supstr-s

58
0. Design Data 0.1 Superstructure Beam Edge offset from kerb bottom 0.1 m A. Effective length of span L eff. 35 m Total length of span 35.96 m G7+([SU B. Bridge Width Carriageway B c 4.25 m Kerb B k 0.375 m Total Width 5.00 m C. Concrete Grade M250 Recommended permissible stresses as per IRC 21-1987 are : Flexural compressive stress f c 83 kg/cm 2 Direct compressive stress f cd 62 kg/cm 2 Shear Stress f h 4 kg/cm 2 Bond Stress f b 11.25 kg/cm 2 poisson's ratio = 0.15 D. Reinforcing bars Torsteel Maximum allowable tensile stress f s 2000 kg/cm 2 Maximum allowable stress in compression f s ' 1750 kg/cm 2 E. Unit weight of concrete c 2400 kg/m 3 F. Unit weight of asphalt wearing coat 2200 kg/m 3 G. Thickness of slab D s 15 cm H. Thickness of wearing coat D w 8 cm Kerb height Kt 25.5 cm I. Number of Longitudinal Girders 3 J. Number of Cross-girders 9 K. Flange width of longitudinal girders 0.2 m L. Flange width of cross-girders 0.2 m Overall depth of main beam 1.7 m Overall depth of cross beam 1.4 m Fillet size horizontal 0.15 m Fillet size vertical 0.15 m No. of Railing post of size .15 x .15 x 1 on one side 11 nos. Type of foundation : w=well; o=open foundation; p= pile foundation o Effective length of slab L s 4.375 m Effective width of slab B s 2.025 m Factor to convert BM on simply supported to continuous slab 0.8 Factor to convert SF on simply supported to continuous slab 1 supstr-s.xls/Data 1 of 58

description

Super structure design of bridge

Transcript of supstr-s

Page 1: supstr-s

0. Design Data

0.1 Superstructure

Beam Edge offset from kerb bottom 0.1 m

A. Effective length of span Leff. 35 m

Total length of span 35.96 m G7+([SUBSTR.XLS]Abut!$J$41-0.02)+([SUBSTR.XLS]pier!$J$38-0.02)/2

B. Bridge Width

Carriageway Bc 4.25 m

Kerb Bk 0.375 m

Total Width 5.00 m

C. Concrete Grade M250

Recommended permissible stresses as per IRC 21-1987 are :

Flexural compressive stress fc 83 kg/cm2

Direct compressive stress fcd 62 kg/cm2

Shear Stress fh 4 kg/cm2

Bond Stress fb 11.25 kg/cm2

poisson's ratio = 0.15

D. Reinforcing bars Torsteel

Maximum allowable tensile stress fs 2000 kg/cm2

Maximum allowable stress in compression fs' 1750 kg/cm2

E. Unit weight of concrete c 2400 kg/m3

F. Unit weight of asphalt wearing coat 2200 kg/m3

G. Thickness of slab Ds 15 cm

H. Thickness of wearing coat Dw 8 cm

Kerb height Kt 25.5 cm

I. Number of Longitudinal Girders 3

J. Number of Cross-girders 9

K. Flange width of longitudinal girders 0.2 m

L. Flange width of cross-girders 0.2 m

Overall depth of main beam 1.7 m

Overall depth of cross beam 1.4 m

Fillet size horizontal 0.15 m

Fillet size vertical 0.15 m

No. of Railing post of size .15 x .15 x 1 on one side 11 nos.

Type of foundation : w=well; o=open foundation; p= pile foundation o

Effective length of slab Ls 4.375 m

Effective width of slab Bs 2.025 m

Factor to convert BM on simply supported to continuous slab 0.8

Factor to convert SF on simply supported to continuous slab 1

supstr-s.xls/Data 1 of 58

Page 2: supstr-s

Design of Bridge

1. Design of Superstructure

1.1 Design of Slab

1.1.1 Design Data

Span Leff. 35 m

Bridge Width

Carriageway Bc 4.25 m

Kerb Bk 0.375 m

Total Width 5.00 m

Concrete Grade M250

Recommended permissible stresses as per IRC 21-1987 are :

Flexural compressive stress fc 83 kg/cm2

Direct compressive stress fcd 62 kg/cm2

Characteristic strength of concrete fck 25 N/mm2

Shear Stress fh 4 kg/cm2

Bond Stress fb 11.25 kg/cm2

poisson's ratio = 0.15

Reinforcing bars Torsteel

Maximum allowable tensile stress fs 2000 kg/cm2

Maximum allowable stress in compression fs' 1750 kg/cm2

Unit weight of concrete c 2400 kg/m3

Unit weight of asphalt wearing coat 2200 kg/m3

Thickness of slab Ds 20 cm

Thickness of wearing coat Dw 10 cm

Effective length of slab Ls 4.375 m

Effective width of slab Bs 2.025 m

Factor to convert BM on simply supported to continuous slab 0.80

Factor to convert SF on simply supported to continuous slab 1.00

1.1.2 Calculation of Bending Moments

1.1.2.1 Due to dead load

weight of wearing coat 220 kg/m2

weight of deck slab 480 kg/m2

Total weight 700 kg/m2

Since the slab is supported on all four sides and is continuous,

Piegaud's curves will be used to obtain influence coefficients to

compute moments.

Ratio K 0.46

1/K = 2.17

As the panel is loaded with UDL, u/B 1

v/L 1

Using Pigeaud's curves then (Fig. A.9, Victor J.), m1 0.047

m2 0.0075

Total dead load W 6201.56 kg

Moment along short span Mx(DL) 0.29845 tm

Moment along long span My(DL) 0.09023 tm

supstr-s.xls/slab 2 of 58

Page 3: supstr-s

1.1.2.2 Due to Live Load

IRC class A Loading

For Maximum BM one wheel of 5.7 t should be placed at the

centre of span and other at 1.2 m from it as shown in the figure

below.

Long span of the panel of the deck slab Ls 4.8 m

Short span of the panel of the deck slab Bs 2.03 m

One wheel is placed in the centre of the panel

W1 = 5.7 t

W2 = 5.7 t

DL : Dummy Load W2

a. BM due to wheel load W1

Tyre contact length along short span x 0.50 m

Tyre contact length along long span y 0.25 m

Thickness of slab Ds 0.2 m

Thickness of wearing coat on average Dw 0.1 m

Width of load spread along short span u 0.7

Width of load spread along short span v 0.45

Ratio k 0.46

u/Bs 0.34483

v/Ls 0.09375

0.40 0.50

Using Pigeaud's curves, m1 0.175 17.5 17.5

m2 0.1258 11.5 13.3

and impact factor Iimp 1.5

Moment along short span Mx1 1.65759 tm

Moment along long span My1 1.30003 tm

b. BM due to wheel load W2

Intensity of Loading 5.7 t

Loaded Area is 0.700 x 2.85 sq.m

1.2

Bs

Ls

XX

Y

Y

W2

W11

.2

DL

u.2

5.50

v

supstr-s.xls/slab 3 of 58

Page 4: supstr-s

RL : Real Load

DL : Dummy Load

Ratio k 0.46

u/Bs 0.34483

v/Ls 0.59375

0.40 0.50

Using Pigeaud's curves, m1 0.11502 10.98 11.85

m2 0.02432 1.7 2.92

Modified values m1 0.1639

m2 0.03466

Consider the area between the real and dummy loads

Area 0.7 x 1.95 sq.m

Ratio k 0.46

u/Bs 0.34483

v/Ls 0.40625

0.40 0.50

Using Pigeaud's curves, m1 0.1381 13.6 13.95

m2 0.04322 3.5 4.87

Modified values m1 0.13465

m2 0.04214

Design value of m1 0.02926

m2 -0.0075

Net BM along short span Mx2 0.53454 tm

Net BM along long span My2 -0.0588 tm

Total BM along short span due to LL = Mx1+Mx2+Mx3+Mx4 = 2.19212 tm

Total BM along long span due to LL = My1+My2+My3+My4 = 1.24122 tm

1.1.3 Calculation of Shear Forces

1.1.3.1 Due to dead load

Dead load intensity 700 kg/m2

long span of the panel of the deck slab Ls 4.375 m

Short span of the panel of the deck slab Bs 2.03 m

Shear Force per m run 0.71 t

RL W2 DL W2'

2 X .6 = 1.2

u

x

y v

supstr-s.xls/slab 4 of 58

Page 5: supstr-s

1.1.3.2 Due to Live Load

IRC class A Loading

Ls/Bs k for continuous slab

0.1 0.4 Thickness of slab Ds 0.2 m

0.2 0.8 Thickness of wearing coat Dw 0.1 m

0.3 1.16

0.4 1.44 Ls/Bs 2.16

0.5 1.68 lower Ls/Bs in the table & corr. k 2.0 2.600

0.6 1.84 higher Ls/Bs in the table and corr. k 2.0 2.600

0.7 1.96 k value, using table, after interpolation 2.600

0.8 2.08

0.9 2.16

1 2.24

1.1 2.28

1.2 2.36

1.3 2.4

1.4 2.48

1.5 2.48

1.6 2.52

1.7 2.56

1.8 2.6

1.9 2.6

2 2.6

Dispersion width in the direction of span 1.1 m

For maximum shear, load should be placed at a

distance ss from the edge. In this position, second

load will be on the other span. ss 0.55 m

bw 0.45 m

Effective width of slab is then = K.ss.(1-ss/Bs)+bw 1.49 m

But c/c distance of two wheels is 1.2 m and

Average effective width for one wheel 1.35 m

Load per m width of slab 4.22 t

Shear force at the edge 3.08 t

1.1.4 Design Bending Moments and Shear Force - SUMMARY

S.No. Bending Moments (tm) Particulars Shear Force (t)

along short along long

span, Mx span My

1 0.30 0.09 DL 0.71

4 2.19 1.24 LL class A 4.62

5 2.49 1.33 Maximum combination 5.33

6 1.99 1.06 Design Value 5.33

wearing coat Dw thk.

slab Ds thk.

Bs

.50

ss

1.8

supstr-s.xls/slab 5 of 58

Page 6: supstr-s

1.1.5 Design of Slab Section

The modular ratio of concrete m 11.245

Neutral axis factor k 0.31818

j 0.89394

The resisting moment coefficient R 11.8041

Design moment along short span Mx 1.99 tm

Design moment along long span My 1.06 tm

Effective depth required 12.98 cm

Provide a nominal cover of 2.5 cm

Along Short Span

Including the half diameter of bar, Effective depth available 16.90 cm

> 12.98 O.K.

Area of reinforcement required 6.59 cm2

Provide steel bars of diameter 12 mm

at a spacing of 10 cm c/c

so that Reinforcement provided will be 11.31 cm2

>6.59

O.K.

Along Long Span

effective depth available 15.8

Area of reinforcement required 3.75 cm2

Provide steel bars of diameter 10 mm

at a spacing of 15 cm c/c

so that Reinforcement provided will be 5.24 cm2

>3.75

O.K.

Check for shear

Design shear force 5.33 t

shear stress 3.53 kg/cm2

< 4

O.K.

