t he we ld meta l .

    4.

    t he seawater cor ros io n fa t igue

    s t reng th o f c lad IN-625 we ld meta ls

    was 103 MPa (15 ksi) at 10 cycles. This

    va lue is lower t han IN-625 mu l t ip le

    pass we ldm en ts , bu t i s s ign i f i can t ly

    higher than that of 3.25 n ickel s teel .

    5. The fat igue crack growth rate of

    sur face IN-625 weld metal is h igher

    than that of the wrought base metal

    W E L D I N G R E SE A R C H S U P P L E M E N T I

    7-s

  • 8/10/2019 Surfacing of 3.25% Nickel steel with Inconel 625 by the gas metal arc welding-pulsed arc process

    8/8

    and 3.25 n ickel s teel when crack

    gro wth p roc eeds in a d i re c t ion para l le l

    t o t he h igh ly o r ien ted dendr i t i c s t ruc

    tu re .

    The inc reased c rack g rowth ra te

    paral le l to the dendr i tes is bel ieved to

    con t r ibu te t o t he lower f a t igue

    s t reng th o f t he sur face we ld meta l

    compared to mu l t ip le pass sur face

    we ld m e n t s o r t h e w r o u g h t b a s e

    plate.

    References

    1. Fink, F. W ., and Boy d, W . K., Th e

    Corrosion of Metals in Marine Environ

    me nts, AD 712 585,

    NTIS,

    Springfield, VA,

    1970.

    2. Gilliland, R.

    C,

    and Slaughter, G. M.,

    The Welding of New Solut ion-Strength

    ened Nickel-Base Alloys,

    Welding lournal,

    45 (7), July 1966, Research

    Suppl.,

    pp .

    314-s

    to 320-s.

    3. Conaway, H. R.. and Mesick, |. H., A

    Report on New Matrix-Stiffened Nickel-

    Chromium Welding Products,

    Welding

    lournal,

    49 (1), Jan. 1970, Research

    Suppl.,

    pp .27-s to 32-s.

    4. Anon ., Incon el Alloy 625, Hun t ing-

    ton Alloy Products Division, The Interna

    t ional Nickel Company, Inc., Hunt ington,

    WV, 1970.

    5. Lo ng, T. A., Jr., Co mp aris on of F atigue

    Crack Propagation in Inconel 625 and 3.25

    Nicke l Steel, Masters Thesis, M.I.T., June

    1972.

    6. Electrod e and RodsW elding, Bare,

    Nickel Alloy , Mi l Spec MIL-E-21562D, 25

    May 1972.

    7.

    Nicke l -Chromium-Molybdenum-Co-

    lumbium Alloy Plate, Sheet and Strip,

    ASTM B433-66, 1974.

    8. Mec han ical Tests for We lded Joints,

    Military Standard, MIL-STD-00418C, 15 June

    1972.

    9. Tension Testing of Metallic Materials,

    ASTM E-8, Phila., PA, 1974.

    10. Czyryca, E., Un pub lished data,

    DTNSRDC, Annapolis.

    11. Kruger, J., and Am bros e, J. R., Th e

    Role of Passive Film Growth Kinetics and

    Properties in Stress Corrosion and Crevice

    Corrosion Sus ceptibility, National Bureau

    of Standards, IR76-1170, Nov. 1976.

    12. Babaev, A. N., and Vainerman, A. E.,

    The Residual Stresses in Hardfaced

    Shafts,

    Avt. Svarka,

    No. 2, 1976, pp. 35-37.

    13. Shoak, L.

    L

    Jr., and Long, C. L,

    Surface Cold Rolling of Marine Propeller

    Shafting, SNAME 1957, pp . 682-702.

    WRC Bulletin 224

    February 1977

    Interpretive Report on Underwater Welding

    by Chan-L iang Tsa i and Ko ich i Masubuch i

    The fundamentals of underwater weld ing presented in th is repor t were based on the three-year research

    program en t i t led

    Fundamental Research on Underwater Welding

    ( conduc ted f rom Ju ly 1971 to June 1974

    at

    M.I.T.

    for the Nat ional Sea Grant Of f ice). In th is repor t , techniques of improved underwater weld ing

    processes recent ly conducted, both in th is count ry and abroad, are d iscussed. There are cur rent ly two

    approac hes to the imp rov em en t of qua l i ty in unde rwate r welds. One is the develop men t of an im proved

    (coa ted) e lec t rode to meet t he requ i rement f o r we ld ing underwater in wet cond i t ions . The o ther is t he

    el iminat ion of the wet condi t ions around the arc zone v ia d irect shie ld ing.

    Publ icat ion of the repor t was sponsored by the Interpretive'Reports Commi t tee o f t he Weld ing Research

    Counci l .

    The pr ice of WRC

    Bulletin 224

    is $8.50 per copy. Orders should be sent wi th payment to the Welding

    Research Counci l . Uni ted Engineer ing Center . 345 East 47th St reet . New York. NY 10017.

    WRC Bulletin 223

    January 1977

    Hot Wire Weld ing and Sur fac ing Techniques

    by A. F. Manz

    This WRC Bul le t in is d iv ided in to two par ts . The f i rs t par t prese nts a non -ma the ma t ical d escr ip t ion of the

    Hot Wire processes and their general chara cter is t ic s. The second par t prese nts a genera l ized in-dep th

    mathemat ica l t r ea tment o f e lec t rode me l t r a te phenomena. I n add i t ion to descr ib ing Hot Wi re e lec t rode

    mel t ing , Par t I I a lso p resen ts cons iderab le in fo rmat ion concern ing the genera l case o f l-R heat ing of any

    moving e lect rode. Examples are g iven to demonst rate the ut i l i t y of the der ived equat ions in predic t ing the

    mel t ra tes, t emp era tu re d is t r ibu t ion a nd vo l t age d rops o f mov ing e lec t rodes . Speci fi c examples co ncern in g

    Hot Wires are inc luded.

    Publ icat ion of th is repor t was sponsored by the Interpret ive Repor ts Commit tee of the Welding Research

    Counci l .

    The pr ice of WRC

    Bulletin 223

    is $7 .50 per copy . Orders shou ld be sen t w i t h payment t o t he Weld ing

    Research Counci l , Uni ted Engineer ing Center , 345 East 47th St reet , New York. NY 10017.