Surface Analysis by - · PDF fileAuger Electron Spectroscopy (AES) ¾AES (Auger Electron...

70
Surface Analysis by -AES -XPS -SIMS -XRD -SP1

Transcript of Surface Analysis by - · PDF fileAuger Electron Spectroscopy (AES) ¾AES (Auger Electron...

  • Surface Analysis by

    -AES-XPS-SIMS-XRD-SP1

  • XPS X- 10~100 100 ,

    UPS 100 ,

    AES Auger 20~60 20nm Auger

    SIMS 2 50~300 1 2

    ISS 1nm 1mm

    SEM 2, X- 100 10 2 X- ,

    TEM 50 10 ,

    STEM , X- 10 3 X-

    RBS He, H 20~200 1mm ,

    LEED 2 ,

    EPMA X- 1 1 X-

    SAM Auger 10~100 0.1 Auger

    AES : Auger electron Spectroscopy

    SAM : Scanning Auger Microscopy

    RBS : Rutherford Backscattering Spectroscopy

    XPS : X-ray Photoelectron Spectroscopy (ESCA)

    STEM : Scanning Transmission Electron Microscopy

    SEM : Scanning Electron Microscopy

    ( ~ 20), , ( ~ 100)

    ,

  • Auger Electron Spectroscopy (AES)

    AES (Auger Electron Spectroscopy)

    Electron beam Auger electron

    .

  • Surface Sensitivity

    (Surface Sensitivity)

    x-ray Auger

  • Schematic diagram of AES

    Auger analysisData acquisition 10-8torr UHV chamber .

    Electron gun : Primary electron beam

    Electron energy analyzer and detector : measurement and collection of emitted electrons.

    Sample manipulator : to locate the area of interest at the analyzer focal point.

    Ion gun : cleaning of the sample and for depth profiling

  • Instrument

    Physical Electronics Model 25-130 CMA

  • Electron source & analyzer

    Electron sources (beam dia.)- Tungsten filament (3~5)

    - LaB6 crystal (

  • AES

    - (Auger peak)

    - 2 (SEM)

    - Depth profiling(Ion beam)

    - line scan

    - Image mapping

  • Line scan & image mapping

  • += dzzzNTDrIIM

    iMbi )exp()()1(

    100)/(

    /=

    iiAA

    A SPiSPX

    XA: A atomic%, P: Peck to peck, S:sensitivity factor

  • AES spectrum

    AES spectrum-Noise peak

    -Spectrum (S/W) Depth profile data

    Chemical shifts in AES profiles- ESCA

    (Auger process 3 )

  • Sputtering rate

    Sputtering rate

    -sputter angle, ion energy, ion species, sample composition, sample density

    -SiO2 sputtering

    )(/)()(/)()()(

    222 SiONSiOS

    AlNNAlNSSiOvAlNv =

    V : sputter , S : sputter yield, N: atomic number density

  • Depth resolution

    -Unidirectional Sputtering Surface roughness (depth Z)

  • AES_PHI660 system

    conventional SEM-Lanthanum hexaboride(LaB6) cathode-Secondary electron detector-CMA(cylindrical mirror analyzer)

    Very small spot sizes (down 20 nm dia.)Sputtering (ino gun)

    - Remove surface contamination- Remove material for depth profiling

    Modes of operation- Survey- Line profile- Elemental mapping- Depth profile

  • Example1

    0 10 20 30 40 50 60 70 800

    20

    40

    60

    80

    100

    Si

    TiTi AgAg

    Ag OO

    2 kV Ar+

    (3.3 nm SiO2/min)

    Sputter Time (min)

    Atom

    ic %

    SAM Image

    SEM Image

    [air | TiO2 (24 nm)|Ti (1 nm)|Ag (17 nm)|TiO2 (24 nm){TiO2 (24 nm)|Ti (1 nm)|Ag (13 nm)|TiO2 (24 nm) }2 |glass]

  • Summary

    () (depth profiling) (point analysis) (image mapping) line scanning

    (~25) ( ~)

    (0.1at%) Bulk (Charging effect)

  • XPS

  • OverviewX- 100 .

    X() (photoelectron) binding energy .

    binding energy , .

    : , , , , , ,

  • XPS Uppsala Siegbahn ESCA(ElectronSpectroscopy for Chemical Analysis) .

    ESCA (elemental composition) (chemical state) . K, L(Shell) , (Binding Energy) . EX) 1s 531eV 1s 284eV,

    2p 99eV . , .

    X-ray , (Photoelectric effect) . , .

    Chemical shift . . Chemical shift .