Check for Punching Shear

Design Load 5.7 t

Effective depth available 16.90 cm

Bearing size = l 50 cm

b 25 cm

Perimeter 217.6 cm

Shear Area 3677 cm2

Punching Stress 1.55 kg/cm2

Permissible Punching stress = c = ks(0.16 fck) = < 8.00 kg/cm2

O.K.

where, ks is the minimum of 1 and (0.5+bc) = 1.00

bc = short side/long side = 0.50

supstr-s.xls/slab 6 of 58

Page 7: supstr-s

2.0 General Data:

Bridge Span span 35

Height of Truss height 5.5

No of Panels no_panels 8

Length of Panel panel_len 4.375

Angle Theta theta 0.899 51.51 Degrees

Road width rd_w 4.25 m

Kerb Width kb_w 0.375 m

Stringer Spacing str_sp 2.00 m

Distance of Truss from slab end truss_dist 0.20 m

Unit weight of Steel uw_st 7805.00 KN/m^2

Unit weight of RCC uw_conc 25.00 KN/m^2

Unit weight of Wearing Coat (WC) uw_wc 22.00 KN/m^2

Yield Stres of Steel sigma_y 250.00 N/mm^2

Modulus of Elasticity of Steel Est 200000.00 N/mm^2

Factor used in Merchant Rankine Formulae n 1.40

Allowable Bending stress for steel sigma_b 160.00 N/mm^2 Axle load

Allowable Tension stress for steel sigma_t 150.00 N/mm^2 Wheel load

Allowable Shear stress for steel tau 100.00 N/mm^2 c/c distance of stringer

Distance of wheel from kerb for A class load kb_dist 0.40 m wheel spacing

Self weight of truss truss_wt 10.75 KN/m distance between wheel and end stringer

Span of Cross Girder cg_span 5.40 m deflection at B (central stringer)

Distance of Truss from wheel wh_truss 0.975 m deflecton due to unit load

Live load factor on Truss fac_tr 0.653 Reaction V at support B

Live load reaction factor on interior stringer llr_str 0.742

Live load reaction factor on end stringer ller_str 0.129

Load factor for maximum BM on stringer bmr_str 1.178

Load factor for maximum SF on interior stringer sfr_str 1.280

Load factor for maximum SF on end stringer sfer_str 0.223

Impact factor for truss im_fac 0.186

Impact factor for stringer 0.503

Impact factor for cross-girder 0.476

8 Panels @ 4.375m = 35m

5.5m

Truss to Truss Centers = 5.4 m

2m 2m

RC Slab 200

Cross Girder ISMB 600+plate

Stringer ISMB 500

Roadway 4.25m375375

.975m

400

supstr-s.xls/revised load 7 of 58

Page 8: supstr-s

2.1 Design of Stringer Beams

Self weight of deck slab 5.00 KN/m2

Weight of wearing coat 2.20 KN/m2

Total dead load 7.20 KN/m2

2.1.1 Dead load calculation for middle stringer

Dead load due to self weight of slab and wearing coat 17.28 KN/m

Dead load due to weight of RCC below deck slab 1.28 KN/m

Self weight of stringer 1.00 KN/m

Total Dead Load 19.56 KN/m

Maximum BM due to dead load 46.80 KN-m

Maximum SF due to dead load 42.79 KN

2.1.2 Dead load calculation for end stringer

Dead load due to self weight of slab and wearing coat 5.76 KN/m

Dead load due to weight of RCC below deck slab 1.50 KN/m Size is 850x60 mm

Dead load due to weight of curb 4.69 KN/m Size of curb is 375x500

Dead load due to weight of railing posts 0.35 KN/m 1700mm c/c

Self weight of stringer 1.00 KN/m

Total Dead Load 13.30 KN/m

Maximum BM due to dead load 31.82 KN-m

Maximum SF due to dead load 29.09 KN

Dead load UDL upto stringer 46.16 KN/m

2.1.3 Calculation due to Live load

The stringer is subjected to maximum bending

moment when 114 KN loads are centrally placed

= bmr_str x 114

Maximum BM due to live load 134.29 KN-m

The middle stringer is subjected to maximum Shear

Force when 114 KN loads are at Stringer supports and equlally placed

Stringer

Deck Slab

2m 2m

1.8m

2.1875m

1.2m

57KN 57K

57K57KN

Corss Girders

Stringers

2m 2m

1.8m

57KN 57KN

4.375m

1.2m

57K 57KN

2.1875m

supstr-s.xls/revised load 8 of 58

Page 9: supstr-s

Maximum SF due to live load on interior stringerincluding impact 173.06 KN

The end stringer is subjected to maximum Shear

Force when 114 KN loads are at Stringer supports and minimum from Kerb

Maximum SF due to live load on end stringer 38.21 KN

BM including impact at 50.3% 201.84 KN-m

Design BM 233.66 KN-m

Design SF 202.15 KN

Section Modulus Z 1,460,375 mm^3

Use standard section of ISMB500

Overall depth D 500 mm

Effective length between compression flanges leff 3063 mm

Area 11074 mm^2

Weight 869 N/m

depth 500 mm

thickness web tw 10 mm

thickness of flange tf 17 mm

width b 180 mm

Moment of Inertia about XX axis Ixx 452000000 mm^4

Moment of Inertia about YY axis Iyy 13700000 mm^5

Radius of Gyration about XX axis rxx 202.1 mm

Radius of Gyration about YY axis ryy 35.2 mm

Section modulus about XX axis Zxx 1810000 mm^3

Section modulus about YY axis Zyy 152000 mm^3

ISMB 500

Stringer

Deck Slab

Deck Slab

Stringer

2m 2m

1.8m

1.2m

57KN 57K

57K57KN

Cross Girders

Stringers

2m 2m

1.8m

1.2m

57KN 57KN

57KN57KN

Cross girders

Stringers

2m 2m

1.8

57KN 57KN

2m 2m

1.8m

57KN 57KN

0.275m

1.2m

57KN 57KN

1.2m

57KN 57KN

180

500

10

17

2.1875m

4.375m

2.1875m

2.1875m

4.375m

2.1875m

supstr-s.xls/revised load 9 of 58

Page 10: supstr-s

Ratio of Compression flange thickness to web thicknessT/tw 1.70 <2

Ratio of depth of web to web thickness d1/tw 46.60 <85

Ratio of effective span to mimimum radius of gyration leff/ryy 87.02

Ratio of Overall depth to Compression flange thicknessD/T 29.41

Use Table B Clause 6.2.2 IS 800-1984 25 30

leff/ryy 80 138 136

85 135 133

133.79 131.79

Maximum permissible bending stress 132.03 N/mm^2

Maximum permissible bending Moment 238.97 KN-m > 233.66 therefore safe

Shear Stress 40.43 N/mm^2 less than 100

2.1.4 Design of Stringer Connection to Cross Girder

a) Angle with Stringer

Use 20 mm diameter Bolts d 20.00 mm

Gross diameter 21.50 mm

Strength of Bolt in double shear 58.09 KN

Strength of Bolt in bearing in tw mm web 53.75 KN

Bolt Value 53.75 KN

No of Bolts required 4.00 nos

Use 5.00 nos

Provide Bolts at 60mm c/c, length 340.00 mm

b) Angle with Cross Girder

Strength of Bolt in double shear 58.09 KN

Strength of Bolt in bearing in tw mm web 64.50 KN

Bolt Value 58.09 KN

No of Bolts required 7.00 nos

Use 9.00 nos

Provide Bolts at 60mm c/c, 4 on each angle 580.00 mm

Check for shear stress on angles used

Use angles ISA 80x80x10

Thickness of angle provided 10 mm

Shear Stress 44.59 N/mm^2 less than 100 N/mm^2, OK

2.2 Design of Cross Girder

Span of Cross Girder 5.40 m

Self-weight of Girder (0.2*span + 1) 2.08 KN/m

Dead Load Calculations

Load from Stringers 201.94 KN

Load from Girder 11.23 KN

Total Dl on Girder 213.17 KN

Maximum Shear Force (DL) 106.59 KN

Maximum Bending Moment (DL) 163.85 KN-m

D/T

supstr-s.xls/revised load 10 of 58

Page 11: supstr-s

2.2.1 Live Load Calculations

Maximum Moment occurs when the wheel loads are

placed sysmetrically about the center of the road

width

Maximum moment occurs when loads are places

sysmetrically about cross girder

Maximum Moment from Live Load 461.78 KN-m

Maximum Shear Force occurs when the wheel load

edge is 150 mm from kerb, reaction factor 0.65

= fac_tr*(114*(1+(panel_len-1.2)/panel_len)+27*(panel_len-3.2)/panel_len)*(1+im_fac)

Maximum Shear Force 196.60 KN

Design Shear Force 303.19 KN

Design Moment 625.63 KN-m

Deck Slab

Cross Girder

Cross Girder

Deck Slab

2m 2m

4.375

1.8m

4.375

1.2m

57KN 57KN

57K57KN

Cross Girders

Stringers

1.8m

57KN 57KN

5.4m

1.8m

57K 57KN

13.5KN 13.5KN

3.2m

4.375m 4.375m

3.2m

13.5KN

2m 2m

1.8m

1.2m

57KN 57K

57K

57KN

Cross Girders

Stringers

1.8m

57KN 57KN

1.8m

57KN 57KN

13.5KN 13.5KN

3.2m

3.2m

13.5KN

1.05 1.05

4.375

4.375

5.4m

4.375m 4.375m

supstr-s.xls/revised load 11 of 58

Page 12: supstr-s

Section modulus required 3,910,188 mm^3

Use the stadard section and plates of sizes ISMB600 12 210 mms

Overall depth D 624 mm

Width b 210 mm

Effective length between compression flanges leff 2000.00 mm

Area 15621 mm^2

Weight 1126 N/m

depth 624 mm

thickness web tw 12.0 mm

thickness of flange tf 25.6 mm

Moment of Inertia about XX axis Ixx 918000000 mm^4

Moment of Inertia about YY axis Iyy 26500000 mm^4

Radius of Gyration about XX axis rxx 242.4 mm

Radius of Gyration about YY axis ryy 41.2 mm

Moment of Inertia about XX axis of plates Ixx 471925440 mm^4

Total Moment of Inertia about XX axis 1,389,925,440 mm^4

Moment of Inertia about YY axis of plates 18,522,000 mm^5

Total Moment of Inertia about YY axis 45,022,000 mm^5

Total Area 20,661 mm^2

Radius of Gyration about XX axis rxx 259.4 mm

Radius of Gyration about YY axis ryy 46.7 mm

Section modulus about XX axis Zxx 4,454,889 mm^3

Section modulus about YY axis Zyy 428,781 mm^3

Ratio of Compression flange thickness to web thicknessT/tw 2.13

Ratio of depth of web to web thickness d1/tw 47.73

Ratio of effective span to mimimum radius of gyration leff/ryy 42.83

Ratio of Overall depth to Compression flange thicknessD/T 24.38

Use Table B Clause 6.2.2 IS 800-1984 20 25

leff/ryy 40 160 159

45 158 157

158.87 157.87

Maximum permissible bending stress 157.99 N/mm^2

Maximum permissible bending Moment 703.83 KN-m > 625.63 therefore safe

Shear Stress 40.49 N/mm^2 less than 100

2.2.2 Design of Cross girder Connection to Truss bottom member

a) Angle with Cross Girder

Use 20 mm diameter Bolts d 20.00 mm

Gross diameter 21.50 mm

Strength of Bolt in double shear 50.27 KN

Strength of Bolt in bearing in 11.8mm web 64.50 KN

Bolt Value 50.27 KN

No of Bolts required 7.00 nos

Use 5.00 nos

Provide Bolts at 80mm c/c, length 420.00 mm

b) Angle with Truss

Gusset plate used thickness 12.00 mm

Strength of Bolt in double shear 50.27 KN

Strength of Bolt in bearing in 11.8mm web 60.00 KN

Bolt Value 50.27 KN

No of Bolts required 7.00 nos

Use 5.00 nos

Provide Bolts at 80mm c/c, 4 on each angle 420.00 mm

Check for shear stress on angles used

Use angles ISA 80x80x10

Thickness 10

Shear Stress 54.14 N/mm^2 less than 100 N/mm^2, OK

D/T

210

25.6

12.0

ISMB 600

12

12

60

supstr-s.xls/revised load 12 of 58

Page 13: supstr-s

2.3 Design Loads on Truss

Self Weight of Truss at node 47.03 KN

Add for connections 0.76 KN

47.79 KN

Total dead load on node 154.38 KN

Longitudinal Forces

From IRC 6 the braking force on a bridge is taken as 20%

for the first train of load and 10% on the next train of loads

The load coming on the bridge is one full train 554.00 KN

and other wheels of second train 0.00

Therefore the braking force is 110.80 KN

The load on the bottom chords per truss is 55.40 KN

Live load with impact and maximum effect on truss 429.05 KN

Average load per meter 12.26 KN/m

supstr-s.xls/revised load 13 of 58

Page 14: supstr-s

3.1 Influence Line Diagrams for Members of truss

Bridge Span span 35

Height of Truss height 5.5

No of Panels no_panels 8

Length of Panel panel_len 4.375

Angle Theta theta 0.899 51.51 Degrees

Influence Diagram Equations

3.1.1 Top Members X-axis Y-axis Slope Constant

First U1L1 0 0.000

4.375 -1.118 -0.256 0.00 area -19.57

35 0.000 0.037 -1.28

First U1U2 0 0.000

8.75 -1.193 -0.136 0.00 area -20.88

35 0.000 0.045 -1.59

Second U2U3 0 0.000

13.125 -1.491 -0.114 0.00 area -26.09

35 0.000 0.068 -2.38

Third U3U4 0 0.000

17.5 -1.591 -0.091 0.00 area -27.84

35 0.000 0.091 -3.18

Fourth U4U5 0 0.000

21.875 -1.491 -0.068 0.00 area -26.09

35 0.000 0.114 -3.98

3.1.2 Bottom Members

First L1L2 and L2L3 0 0.000

4.375 0.696 0.159 0.00 area 12.18

35 0.000 -0.023 0.80

Third L3L4 0 0.000

8.75 1.193 0.136 0.00 area 20.88

35 0.000 -0.045 1.59

Forth L4L5 0 0.000

13.125 1.491 0.114 0.00 area 26.09

35 0.000 -0.068 2.38

Fifth L5L6 0 0.000

17.5 1.591 0.091 0.00 area 27.84

35 0.000 -0.091 3.18

3.1.3 Diagonal Members

First U1L3 0 0.000 Distance 0.63

4.375 -0.160 -0.037 0.00 area 1 -0.40

8.75 0.958 0.256 -1.28 area 2 14.37

35 0.000 -0.036 1.27 Net Area 13.97

Second U2L4 0 0.000 Distance 1.25

8.75 -0.319 -0.036 0.00 area 1 -1.60

13.125 0.799 0.256 -2.56 area 2 9.99

35 0.000 -0.037 1.28 Net Area 8.39

Third U3L5 0 0.000 Distance 1.87

13.125 -0.479 -0.036 0.00 area 1 -3.59

17.5 0.639 0.256 -3.84 area 2 6.3935 0.000 -0.037 1.29 Net Area 2.80

Fourth U4L6 0 0.000 Distance 2.50

17.5 -0.639 -0.037 0.00 area 1 -6.39

21.875 0.479 0.256 -5.12 area 2 3.59

supstr-s.xls/IL 14 of 58

Page 15: supstr-s

35 0.000 -0.036 1.27 Net Area -2.80

3.1.4 Vertical Members

First U1L2 0 0.000

4.375 1.000 0.229 0.00 area 4.375

8.75 0.000 -0.229 2.00

Second U2L3 0 0.000 Distance 1.25

8.75 0.250 0.029 0.00 area 1 1.25

13.125 -0.625 -0.200 2.00 area 2 -7.81

35 0.000 0.029 -1.01 Net Area -6.56

Third U3L4 0 0.000 Distance 1.88

13.125 0.375 0.029 0.00 area 1 2.81

17.5 -0.500 -0.200 3.00 area 2 -5.00

35 0.000 0.029 -1.01 Net Area -2.19

Fourth U4L5 0 0.000 Distance 2.50

17.5 0.500 0.029 0.00 area 1 5.00

21.875 -0.375 -0.200 4.00 area 2 -2.81

35 0.000 0.029 -1.01 Net Area 2.19

3.2 Influence Line Diagrams for Truss Support Reaction

Distance from left

support

Ordinate

distance

Wheel

Load

Support

reaction LL

Support

reaction

Impact

35.00 1.00 114 74.44 13.85 KN

33.80 0.97 114 72.21 13.43 KN

29.50 0.84 68 37.30 6.94 KN

26.50 0.76 68 33.75 6.28 KN

23.50 0.67 68 29.75 5.53 KN

20.50 0.59 68 26.20 4.87 KN

0.50 0.01 27 0.18 0.03 KN

0.00 0.00 27 0.00 0.00 KN

0.00 0.00 114 0.00 0.00 KN

0.00 0.00 114 0.00 0.00 KN

0.00 0.00 68 0.00 0.00 KN

0.00 0.00 68 0.00 0.00 KN

273.83 50.93 KN

Maximum Live load reaction on truss 324.76 KN

supstr-s.xls/IL 15 of 58

Page 16: supstr-s

4.0 Stresses in Members of Truss Load Factor on Interior Stringer 0.742

Load Factor on Truss 0.653 Load Factor on Outer Stringer 0.129

Impact Factor 0.186

4.1 Top Members Load (KN) PanelDistance from support IL Ordinate Stresses Class A Train of Loads

U1L1 Load (KN)Distance

27 0 0.075 -0.019 -0.40 27 0 0

27 1.1 1.175 -0.300 -6.27 27 1.1 1.1

114 4.3 4.375 -1.118 -98.71 114 3.2 4.3

114 5.5 5.575 -1.074 -94.82 114 1.2 5.5

68 9.8 9.875 -0.917 -48.29 68 4.3 9.8

68 12.8 12.875 -0.808 -42.55 68 3 12.8

68 15.8 15.875 -0.698 -36.76 68 3 15.8

68 18.8 18.875 -0.589 -31.02 68 3 18.8

27 38.8 0 0.000 0.00

27 39.9 0 0.000 0.00

114 43.1 0 0.000 0.00

114 44.3 0 0.000 0.00

-358.82

U1U2

27 0 4.45 -0.607 -12.69

27 1.1 5.55 -0.757 -15.83

114 4.3 8.75 -1.193 -105.33

114 5.5 9.95 -1.138 -100.47

68 9.8 14.25 -0.943 -49.66

68 12.8 17.25 -0.807 -42.50

68 15.8 20.25 -0.670 -35.28

68 18.8 23.25 -0.534 -28.12

27 38.8 0 0.000 0.000

27 39.9 0 0.000 0.000

-389.88

U2U3

27 0 8.825 -1.003 -20.97

27 1.1 9.925 -1.127 -23.57

114 4.3 13.125 -1.491 -131.64

114 5.5 14.325 -1.409 -124.40

68 9.8 18.625 -1.116 -58.77

68 12.8 21.625 -0.912 -48.03

68 15.8 24.625 -0.707 -37.23

68 18.8 27.625 -0.503 -26.49

-471.10

U3U4

27 0 13.2 -1.200 -25.09

27 1.1 14.3 -1.300 -27.18

114 4.3 17.5 -1.591 -140.47

114 5.5 18.7 -1.482 -130.84

68 9.8 23 -1.091 -57.46

68 12.8 26 -0.818 -43.08

68 15.8 29 -0.545 -28.70

68 18.8 32 -0.273 -14.38

-467.20

U4U5

27 0 17.6 -1.200 -25.09

27 1.1 18.7 -1.275 -26.66

114 4.3 21.9 -1.488 -131.37

114 5.5 23.1 -1.352 -119.37

68 9.8 27.4 -0.863 -45.45

68 12.8 30.4 -0.523 -27.54

68 15.8 33.4 -0.182 -9.58

supstr-s.xls/Max_stress 16 of 58

Page 17: supstr-s

4.2 Bottom Members Load (KN) Panel Load IL Ordinate Stresses

L1L2/ L2L3

27 0 0.075 0.012 0.25

27 1.1 1.175 0.187 3.91

114 4.3 4.375 0.696 61.45

114 5.5 5.575 0.669 59.06

68 9.8 9.875 0.571 30.07

68 12.8 12.875 0.503 26.49

68 15.8 15.875 0.435 22.91

68 18.8 18.875 0.366 19.27

27 38.8 0 0.000 0.00

27 39.9 0 0.000 0.00

114 43.1 0 0.000 0.00

114 44.3 0 0.000 0.00

223.41

L3L4

27 0 4.45 0.607 12.69

27 1.1 5.55 0.757 15.83

114 4.3 8.75 1.193 105.33

114 5.5 9.95 1.138 100.47

68 9.8 14.25 0.943 49.66

68 12.8 17.25 0.807 42.50

68 15.8 20.25 0.670 35.28

68 18.8 23.25 0.534 28.12

27 38.8 0 0.000 0.00

27 39.9 0 0.000 0.00

389.88

L4L5

27 0 8.825 1.003 20.97

27 1.1 9.925 1.127 23.57

114 4.3 13.125 1.491 131.64

114 5.5 14.325 1.409 124.40

68 9.8 18.625 1.116 58.77

68 12.8 21.625 0.912 48.03

68 15.8 24.625 0.707 37.23

68 18.8 27.625 0.503 26.49

471.10

L5L6

4.3 Diagonal Members Load (KN) Panel Load IL Ordinate Stresses

U1L3

27 0 4.45 -0.141 -2.95

27 1.1 5.55 0.140 2.93

114 4.3 8.75 0.958 84.58

114 5.5 9.95 0.914 80.70

68 9.8 14.25 0.757 39.87

68 12.8 17.25 0.648 34.13

68 15.8 20.25 0.538 28.33

68 18.8 23.25 0.429 22.5927 38.8 0 0.000 0.0027 39.9 0 0.000 0.00

290.18

U2L4

27 0 8.825 -0.300 -6.27

27 1.1 9.925 -0.019 -0.40

114 4.3 13.125 0.799 70.54

114 5.5 14.325 0.755 66.66

68 9.8 18.625 0.598 31.49

68 12.8 21.625 0.489 25.75

68 15.8 24.625 0.379 19.96

68 18.8 27.625 0.269 14.17

221.90

supstr-s.xls/Max_stress 17 of 58

Page 18: supstr-s

U3L5

27 0 13.2 -0.460 -9.62

27 1.1 14.3 -0.179 -3.74

114 4.3 17.5 0.639 56.42

114 5.5 18.7 0.595 52.53

68 9.8 23 0.438 23.07

68 12.8 26 0.329 17.33

68 15.8 29 0.219 11.53

68 18.8 32 0.110 5.79

153.31 U4L6 21.875 3

4.4 Vertical Members Load (KN) PanelDistance from support IL Ordinate Stresses

U1L2

27 0 0.075 0.017 0.36

27 1.1 1.175 0.269 5.62

114 4.3 4.375 1.000 88.29

114 5.5 5.575 0.726 64.10

68 9.8 9.875 0.000 0.0068 12.8 12.875 0.000 0.0068 15.8 15.875 0.000 0.0068 18.8 18.875 0.000 0.00