    XPS(X-ray Photoelectron Spectroscopy)

  • Ek = hv - EB - W0 Ek : Kinetic energy of photoelectronhv : Photon energyEB : Binding energy of the electronW0 : Work function of the material

    Photoelectric effect

    X-ray: Mg Al K

    target target X Mg K 1253.6eV, Al 1486.6eV

  • F= qE =m(V/R)

    F : Force V : Speed R : trajectory radius E : electrical fields established by U potential m : electron mass q : electron charge

    Kinetic energy

  • Principle of ESCA

    Energy level diagram

  • XX--Ray Photoelectron SpectrometerRay Photoelectron SpectrometerSamples are irradiated with monochromatic X-rays which cause the ejection of photoelectrons from the surface. The electron binding energies, as measured by a high resolution electron spectrometer, are used to identify the elements present and, in many cases, provide information about the valence state(s) or chemical bonding environment(s) of the elements thus detected. The depth of the analysis, typically the outer 3 nm of the sample, is determined by the escape depth of the photoelectrons and the angle of the sample plane relative to the spectrometer.

    Busan Branch

  • XX--ray Beamray Beam

    XX--ray penetration ray penetration depth ~1depth ~1mmm.m.Electrons can be Electrons can be excited in this excited in this entire volume.entire volume.

    XX--ray excitation area ~1x1 cmray excitation area ~1x1 cm22. Electrons are . Electrons are emitted from this entire areaemitted from this entire area

    Electrons are extracted only Electrons are extracted only from a narrow solid angle.from a narrow solid angle.

    1 mm1 mm22

    10 nm10 nm

    top layer

    Bulk layer

    not attenuated

    attenuated by exp[-d/(E, matrix)cos]

    d

    BusanBranch

    Surface sensitiveness

  • The dependence of electron mean free path on electron energy

    Surface sensitiveness

  • Auger peak shifts

    The photoelectron kinetic energy is depending on the source nature. The Auger electron kinetic energy is independent of the source nature. Changing the source will easily distinguish between photoelectrons and Auger el

  • Auger transition

  • Ghost peak

    +323.9+556.9Cu

    +728.7+961.7O

    -233--Al

    --+233Mg

    MgAlContamination

    h photons from the X-ray source are produced by electron bombardment on an anticathode .

    If anticathode is slightly oxidised, oxygen atom will be excited .

    The specimen is then excited by two sets of photons and it will in response generate two superimposed spectra.

  • Practical approach

    Binding energy [counting rate, cps(counts per second)]Survey spectrumHigh resolution spectrum

    Fermi energy

  • 0 200 400 600 800 1000 1200

    0

    7000

    14000

    Inte

    nsity

    (cou

    nt)

    Binding Energy [eV]

    Intensity(counts) (slurry) Intensity(counts) (DI) Intensity(counts) (pH2) Intensity(counts) (pH11)

    528 530 532 534 536 538 540

    0

    5000

    10000

    15000

    20000

    25000

    Inte

    nsity

    (cou

    nt)

    Binding Energy [eV]

    O1sSurvey

    Example of result on SiO2 film

  • SIMS

  • What is SIMS (Secondary ion mass spectroscopy) ?

    Primary Ion Beam

    Samples

    Secondary Ions

    Extraction Lens

    Beam of Secondary Ions to be Analyzed

    To mass spectrometer

    keV ~ 10keV 2 . Ar+, Ne+, He+, O-, N-2 .

  • Composition

    1. Cesium ion source

    2. Duoplasmatron

    3. Electrostatic lens

    4. Sample

    5. Electrostatic sector ion energy analyzer

    6. Electromagnet mass analyzer

    7. Electron multiplier / Faraday cup

    8. Ion image detector

    SIMS (primary ion source), (primary column), , (sample chamber), (detector) (secondary column), .

  • Primary ion source

    Primary column

    Duoplasmatron , (cesium)

    .

    SIMS . 133Cs+, 16O- . .

  • sputtering

    Ion beam sputtering

    350km/s .

    bonding . ( , )

    : 10nm

    : 1nm

    (4.5~10kV) .

    Ionization efficiency ( ): sputtering

    Sputtering , SIMS , He, Ne, Ar sputtering .

  • SIMS . , , SIMS ( ) . (magnetic sector) . (double focusing method) .

    Ion energy analyzer, mass analyzer

  • Secondary ion detector

    SIMS Faraday cup (Electron multiplier), . ppm(100 1) ppb(10 1) .

  • SIMS 1ng mg .

    Sputtering .

    (in-situ analysis) . , SIMS 1:1 .

    , . , . .

  • Mass spectra

    (Static SiMS) : 10~20 ,

  • Static SIMS (surface analysis)

  • Depth profiling

    (Dynamic Sims) : .

    Trace metal contamination in SiO2

  • Dynamic SIMS (depth analysis)

  • Ion imaging

    (Imaging Sims) : , , , , , , , , .

    , , , , , , , ,

    Image dimensions : from 100um to less than 10um

  • Imaging SIMS (spatial analysis)

  • + higher sensitivity+ More direct identification of organics+ faster imaging & depth information+ differentiation of isotopes

    - More complex elemental quantification

    SIMS VS XPS

    Application Surface coatings Surface treatments Electronic components Semiconductors (GaAs, Si) Electrodes & sensors Catalysts Adhesives Lubricants Packing materials Corrosion studies

    Polymer, Ceramic, Lubr