158.37

U2L3

27 0 8.825 0.235 4.91

27 1.1 9.925 0.015 0.31

114 4.3 13.125 -0.625 -55.18

114 5.5 14.325 -0.591 -52.18

68 9.8 18.625 -0.468 -24.65

68 12.8 21.625 -0.382 -20.12

68 15.8 24.625 -0.296 -15.59

68 18.8 27.625 -0.211 -11.11

-173.61

U2L3

27 0 7.625 0.218 4.56

27 1.1 8.725 0.249 5.21

114 4.3 11.925 -0.385 -33.99

114 5.5 13.125 -0.625 -55.18

68 9.8 17.425 -0.502 -26.44

68 12.8 20.425 -0.416 -21.91

68 15.8 23.425 -0.331 -17.43

68 18.8 26.425 -0.245 -12.90

-158.08

U3L4

27 0 13.2 0.360 7.53

27 1.1 14.3 0.140 2.93

114 4.3 17.5 -0.500 -44.14

114 5.5 18.7 -0.466 -41.14

68 9.8 23 -0.343 -18.06

68 12.8 26 -0.257 -13.53

68 15.8 29 -0.171 -9.01

68 18.8 32 -0.086 -4.53

-119.95

U3L4

27 0 12 0.343 7.17

27 1.1 13.1 0.374 7.82

114 4.3 16.3 -0.260 -22.95

114 5.5 17.5 -0.500 -44.14

68 9.8 21.8 -0.377 -19.85

68 12.8 24.8 -0.291 -15.32

68 15.8 27.8 -0.206 -10.85

68 18.8 30.8 -0.120 -6.32

-104.44

supstr-s.xls/Max_stress 18 of 58

Page 19: supstr-s

5.0 Wind Load on Truss

Wind Pressure as per IRC 6 wind_p 1.19 KN/m^2

Wind load on train of load as per IRC 6 3.00 KN/lin m

Maximum wind on loaded chord 4.50 KN/lin m

5.1 Area of members for wind load

Top

chord

Bottom

chord

1. Projected area of stringer 0.50 35.00 17.50

2. Area of kerb plus deck slab 0.7 35.00 24.50

3. Bottom chord 0.33 35.00 11.55

4. Area of verticals (for bottom) 0.175 2.75 7 3.37

5. Area of diagonals (for bottom) 0.34 3.51 6 7.16

6. Area of end posts (for bottom) 0.33 3.51 2 2.32

7. Gussets @ 20% of bottom chords 2.31

8. Top chords 0.33 35.00 11.55

9. Area of verticals (for bottom) 0.175 2.75 7 3.37

10. Area of diagonals (for bottom) 0.34 3.51 6 7.16

11. Area of end posts (for bottom) 0.33 3.51 2 2.32

12. Gussets @ 20% of top chords 2.31

Total areas exposed to wind 26.71 68.71

Load from moving train, class 'A' 3.00 20.30 60.90

To account for the area of the leeward truss, the projected area is increased by 50%

Wind load on top chord 47.68 KN

Wind load on bottom chord 183.55 KN

Total wind load 231.23 KN

Load on each node of top chord 6.81 KN

Load on each node of bottom chord 20.39 KN

5.2 Overturning effect due to wind

Load Lever arm Moment

Lateral load from stringer plus deck slab 122.65 0.624 76.53

Lateral load from top chord 47.68 5.565 265.34

Lateral load from train of load class 'A' 60.90 2.274 138.49

Total moment about bottom bracing Mov 480.36 KN-m

Wind Load = W

a

s

Wa/s

or Mov

Wa/s

or Mov

supstr-s.xls/wind 19 of 58

Page 20: supstr-s

Additional vertical load on leeward truss 2.542 KN/m

Additional force on all members of truss ov_eff 7.20 percent of dead load

5.3 Design of top lateral truss bracing

Reaction 23.84 KN

Although the truss is indeterminate, for

design purposes, the following assumptions

can be made for forces in a panel

a) the shear force is shared equally by the diagonals

b) the force in chord panels are equal

The force in chord members are :

Force in U1U2 8.28 KN

Force in U2U3 22.08 KN

Force in U3U4 30.36 KN

Force in U4U5 33.12 KN

5.4 Design of bottom lateral truss bracing

Reaction 91.78 KN

Similarly as for top bracing

The force in chord members are :

Force in L1L2 33.05 KN

Force in L2L3 90.89 KN

Force in L3L4 132.21 KN

Force in L4L5 157.01 KN

Force in L5L6 165.29 KN

5.5 Portal Effect

length of end post 7.03 m

length of knee in top lateral c 1.00 m

length of knee in end post a 1.60 m

half height of endpost 2.72 m

A lateral shear equal to 1.25% of the compression force in the two end posts is assumed in addition

to the wind forces.

Additional lateral load on portal due to 1.25% of

force in two end top chords 26.23 KN

wind load reaction from top chord 23.84 KN

Total lateral load 50.07 KN

h/2

h/2

A

C

B

D E F

G

H

a

cc

b

C

B

D E

G

cc

P/2P/2

P

P(a+h/2)/b P(a+h/2)/b

F

supstr-s.xls/wind 20 of 58

Page 21: supstr-s

Additional axial load in end post due to

a) Wind forces 19.07 KN

b) due to 1.25% chord forces 20.98 KN

Total axial forces 40.05 KN

additional force in bottom chord 11.87 KN

Bending Moment in end post without wind 35.67 KN-m

Bending Moment in end post with wind 68.10 KN-m

5.6 Sway Effect

length of vertical member 5.50 m

length of knee in top lateral 1.00 m

length of knee in vertical member 1.25 m

half height of vertical member 2.13 m

the sway bracing is designed to transfer half the

top chord panel point wind load to bottom bracing

Additional force in verticals 2.13 KN

Bending Moment in vertical members 3.63 KN-m

5.7 Design of Portal Bracing Elements

Total Lateral load 50.07 KN

Vertical load due to overturning 40.05 KN

Bending moment at D or E (joint of knee and bracing) 68.10 KN-m

Force in bracing EF 42.56 KN

Force in bracing CD 92.63 KN

Force in middle bracing DE 25.04 KN

Perpendicular CM (top node to knee) 0.85 m

Force in knee brace 127.24 KN

length of knee brace 1.89 m

h/2

h/2

A

C

B

D E F

G

H

a

cc

b

C

B

D E

G

cc

P/2P/2

P

P(a+h/2)/b P(a+h/2)/b

F

M

supstr-s.xls/wind 21 of 58

Page 22: supstr-s

Choose 4 angles ISA 80x80x10

Longer leg 80 mm

Shorter leg 80 mm

Weight per meter 118 N/m

Area 1505 mm^2

Moment of inertia about XX axis 877000 mm^4

Moment of inertia about YY axis 877000 mm^4

Radius of gyration about XX axis 24.1 mm

Radius of gyration about YY axis 24.1 mm

Distance of c.g. from XX axis Cxx 23.4 mm

Distance of c.g. from YY axis Cyy 23.4 mm

Web plate length 380 mm

Web plate thickness 12 mm

Combined section Ixx ########## mm^4

Combined section Iyy 8,711,447 mm^4

Total area of combined section 10580 mm^2

Minimum ratius of gyration r 28.69 mm

Slenderness ratio lamba (l/rmin) 159.99

l/r 150.00 160

stress for fy=250 N/mm^2 45.00 41

Allowable axial stress from IS 800 Fa 41.00 N/mm^2

Actual axial stress fa 8.76 N/mm^2

Actual bending stress fb 57.39 N/mm^2

Critical stress from formulae Cs 218.72 N/mm^2

Cs 200.00 220

stress 76.00 80

Allowable bending stress Fb 79.74 N/mm^2

Check for fa/Fa + fb/Fb 0.93 < 1.17 OK

Using 20 diameter Bolts 5 nos

5.7.1 Design of knee brace

Maximum force 127.24 KN

Length 1.89 m

Effective length 1.61 m

Use 2 standard angles ISA 80x80x10

length of leg 80 mm

thickness 10 mm

Area provided 1505 mm^2

Radius of gyration 24.1 mm

Slenderness ratio 66.80

l/r 70.00 80

stress for fy=250 N/mm^2 112.00 101

Allowable axial stress from IS 800 Fa 115.52 N/mm^2

Actual compression stress 84.54 N/mm^2 < 115.52 OK

Use Bolts of diameter 20 mm

Gross diameter 21.5 mm

Gusset plates used 12 mm

Strength in single shear 31.42 KN

Strength in bearing 59.86 KN

Bolt Value 31.42 KN

Using 20 diameter Bolts 7 nos

128080

380

80 80

80

10

80

supstr-s.xls/wind 22 of 58

Page 23: supstr-s

5.8 Design of Sway Bracing Elements

Total Lateral load 40.14 KN

Vertical load due to overturning 25.12 KN

Bending moment at D or E (joint of knee and bracing) 42.72 KN-m

Force in bracing EF 34.20 KN

Force in bracing CD 74.34 KN

Force in middle bracing DE 20.07 KN

Perpendicular CM (top node to knee) 0.78 m

Force in knee brace 86.97 KN

length of knee brace 1.60 m

Choose 4 angles ISA 60x60x10

longer leg 60 mm

shorter leg 60 mm

Weight per meter 86 N/m

Area 1100 mm^2

Moment of inertia about XX axis 348000 mm^4

Moment of inertia about YY axis 348000 mm^4

Radius of gyration about XX axis 17.8 mm

Radius of gyration about YY axis 17.8 mm

Distance of c.g. from XX axis Cxx 18.5 mm

Distance of c.g. from YY axis Cyy 18.5 mm

Web plate length 380 mm

Web plate thickness 12 mm

Placing the shorter legs back to back with

the web plate

Combined section Ixx ########## mm^4

Combined section Iyy 4,033,100 mm^4

Total area of combined section 8960 mm^2

Minimum ratius of gyration r 21.22 mm

Slenderness ratio lamba (l/rmin) 216.31

l/r 200.00 250

stress for fy=250 N/mm^2 28.00 18

Allowable axial stress from IS 800 Fa 24.74 N/mm^2

Actual axial stress fa 8.30 N/mm^2

Actual bending stress fb 43.71 N/mm^2

Critical stress from formulae Cs 153.50 N/mm^2

Cs 140.00 160

stress 60.00 67

Allowable bending stress Fb 64.73 N/mm^2

Check for fa/Fa + fb/Fb 1.01 < 1.17 OK

Using 16 diameter Bolts 5 nos

126060

380

60

supstr-s.xls/wind 23 of 58

Page 24: supstr-s

5.8.1 Design of knee brace

Maximum force 86.97 KN

Length 1.60 m

Effective length 1.36 m

Use single standard angle ISA 60x60x10

leg length 60 mm

thickness 10 mm

Area provided 1100 mm^2

Radius of gyration 17.8 mm

Slenderness ratio 76.40

l/r 70.00 80

stress for fy=250 N/mm^2 112.00 101

Allowable axial stress from IS 800 Fa 104.96 N/mm^2

Actual compression stress 79.06 N/mm^2 < 104.96 OK

Using 20 diameter Bolts 4 say 8 nos

5.9 Design of top lateral bracing

Shear from 2.5% of top chord force 69.07 KN

Shear from wind load 17.03 KN

Total shear 86.10 KN

Length of bracing 6.95 m

Force in bracing 55.41 KN

Use 2 standard angles, back to back ISA 80x80x10

length of leg 80 mm

thickness 10 mm

Area provided 1505 mm^2

Radius of gyration 24.1 mm

Moment of inertia Ixx,Iyy Ixx,Iyy 877000 mm^4

Distance of c.g. from edge Cxx,Cyy 23.4 mm

Combined moment of inertia about XX axis Icxx 1,754,000 mm^4

Combined moment of inertia about YY axis Icyy 3,534,392 mm^4

Minimum radius of gyration 24.1 mm

Slenderness ratio 144.19 mm

l/r 150.00 160

stress for fy=250 N/mm^2 45.00 41

Allowable axial stress from IS 800 Fa 47.32 N/mm^2

Actual stress 36.82 N/mm^2 < 47.32 OK

Allowable force 71 KN > 55.41 OK

Using 16 diameter Bolts 4 nos

5.10 Design of bottom lateral bracing

Force from longitudinal forces 101.35 KN

Shear from wind load, maximum 71.39 KN

Force from wind on bracing 45.94 KN

Length of bracing 6.95 m

Total force in bracing 147.29 KN

60

10

80 80

80

10

supstr-s.xls/wind 24 of 58

Page 25: supstr-s

Use 2 standard angles, back to back ISA 100x100x12

length of leg 100 mm

thickness 12 mm

Area provided 2259 mm^2

Radius of gyration 30.3 mm

Moment of inertia Ixx,Iyy Ixx,Iyy 2070000 mm^4

Distance of c.g. from edge Cxx,Cyy 29.2 mm

Combined moment of inertia about XX axis Icxx 4,140,000 mm^4

Combined moment of inertia about YY axis Icyy 8,331,670 mm^4

Minimum radius of gyration 30.3 mm

Slenderness ratio 114.69 mm

l/r 110.00 120

stress for fy=250 N/mm^2 71.00 64

Allowable axial stress from IS 800 Fa 67.72 N/mm^2

Actual stress 65.20 N/mm^2 < 67.72 OK

Allowable force 153 KN > 147.29 OK

Using 20 diameter bolts 7 nos

100 100

100

12

supstr-s.xls/wind 25 of 58

Page 26: supstr-s

6.0 Design of Elastometric Bearing

Maximum DL reaction per bearing 442.1 Kn

Maximum LL reaction per bearing 248.3 Kn

Additional load on truss due to wind 0 Kn

Longitudinal force per bearing 158.6 Kn

Effective span 35 m

Normal load Max. Nmax 690.4 Kn

Normal Load min. Nmin 442.1 Kn

bearing plate at support

block over cap of M20

b0 250 mm

l0 500 mm

with standard loaded area 116000 sq. mm

Allowable contact pressure = 0.25 fc (A1/A2)^0.5

7.07 N/mm2

where A1/A2 is limited to 2

b 238 mm

l 488 mm

Thickness of individual elastomer layer hi 10 mm

Thickness of outer layer he 5 mm

Thickness of steel laminate hs 3 mm

Adopt no. of internal layers 2 nos.

and no. of laminates 3 nos.

Hence total thickness of bearing 39 mm

Effective area of bearing required 97652 sq mm

From clause 307.1 of IRC 21

Compressive strength m = 5.95 N/mm2

1) Rotation

Shape factor, S = loaded surface area

divided by surface area free to buldge 6.73

satisfied > 6 and < 12

Assuming average permissible compression

stress m, max = 10 N/mm2

Max. permissable angle of rotation of a

single internal layer of elastomer

corresponding to m max, bi,max 0.00464 radians

B = m/ m1,max 0.60

Permissible rotation due to imposed

loads and support rotation of super structure

d = B n bi max 0.00557 radians

> 0.00302 actual

hence safe

supstr-s.xls/e_bearing 26 of 58

Page 27: supstr-s

7.0 Design Stresses in Members of Truss

Bottom

truss effect

Top truss

effect

Overturning

effect

Portal

effect Sway effect

Top Members (KN) (KN) (KN) (KN) (KN) (KN) (KN) (KN) (KN) (KN)

U1L1 -358.82 -690.39 -1049.21 -49.71 -40.05 -89.76 -1138.97

U1U2 -389.88 -736.86 -1126.74 -8.28 -53.05 -61.33 -1188.07

U2U3 -471.10 -920.72 -1391.82 -22.08 -66.29 -88.37 -1480.19

U3U4 -467.20 -982.63 -1449.83 -30.36 -70.75 -101.11 -1550.94

U4U5 -460.69 -920.72 -1381.41 -33.12 -66.29 -99.41 -1480.82

Bottom Members

L1L2 223.41 429.79 653.20 55.40 33.05 30.94 11.87 75.86 784.46

L2L3 223.41 429.79 653.20 55.40 90.89 30.94 11.87 133.70 842.30

L3L4 389.88 736.86 1126.74 55.40 132.21 53.05 11.87 197.13 1379.27

L4L5 471.10 920.72 1391.82 55.40 157.01 66.29 11.87 235.17 1682.39

L5L6 484.57 982.63 1467.20 55.40 165.29 70.75 11.87 247.91 1770.51

Diagonal Members

U1L3 290.18 492.94 783.12 35.49 35.49 818.61

U2L4 221.90 296.10 518.00 21.32 21.32 539.32

U3L5 153.31 98.80 252.11 7.11 7.11 259.22

U4L6 87.23 -402.01 -314.78 -28.94 -28.94 -343.72

U4L6 -154.82 0.00 -154.82 0.00 0.00 -154.82

Vertical Members

U1L2 158.37 154.38 312.75 11.12 2.13 13.25 326.00

U2L3 -173.61 -231.57 -405.18 -16.67 -2.13 -18.80 -423.98

U3L4 -119.95 -77.19 -197.14 -5.56 -2.13 -7.69 -204.83

U4L5 -66.25 371.90 305.65 26.78 -2.13 24.65 330.30

U4L5 121.26 0.00 121.26 0.00 -2.13 -2.13 119.13

maximum

wind effect

Maximum

load

including

wind

Wind loads

Truss members Live Load Dead Load

Live load

plus dead

load

Loginudinal

force

supstr-s.xls/Design_Stresses 27 of 58

Page 28: supstr-s

8.0 Top member

8.1 Members 9 to 14 (U 1 to U 7 )

Design load, Dead + Live + impact 1449.83 KN

Design load, Dead + Live + impact+ wind 1550.94 KN

Ellective length 3.72 mm

Top plate width 500 mm

Top plate thickness 10 mm

Web plate width 330 mm

Web plate thickness 8 mm

Use standard angles of specification ISA 60x60x10

Top angle area 1100 mm^2

Top angle legs 60 mm

Top angle thickness 10 mm

Top angle c.g. 18.5 mm

Top angle Ixx 348000 mm^4

Use standard angles of specification ISA 60x60x10

Bottom angle area 1100 mm^2

Bottom angle legs 60 mm

Bottom angle thickness 10 mm

Bottom angle c.g. 18.5 mm

Bottom angle Ixx 348000 mm^4

clear distance between web plates 364

Gross area lever arm Moment

1) Top Plate 5000 5 25000

2) Two Web plates 5280 175 924000

3) Two top angles 2200 28.5 62700

4) Two bottom angles 2200 321.5 707300

14680 1719000

c.g. of combined sections from top 117.10 mm

Ixx 240192945 mm^4

Iyy 479531607 mm^4

Minimum radius of gyration r 127.91 mm

Slenderness ratio l/r 29.08

l/r 20.00 30.00

stress for fy=250 N/mm^2 148.00 145.00

Allowable axial stress from IS 800 Fa 145.28

Area required 10,676 mm^2

Area available 14,680 mm^2 Safe

8.2 Design of single lattice

Shear force in lattice 19.39 KN

Force in lattice at 45 degrees with axis 27.42 KN

Effective length 719.83 mm

Use standard angles of specification ISA 50x50x6

Area 568 mm^2

radius of gyration 15.1 mm

slenderness ratio 47.67

l/r 40.00 50.00

stress for fy=250 N/mm^2 139.00 132.00 as per Clause 5.5.1, IS:800-1984

Allowable axial stress from IS 800 Fa 133.63 N/mm^2

Permissible load 75.90 KN > 27.42 OK

Use 20 mm diameter Bolts d 20.00 mm

Gross diameter 21.50 mm

Strength of Bolt in single shear 29.04 KN

Strength of Bolt in bearing in tw mm web 43.00 KN

Bolt Value 29.04 KN

No of Bolts required 1.00 nos

Use 1 bolt at each end

60

60

60

60

330

6

60 8

10

1

10

608364

500

supstr-s.xls/alt_top 28 of 58

Page 29: supstr-s

9.0 Bottom member

9.1 Members 3 to 6

Design load, Dead + Live + impact 1391.82 KN

Design load, Dead + Live + impact+ wind 1682.39 KN

Ellective length 3.71875 mm

Approximate net area required 12017 mm^2

Outer distance using 12mm gussets 340 mm

Use 2 plates of

vertical plate width 330 mm

vertical plate thickness 14 mm

Use standard angles of specification ISA 80x80x10

length of leg 80 mm

Area of single angle 1505 mm^2

thickness of leg 10 mm

Use Bolts of Diameter 20 mm

Gross area Net area

Two plates 9240 8036

Four angles 6020 5160

15260 13196 mm^2

Safe

9.2 Members 1 to 2, 7 to 8

Design load, Dead + Live + impact 653.20 KN

Design load, Dead + Live + impact+ wind 842.30 KN

Approximate net area required 6016 mm^2

Same as above with plates of thickness 8 mm

Use Bolts of Diameter 20 mm

Gross area Net area

Two plates 5280 4592

Four angles 6020 5160

11300 9752

Safe

9.3 Design of single lattice

Shear force in lattice 21.03 KN

Force in lattice at 45 degrees with axis 29.74 KN

Effective length 441.23 mm

Use standard angles of specification ISA 50x50x6

Area 568 mm^2

radius of gyration 15.1 mm

slenderness ratio 29.22

l/r 20.00 30.00

stress for fy=250 N/mm^2 148.00 145.00 as per Clause 5.5.1, IS:800-1984

Allowable axial stress from IS 800 Fa 145.23 N/mm^2

Permissible load 82.49 KN > 29.74

Use 20 mm diameter Bolts d 20.00 mm OK

Gross diameter 21.50 mm

Strength of Bolt in single shear 29.04 KN

Strength of Bolt in bearing in tw mm web 53.75 KN

Bolt Value 29.04 KN

No of Bolts required 2.00 nos

Use 2 bolt at each end

14 80 80 14

340

330

14 80 80 14

8 80 80 8

340

330

8 80 80 8

supstr-s.xls/alt_bot 29 of 58

Page 30: supstr-s

10.0 Design of Compression Members (Vertical)

Design Load Live + Dead + impact 405.18 KN

Design Load Live + Dead + impact+ Wind 423.98 KN

Center to Center length of member length 5.50 mm

Effective length of Member leff 4.675 mm

Moment 3.63 KN-m

Approximate net area required 3,028 mm^2

Use 2 Channels of specification ISMC175

Depth of Channel 175 mm

Width of Channel 75 mm

thickness of web 5.7 mm

thickness of flange 10.2 mm

Area 2438 mm^2

Ixx 12233000 mm^4

Iyy 1210000 mm^4

c.g. distance 22 mm

rxx 70.8 mm

ryy 22.3 mm

Outer distance spacing 340 mm

The outer distance between channels is kept as above so that these fit in between the gusset plates in the top member

Ixx 24466000 mm^4

Iyy 109223904 mm^4

Minimum radius of gyration 70.84 mm

Slenderness ratio l/r 65.99 <180 allowable as per clause 3.7.1, IS:800-1984

l/r 60.00 70.00

stress for fy=250 N/mm^2 122.00 112.00

Allowable axial stress from IS 800 Fa 116.01 N/mm^2

Actual axial stress fa 86.95 N/mm^2

Allowable bending stress Fb 160 N/mm^2

Actual bending stress fb 12.98 N/mm^2

combined stress ratios fa/Fa + Fb/fb 0.83 < 1.00 OK

Design of single lattice

Shear force in lattice 5.30 KN

Force in lattice at 45 degrees with axis 7.50 KN

Effective length 374.77 mm

Use standard angles of ISA 30x30x5

Area 277 mm^2

radius of gyration 8.8 mm

slenderness ratio 42.59

l/r 40.00 50.00

stress for fy=250 N/mm^2 139.00 132.00

Allowable axial stress from IS 800 Fa 137.19 N/mm^2

Permissible load 38.00 KN > 7.50 O.K.

Use 20 mm diameter Bolts d 20.00 mm

Gross diameter 21.50 mm

Strength of Bolt in single shear 29.04 KN

Strength of Bolt in bearing in tw mm web 30.64 KN

Bolt Value 29.04 KN

No of Bolts required 1.00 nos

Use 1 bolt at each end

175

340

75 75

5.7

10.2

supstr-s.xls/alt_ver 30 of 58

Page 31: supstr-s

11.0 Design of Tension Members (Diagonal )

Design Load 818.61 KN

Center to Center length of member length 7029 mm

Effective length of Member leff 5975 mm

Approximate net area required 5,847 mm^2

Angle used

Use standard Angles of specification ISA 80x80x10

Angle leg in Y-direction A A 80 mm

Angle leg in X-direction B B 80 mm

Angle thickness a_thk 10 mm

Diameter of Bolts used r_dia 20 mm

Area a_area 11.8 mm^2

Weight wt 1505 N/m

Web Plate width 340 mm

Web Plate thickness p_thk 8 mm

net area of Connecting leg a 2140.00 mm^2

area of outstanding leg b 3000.00 mm^2

Value of k2 0.78

Gross Area g_area 2,767 mm

deduction for Bolt holes dr_area 1548 mm^2

Net Area net_area 7,200 mm^2

Safe

Safe Load 1,080 KN > 819 OK

80 80

80

8

80 80

80

8

340

10

supstr-s.xls/alt_diag 31 of 58

Page 32: supstr-s

12.0 End Post Member

Design load, Dead + Live + impact 1049.21 KN

Design load, Dead + Live + impact+ wind 1138.97 KN

Moment without wind 35.67 Kn-m

Moment with wind 68.10 Kn-m

Ellective length 5975 mm

Top plate width 340 mm

Top plate thickness 8 mm

Web plate width 330 mm

Web plate thickness 8 mm

Using Top angles of specification ISA 60x60x10

Top angle area 1100 mm^2

Top angle legs 60 mm

Top angle thickness 10 mm

Top angle c.g. 18.5 mm

Top angle Ixx 348000 mm^4

Using Bottom angles of specification ISA 60x60x10

Bottom angle area 1100 mm^2

Bottom angle legs 60 mm

Bottom angle thickness 10 mm

Bottom angle c.g. 18.5 mm

Bottom angle Ixx 348000 mm^4

clear distance between web plates 204

Gross area lever arm Moment

1) Top Plate 2720 4 10880

2) Two Web plates 5280 173 913440

3) Two top angles 2200 26.5 58300

4) Two bottom angles 2200 319.5 702900

12400 1685520

c.g. of combined sections from top 135.93 mm

Ixx 204401544 mm^4

Iyy 159602807 mm^4

Minimum radius of gyration r 113.45 mm

Slenderness ratio l/r 52.67

l/r 50.00 60.00

stress for fy=250 N/mm^2 132.00 122.00

Allowable axial stress from IS 800 Fa 129.33 N/mm^2

Area required 8,807 mm^2

Area available 12,400 mm^2 Safe

Allowable axial stress Fa 129.33 N/mm^2

Actual axial stress fa 78.71 N/mm^2

Allowable bending stress Fb 160 N/mm^2

Actual bending stress fb 47.11 N/mm^2

combined stress ratios(fa/Fa + Fb/fb) 0.90 < 1.00 OK

12.1 Design of single lattice

Shear force in lattice 14.24 KN

Force in lattice at 45 degrees with axis 20.14 KN

Effective length 470.93 mm

Try angle ISA 30x30x5

Area 277 mm^2

radius of gyration 8.8 mm

slenderness ratio 53.51

l/r 50.00 60.00

stress for fy=250 N/mm^2 132.00 122.00

8 60 60 8

340

330

8 60 60 8

8

supstr-s.xls/alt_post 32 of 58

Page 33: supstr-s

Allowable axial stress from IS 800 Fa 128.49 N/mm^2

Permissible load 35.59 KN > 20.1 OK

Use 20 mm diameter Bolts d 20.00 mm

Gross diameter 21.50 mm

Strength of Bolt in single shear 29.04 KN

Strength of Bolt in bearing in tw mm web 43.00 KN

Bolt Value 29.04 KN

No of Bolts required 1.00 nos

Use 1 bolt at each end

12.2 Design of double lattice flats

Shear force in lattice 14.24 KN

Force in lattice at 45 degrees with axis 20.14 KN

Horizontal distance between Bolts 264.00 mm

Effective length 373.35 mm bolt dia width of lacing bar

Minimum Plate thickness l /60 = 6.22 mm 22 65

Minimum Plate width required for selected bolt size 60 mm 20 60

Using plates of size 65 10 18 55

Width 65 16 50

thickness 10

Area 650 mm^2

Ratio of length by thickness l/t 37.34 <60 OK

minimum radius of gyration 2.89 mm

slenderness ratio 129.19 less than 145, OK

l/r 120.00 130.00

stress for fy=250 N/mm^2 64.00 57.00

Allowable axial stress from IS 800 Fa 57.57 N/mm^2

Permissible load 37.42 KN > 20.1 OK

Use 20 mm diameter Bolts d 20.00 mm

Gross diameter 21.50 mm

Strength of Bolt in single shear 29.04 KN

Strength of Bolt in bearing in tw mm web 53.75 KN

Bolt Value 29.04 KN

No of Bolts required 1.00 nos

Use 1 bolt at each end

supstr-s.xls/alt_post 33 of 58

Page 34: supstr-s

13.0 Joint Designs (Bolts)

13.1 Design of Joint L 1

Force in member L1U1 1138.97 KN

Force in member L1L2 784.46 KN

Use bolts of diameter 20 mm

Gross diameter 21.5 mm

Gusset plates used 12 mm

Strength in single shear 25.13 KN

Strength in bearing 64.50 KN

bolt Value 25.13 KN

Number of bolts required for L1U1 45.32 nos

Since there are two side gusset plates

Number on each side 22.66 Say 24 nos

Place in three rows of 8 8 8

Pitch of bolts, minimum 50 Use spacing 80

length of joint required 720 mm

Number of bolts required for L1L2 31.22 nos

Since there are two side gusset plates

Number on each side 15.61 Say 18 nos

Place in three rows of 6 6 6

length of joint required 560 mm

13.2 Design of Joint L 2

Force in member L2U1 326.00 KN

Difference in force in member L1L2 and L2L3 57.84 KN

Use bolts of diameter 20 mm

Gross diameter 21.5 mm

Gusset plates used 12 mm

Strength in single shear 25.13 KN

Strength in bearing 64.50 KN

bolt Value 25.13 KN

Number of bolts required for L2U1 12.97 nos

Since there are two side gusset plates

Number on each side 6.49 Say 8 nos

Place in two rows 4 4

Pitch of bolts, minimum 50 Use spacing 80

length of joint required 400 mm

Number of bolts required for L1L2 2.30

Since there are two side gusset plates

Number on each side 1.15 Say 2 nos

Place in rows of 2

length of joint required 240 mm

13.3 Design of Joint L 3

Force in member L3U1 818.61 KN

Force in member L3U2 423.98 KN

Force difference in bottom members 536.97 KN

Use bolts of diameter 20 mm

Gross diameter 21.5 mm

supstr-s.xls/B_Joints 34 of 58

Page 35: supstr-s

Gusset plates used 12 mm

Strength in single shear 25.13 KN

Strength in bearing 64.50 KN

bolt Value 25.13 KN

Number of bolts required for L3U1 32.58 nos

Since there are two side gusset plates

Number on each side 16.29 Say 18 nos

Place in two rows of 9 9 each row

Pitch of bolts, minimum 50 Use spacing 80

length of joint required 800 mm

Number of bolts required for L3U2 16.87 nos

Since there are two side gusset plates

Number on each side 8.44 Say 10 nos

Place in two rows of 5 5

length of joint required 480 mm

required bolts in bottom member 22

Difference in vertical force 216.75

Bolts required 9

Total numbers 31

bolts in two rows of 16 16 nos

13.4 Design of Joint L 4

Force in member L4U2 539.32 KN

Force in member L4U3 204.83 KN

Force difference in bottom members 303.12 KN

bolts in bottom member 13

On each side 6.5 nos

Difference in vertical force 217 KN

boltas required 9 nos

Total numbers 22.00

bolts in two rows 11 11 nos

13.5 Design of Joint L 5

Force in member L5U3 259.22 KN

No. of bolts reqd. 11

On each side 6 6 nos

Force in member L5U4 0

bolts in two rows 5 5 nos

13.6 Design of Joint U 1

Force in member U1U2 1188.07

Use bolts of diameter 20

Gross diameter 21.5

Gusset plates used 12

Strength in single shear 25.13 KN

Strength in bearing 64.50 KN

bolt Value 25.13 KN

Bolts required 48.00

Bolts on one side 24.00

bolts in three rows of 9 9 9

supstr-s.xls/B_Joints 35 of 58

Page 36: supstr-s

13.7 Design of Splicing top members

Splicing of the top chord will be done at Joint U4

Actual Force in the member U3U4 1550.94 KN

Corresponding stress 0.1056 KN/mm2

Area of top plate and top angles spliced by one plate 6100 mm2

Use one splicing plate of size 500 15 mms

Area of splicing plate is then 7500 mm2

Use bolts of diameter 20

Gross diameter 21.5

Strength in single shear 25.13

Strength in bearing 80.63

bolt Value 25.13

No. of Bolts required 25.63

Provide 30 nos.

Area of bottom angles spliced by one plate 1100 mm2

Use same splicing plate of size 500 15 mms

No. of Bolts required 4.62

Provide 6 nos.

For the splicing of the vertical plates, two additional plates will be used in

addition to gusset plates. For this use plates of 330 15 mms

Remaining area to be spliced 7480 mm2

No. of Bolts required 31.43

Provide 36 nos.

13.8 Design of Splicing bottom members

Splicing of the top chord will be done at Joint L4

Actual Force in the member L4L5 1682.39 KN

Corresponding stress 0.1102 KN/mm2

Area of top angles spliced by one plate 1505 mm2

Use one splicing plate of size 350 15 mms

Area of splicing plate is then 5250 mm2

Use bolts of diameter 20

Gross diameter 21.5

Strength in single shear 25.13

Strength in bearing 80.63

bolt Value 25.13

No. of Bolts required 6.60

Provide 10 nos.

Area of bottom angles spliced by one plate 1505 mm2

Use same splicing plate of size 350 15 mms

No. of Bolts required 6.60

Provide 10 nos.

For the splicing of the vertical plates, two additional plates will be used in

addition to gusset plates. For this use plates of 330 15 mms

Remaining area to be spliced 12250 mm2

No. of Bolts required 53.72

Provide 60 nos.

supstr-s.xls/B_Joints 36 of 58

Page 37: supstr-s

Load factor on Truss 0.653

Distance between nodes 4.375 m

Dead load at Node pts. 154.37 Kn this deflection calculation was carried out using MICROFEAP

9 10 11 12 13 14

15 24 25 26 27 28 29 23

16 17 18 19 20 21 22

1 2 3 4 5 6 7 8

Live load at Node points

Node No Horizontal (m) Vertical (m)

Load Dist. From Left 1 0.00E+00 0.00E+00

3 4.61 27 3.250 3 2 1.27E-03 -1.32E-02

4 50.75 27 4.350 3 3 2.53E-03 -2.45E-02

5 128.44 114 3.175 4 4 4.15E-03 -3.47E-02

6 58.00 114 0.000 5 5 6.27E-03 -3.87E-02

7 58.00 68 4.300 5 6 8.45E-03 -3.54E-02

8 58.00 68 2.925 6 7 1.02E-02 -2.56E-02

9 1.77 68 1.550 7 8 1.16E-02 -1.43E-02

Total on Truss 359.57 68 0.175 8 9 1.30E-02 0.00E+00

Total Train Load 554 554 KN 10 1.18E-02 -1.24E-02

11 1.04E-02 -2.65E-02

12 8.42E-03 -3.56E-02

13 6.28E-03 -3.87E-02

14 4.15E-03 -3.60E-02

15 2.15E-03 -2.74E-02

16 5.67E-04 -1.32E-02

14.0 Deflection calculation on Truss

Node No.Node No. LoadTrain Load of class A Loads

Deflection of Truss due to dead + live loadsMaximum deflection occurs when 114 KN wheel load is at L5 (middle Node).

8 panels @ 4.375 ~ 35 m

1 2 3 4 5 6 7 98

10 11 12 13 14 15 16

5.5

0 m

supstr-s.xls/deflec 37 of 58

Page 38: supstr-s

Quantities Estimate Unit Weight of Steel adopted : 7.85 t/m3

Weight of One Through Type Truss

S No. Members Nos

Length

mm

Width

mm

Thick

ness

mm

Area

sq. mm

Volume

cu. cm

Unit

weight

(t/m^3)

or

Weight

Kg

1 Top Members U 1 U 2 to U 6 U 7

Top angles ISA 60x60x10 2 4375 1100 8.60 75.25

Bottom angles ISA 60x60x10 2 4375 1100 8.60 75.25

Top plate 1 4375 500 10.00 5000 21875.0 7.85 171.72

Web plate 2 4375 330 8.00 2640 23100.0 7.85 181.34

Lacing ISA 50x50x6 9 720 568 4.50 29.16

532.72

Total Members 6 3,196.32

2 Bottom Members 3 to 6

Angles ISA 80x80x10 4 4375 1505 11.80 206.50

Web plate 2 4375 330 14.00 4620 40425.0 7.85 317.34

Lacing ISA 50x50x6 9 442 568 4.50 17.90

541.74

Total Members 4 2,166.96

3 Bottom Members 1 to 2 & 7 to 8

Angles ISA 80x80x10 4 4375 1505 11.80 206.50

Web plate 2 4375 330 8.00 2640 23100.0 7.85 181.34

Lacing ISA 50x50x6 9 442 568 4.5 17.90

405.74

Total Members 4 1,622.96

4 Vertical Members

Channels ISMC175 2 5500 2438 19.10 210.10

Lacing ISA 30x30x5 21 375 277 2.20 17.33

227.43

Total Members 7 1,592.01

5 Diagonal Members

Angles ISA 80x80x10 4 7028 11.8 11.80 331.72

Web plate 1 7028 340 8.00 2720 19116.2 7.85 150.06

481.78

Total Members 6 2,890.68

6 End Post Members

Top angle ISA 60x60x10 2 7028 1100 8.60 120.88

Bottom angles ISA 60x60x10 2 7028 1100 8.60 120.88

Top plate 1 7028 340 8.00 2720 19116.2 7.85 150.06

Web plate 2 7028 330 8.00 2640 37107.8 7.85 291.30

Lacing ISA 30x30x5 22 471 277 2.20 22.80

705.92

Total Members 2 1,411.84

7 Gusset plates

Gusset plates L1 and L9 4 435.2 458.8 12 5505.6 9584.1 7.85 75.24

Gusset plates L2, and L8 4 283.6 266.9 12 3202.8 3633.3 7.85 28.52

Gusset plates L3, L4, L6, L7 8 565.1 424.6 12 5095.2 23034.4 7.85 180.82

Gusset plates L5 2 466.3 349.4 12 4192.8 3910.2 7.85 30.70

Gusset plates U1 and U7 4 649 456.3 12 5475.6 14214.7 7.85 111.59

Gusset plates U4 2 236.4 280.7 12 3368.4 1592.6 7.85 12.50

Gusset plates U2, U3, U5, U6 8 563.3 426.4 12 5116.8 23058.3 7.85 181.01

Total Weight 620.38

8 Splices in top & Bottom members

Splicing in L3, L5, L7 6 120 314 15 4710 3391.2 7.85 26.62

6 120 63 15 945 680.4 7.85 5.34

3 120 520 15 7800 2808.0 7.85 22.04

Filler 6 120 63 8 504 362.9 7.85 2.85

Splicing in U3, U5 4 120 350 15 5250 2520.0 7.85 19.78

6 120 330 15 4950 3564.0 7.85 27.98

Total Weight 104.61

Total weight for one Truss 13,605.76

supstr-s.xls/B-est 38 of 58

Page 39: supstr-s

Floor Structure and Bracings 122500

S No. Members Nos

Length

cm

Width

cm

Thick

ness

cm

Area

sq. cm

Volume

cu. cm

Unit

weight

(t/m^3)

or

(Kg/m)

Weight

Kg

1 Stringers

ISMB500 3 437.5 111 86.90 1140.56

End connection ISA 80x80x10 12 40 15.05 11.80 56.64

Seat ISA 80x80x10 6 18 15.05 11.80 12.74

1209.94

Total Members 8 9,679.52

2 Cross Girder

ISMB600 1 540 15621 112.60 608.04

End connection ISA 80x80x10 4 50 15.05 11.80 23.60

2 plates of size 2 540 21 1.2 25.2 27216.0 7.85 213.65

845.29

Total Members 9 7,607.61

3 Top Bracing

End Post Bracing

End connection ISA 80x80x10 4 540 15.1 11.80 254.88

Web plate 1 540 38 1.2 45.6 24624.0 7.85 193.30

Knee ISA 80x80x10 4 189.0 15.1 11.80 89.21

537.39

Total Members 2 1,074.78

Sway Bracing

End connection ISA 60x60x10 4 540 11.0 8.60 185.76

Web plate 1 540 38 1.2 45.6 24624.0 7.85 193.30

Knee ISA 60x60x10 2 160 11.0 8.60 27.52

406.58

Total Members 7 2,846.06

Diagonal Bracing

angles ISA 80x80x10 8 347.5 15.1 11.80 328.04

Gusset plates 4 30 40 1.0 40 4800.0 7.70 36.96

Gusset plates 1 30 40 1.0 40 1200.0 7.70 9.24

374.24

Total panels 6 1,968.24

Total Top Bracing weight 5,889.08

4 Bottom Bracing

Diagonal Bracing

Angles ISA 100x100x12 8 347.5 22.6 17.70 492.06

stringer bracing ISA 100x100x12 4 200 22.59 17.70 141.60

Gusset plates 4 30 40 1.0 40 4800.0 7.70 36.96

Gusset plates 1 30 40 1.0 40 1200.0 7.70 9.24

679.86

Total panels 8 3,936.48

Total Weight of flooring & Bracing 27,112.69

Grand Total weight for one span bridge 54,324.21

Bolts for one Truss

S No. Members Nos

Spacin

g cm

Dia.

mm

bolt

nos

Total

Nos

1 Bolts between Stringer and Cross Girder

Stringer and angle 24 20 10 240

Cross Girder and angle 24 20 12 288

Total nos. 528

2 Bolts between Cross Girder and bottom member

Cross Girder and angle 9 20 26 234

Bottom member and angle 9 20 32 288

Total Nos. 522

3 Tacking Bolts

Top members 6 20 150 900

Bottom members 8 20 60 480

Vertical members 7 20 38 266

Diagonal members 6 20 48 288

supstr-s.xls/B-est 39 of 58

Page 40: supstr-s

End Post members 2 20 144 288

Total Nos. 2222

4 Bolts at Node points

Joints L1 and L9 2 20 84 168

Joints L2, U4 and L8 3 20 48 144

Joints L3, L4, L6, L7 4 20 120 480

Joints U1 and U7 2 20 158 316

Joints U2, U3, U5, U6 4 20 92 368

Joints L5 1 20 104 104

Joints base plate/side plates 2 20 40 80

1660

5 Splicing Bolts

Top members 2 20 120 240

Bottom members 3 20 130 390

630

6 Bolts for Lacing

Top members 6 20 24 144

Bottom members 8 20 44 352

Vetical member 7 20 100 700

Diagonal member 6 20 120 720

End post 2 20 120 240

2156

Total Bolts for one truss 20 7718

Total for one bridge 20 15436

supstr-s.xls/B-est 40 of 58

Page 41: supstr-s

1.4 Design of Elastomeric Bearing

Reaction at A = b/L

Moment at C, Mc = ab/L

Total area of M diagram = ab/2

n = (L+b)/3

m = (L+a)/3

E.I. A = RA' = (ab/2)*n/L

hence, A = [ab(L+b)]/[6LEI]

Here,

L = 35 m

Maximum rotation occurs when X = 17.5 m

X1 12.0 m

X2 1.10 m

X3 3.20 m

X4 1.20 m

X5 4.30 m

X6 3.00 m

X7 3.00 m

X8 3.00 m

Calculation of Rotation at Support A

Critical when load P4 is at 1/2 L

Load position from EI A Product

Load in t left support, m Ordinate P.O.

a b

P1 2.70 12.00 23.00 76.23 O1 205.82

P2 2.70 13.10 21.90 77.73 O2 209.87

P3 11.40 16.30 18.70 77.94 O3 888.52

P4 11.40 17.50 17.50 76.56 O4 872.78

P5 6.80 21.80 13.20 66.05 O5 449.14

P6 6.80 24.80 10.20 54.45 O6 370.26

P7 6.80 27.80 7.20 40.22 O7 273.50

P8 6.80 30.80 4.20 24.15 O8 164.22

Total 3434.11 tm

A

Mc

A B

RA'

L/2

n

C

G

a b

L

C

1

BA

m

c

C

1

BA

D

D

Moment Diagram

Elastic Curve

O8O7

O6

O5

O4

O3

O2

O1

X7X6X5 X8X14X3X2X1

LX

P1

P3

P2

P4

P5 P8P7P6

supstr-s.xls/e-brng 41 of 58

Page 42: supstr-s

Hence,

EI due to LL + impact = 2659.57

EI due to DL = WL2/24= 2256.6

(W = 44.21 t)

Total EI = 4916.17

Slab thickness S 0.2 m

effective flange width Tf 2.45 m

overall depth of main beam d 2 m

rib width of main beam b 0.4 m

C.G. from bottom of T-beam 1.3050 m

M.I about C.G. axis 0.4876 m4

E for steel = 2E+07 t/m2

Hence = 0.0005 rad

Data for Elastomeric Bearing

Vertical reaction due to dead load 48.54 t

due to live load including impact 36.96 t

Horizontal reaction due to live load+Dead load 32.57 t

Angle of rotation 0.0005 rad

Materials for superstructure concrete M250

for sub-structure concrete M200

width beam 50 cm

bridge seat abutment 0.725 m

span of beam 35 m

Bearing size l 50 cm

b 25 cm

Tf

d

St

b

supstr-s.xls/e-brng 42 of 58

Page 43: supstr-s

Design of Compression Members (Top )

top member

Design Load -1480.82 KN -663.6702 -2298.105109

Center to Center length of member length 4400 mm 4400 4400

Effective length of Member leff 3740 mm 3740 3740

Approximate gross area required 28726.31386 mm^2 8295.87745 28726.31386

Angle used

ISA 150X115X012

Angle leg in Y-direction A A 150 mm 125 150

Angle leg in X-direction B B 115 mm 75 115

Angle thickness a_thk 12 mm 10 12

Diameter of rivets used r_dia 20 mm 20 20

Area a_area 3038 mm^2 1902 3038

Weight wt 238 N/m 149 238

C G offset in X direction Cyy Cyy 29 mm 17.6 29

C G offset in Y direction Cxx Cxx 46.4 mm 42.4 46.4

Moemt of Inertia Ixx Ixx 6765000 mm^4 3003000 6765000

Moemt of Inertia Iyy Iyy 3453000 mm^4 816000 3453000

Radius of Gyration rxx rxx 47.2 mm 39.7 47.2

Radius of Gyration ryy ryy 33.7 mm 2.07 33.7

Vertical Plate thickness p_thk 16 mm 16

Depth of combined member depth 400 mm 300

Top plate thickness t_thk 16 mm 16

Top plate width t_width 316 mm 316

Gross Area g_area 18552 mm^2 16952

1) Compression with vertical Plate

Gross Monet of Inertia about XX axis - Igxx Igxx 454481965.3 mm^4 227729432

Gross Monet of Inertia about YY axis - Igyy Igyy 63158676.05 mm^4 63124542.72

Minimum radius of gyration - rmin rmin 58.35 mm 61.02231096

Slenderness Ratio lamda lamda 64.10 61.28905872

Elastic Critical Stress in Compression fcc 480.41 525.4892524

Permissible Stress from Merchant Rankine sigma_ac 117.91 120.8381904

Safe load 2187.47 KN 2048.449004

2) Compression with vertical Gusset Plate

Gross area 12152 mm^2 12152

Gross Monet of Inertia about XX axis - Igxx Igxx 369148632 mm^4 191729432

Gross Monet of Inertia about YY axis - Igyy Igyy 63022142.72 mm^4 63022142.72

Minimum radius of gyration - rmin rmin 72.01 mm 72.01495639

Slenderness Ratio lamda lamda 51.94 51.93365639

Elastic Critical Stress in Compression fcc 731.69 731.8666216

Permissible Stress from Merchant Rankine sigma_ac 129.96 129.9645934

Safe load 1579.27 KN 1579.32974

Tacking Rivets

Spacing of tacking 500.00 less than 600 mm 500

Slenderness ratio of each member 14.84 less than 40 , OK 14.83679525

0.6 times the slenderness ratio of whole strut 31.16 31.16019383

Use 4 rivets with 200mm width (100 spacing)

3) Compression with top and vertical Plate

Gross area 23608 mm^2 22008

supstr-s.xls/design_comp 43 of 58

Page 44: supstr-s

Distance of Cg from top Xcg 216 mm 166

Gross Monet of Inertia about Xcg axis - Igxx Igxx 674519085.3 mm^4 355241752

Gross Monet of Inertia about Ycg axis - Igyy Igyy 105231337.4 mm^4 105197204.1

Minimum radius of gyration - rmin rmin 66.76 mm 69.13720365

Slenderness Ratio lamda lamda 56.02 54.09533222

Elastic Critical Stress in Compression fcc 628.99 674.5438025

Permissible Stress from Merchant Rankine sigma_ac 126.12 127.960229

Safe load 2977.44 KN less than 2506 KN, OK2816.14872

supstr-s.xls/design_comp 44 of 58

Page 45: supstr-s

Design of Tension Members (Diagonal )

Design Load 818.61 KN

Center to Center length of member length 7029 mm

Effective length of Member leff 5975 mm

Approximate gross area required 6,822 mm^2

Angle used

ISA 125X095X012

Angle leg in Y-direction A A 125 mm

Angle leg in X-direction B B 95 mm

Angle thickness a_thk 12 mm

Diameter of rivets used r_dia 20 mm

Area a_area 2498 mm^2

Weight wt 196 N/m

C G offset in X direction Cyy Cyy 24.7 mm

C G offset in Y direction Cxx Cxx 39.6 mm

Moment of Inertia Ixx Ixx 3826000 mm^4

Moment of Inertia Iyy Iyy 1904000 mm^4

Radius of Gyration rxx rxx 39.1 mm

Radius of Gyration ryy ryy 27.6 mm

Gusset Plate thickness p_thk 16 mm

Depth of combined member depth 300 mm

Gross Area g_area 9,992 mm

deduction for rivet holes dr_area 888 mm^2

Net Area net_area 9,104 mm^2

Safe Load 1,365.60 KN greater than 1129 KN, OK

supstr-s.xls/diag_mem 45 of 58

Page 46: supstr-s

Design of Tension Members (Bottom )

Design Load 1770.51 KN

Center to Center length of member length 4375 mm

Effective length of Member leff 3718.75 mm

Approximate gross area required 14,754 mm^2

Angle used

ISA 150X115X012

Angle leg in Y-direction A A 150 mm

Angle leg in X-direction B B 115 mm

Angle thickness a_thk 12 mm

Diameter of rivets used r_dia 20 mm

Area a_area 3038 mm^2

Weight wt 238 N/m

C G offset in X direction Cyy Cyy 29 mm

C G offset in Y direction Cxx Cxx 46.4 mm

Moemt of Inertia Ixx Ixx 6765000 mm^4

Moemt of Inertia Iyy Iyy 3453000 mm^4

Radius of Gyration rxx rxx 47.2 mm

Radius of Gyration ryy ryy 33.7 mm

Vertical Plate thickness p_thk 16 mm

Depth of combined member depth 400 mm

Gross Area g_area 18,552 mm^2

deduction for rivet holes dr_area 1480 mm^2

Net Area net_area 17,072 mm^2

Safe Load considering lateral loads 2,970.53 KN greater than 2682 KN, OK

Safe Load without lateral loads 2,560.80 KN greater than 2226 KN, OK

supstr-s.xls/bot_mem 46 of 58

Page 47: supstr-s

Design of Compression Members (Vertical)

Design Load -625.57 KN

Center to Center length of member length 4400 mm

Effective length of Member leff 3740 mm

Approximate gross area required 7,820 mm^2

Angle used

ISA 125X075X010

Angle leg in Y-direction A A 125 mm

Angle leg in X-direction B B 75 mm

Angle thickness a_thk 10 mm

Diameter of rivets used r_dia 20 mm

Area a_area 1902 mm^2

Weight wt 149 N/m

C G offset in X direction Cyy Cyy 17.6 mm

C G offset in Y direction Cxx Cxx 42.4 mm

Moemt of Inertia Ixx Ixx 3003000 mm^4

Moemt of Inertia Iyy Iyy 816000 mm^4

Radius of Gyration rxx rxx 39.7 mm

Radius of Gyration ryy ryy 2.07 mm

Vertical Plate thickness p_thk 16 mm

Depth of combined member depth 300 mm

Top plate thickness t_thk 16 mm

Top plate width t_width 266 mm

Gross Area g_area 12408 mm^2

1) Compression with vertical Plate

Gross Monet of Inertia about XX axis - Igxx Igxx 172630414.1 mm^4

Gross Monet of Inertia about YY axis - Igyy Igyy 31439937.28 mm^4

Minimum radius of gyration - rmin rmin 50.34 mm

Slenderness Ratio lamda lamda 74.30

Elastic Critical Stress in Compression fcc 357.57

Permissible Stress from Merchant Rankine sigma_ac 106.94

Safe load 1326.94 KN

2) Compression with vertical Gusset Plate

Gross area 7608 mm^2

Gross Monet of Inertia about XX axis - Igxx Igxx 136630414.1 mm^4

Gross Monet of Inertia about YY axis - Igyy Igyy 31337537.28 mm^4

Minimum radius of gyration - rmin rmin 64.18 mm

Slenderness Ratio lamda lamda 58.27

Elastic Critical Stress in Compression fcc 581.27

Permissible Stress from Merchant Rankine sigma_ac 123.90

Safe load 942.61 KN

supstr-s.xls/vert_mem 47 of 58

Page 48: supstr-s

Tacking Rivets

Spacing of tacking 500.00 less than 600 mm

Slenderness ratio of each member 241.55 less than 40 , OK

0.6 times the slenderness ratio of whole strut 34.96

Use 4 rivets with 200mm width (100 spacing)

3) Compression with top and vertical Plate

Gross area 16664 mm^2

Distance of Cg from top Xcg 166 mm

Gross Monet of Inertia about Xcg axis - Igxx Igxx 279966734.1 mm^4

Gross Monet of Inertia about Ycg axis - Igyy Igyy 56534731.95 mm^4

Minimum radius of gyration - rmin rmin 58.25 mm

Slenderness Ratio lamda lamda 64.21

Elastic Critical Stress in Compression fcc 478.77

Permissible Stress from Merchant Rankine sigma_ac 117.79

Safe load 1962.92 KN

greater than 626 KN, OK

supstr-s.xls/vert_mem 48 of 58

Page 49: supstr-s

Design of Compression Members (Top )

Design Load -2505.71 KN

Center to Center length of member length 4400 mm

Effective length of Member leff 3740 mm

Approximate gross area required 28,726 mm^2

Angle used

ISA 150X115X012

Angle leg in Y-direction A A 150 mm

Angle leg in X-direction B B 115 mm

Angle thickness a_thk 12 mm

Diameter of rivets used r_dia 20 mm

Area a_area 3038 mm^2

Weight wt 238 N/m

C G offset in X direction Cyy Cyy 29 mm

C G offset in Y direction Cxx Cxx 46.4 mm

Moemt of Inertia Ixx Ixx 6765000 mm^4

Moemt of Inertia Iyy Iyy 3453000 mm^4

Radius of Gyration rxx rxx 47.2 mm

Radius of Gyration ryy ryy 33.7 mm

Vertical Plate thickness p_thk 16 mm

Depth of combined member depth 400 mm

Top plate thickness t_thk 16 mm

Top plate width t_width 316 mm

Gross Area g_area 18552 mm^2

1) Compression with vertical Plate

Gross Monet of Inertia about XX axis - Igxx Igxx 454481965.3 mm^4

Gross Monet of Inertia about YY axis - Igyy Igyy 63158676.05 mm^4

Minimum radius of gyration - rmin rmin 58.35 mm

Slenderness Ratio lamda lamda 64.10

Elastic Critical Stress in Compression fcc 480.43

Permissible Stress from Merchant Rankine sigma_ac 117.91

Safe load 2187.49 KN

2) Compression with vertical Gusset Plate

Gross area 12152 mm^2

Gross Monet of Inertia about XX axis - Igxx Igxx 369148632 mm^4

Gross Monet of Inertia about YY axis - Igyy Igyy 63022142.72 mm^4

Minimum radius of gyration - rmin rmin 72.01 mm

Slenderness Ratio lamda lamda 51.93

Elastic Critical Stress in Compression fcc 731.87

Permissible Stress from Merchant Rankine sigma_ac 129.96

Safe load 1579.33 KN

Tacking Rivets

Spacing of tacking 500.00 less than 600 mm

Slenderness ratio of each member 14.84 less than 40 , OK

0.6 times the slenderness ratio of whole strut 31.16

Use 4 rivets with 200mm width (100 spacing)

3) Compression with top and vertical Plate

Gross area 23608 mm^2

supstr-s.xls/top_mem 49 of 58

Page 50: supstr-s

Distance of Cg from top Xcg 216 mm

Gross Monet of Inertia about Xcg axis - Igxx Igxx 674519085.3 mm^4

Gross Monet of Inertia about Ycg axis - Igyy Igyy 105231337.4 mm^4

Minimum radius of gyration - rmin rmin 66.76 mm

Slenderness Ratio lamda lamda 56.02

Elastic Critical Stress in Compression fcc 629.03

Permissible Stress from Merchant Rankine sigma_ac 126.12

Safe load 2977.43 KN greater than 2506 KN, OK

supstr-s.xls/top_mem 50 of 58

Page 51: supstr-s

Design of Tension Members (Bottom )

Design Load 1770.51 KN

Center to Center length of member length 4375 mm

Effective length of Member leff 3718.75 mm

Approximate gross area required 14,754 mm^2

Angle used

ISA 150X115X012

Angle leg in Y-direction A A 150 mm

Angle leg in X-direction B B 115 mm

Angle thickness a_thk 12 mm

Diameter of rivets used r_dia 20 mm

Area a_area 3038 mm^2

Weight wt 238 N/m

C G offset in X direction Cyy Cyy 29 mm

C G offset in Y direction Cxx Cxx 46.4 mm

Moemt of Inertia Ixx Ixx 6765000 mm^4

Moemt of Inertia Iyy Iyy 3453000 mm^4

Radius of Gyration rxx rxx 47.2 mm

Radius of Gyration ryy ryy 33.7 mm

Vertical Plate thickness p_thk 16 mm

Depth of combined member depth 300 mm

Gross Area g_area 16,952 mm^2

deduction for rivet holes dr_area 1480 mm^2

Net Area net_area 15,472 mm^2

Safe Load 2,320.80 KN greater than 2226 KN, OK

supstr-s.xls/design_tens 51 of 58

Page 52: supstr-s

6.0 Design of bearings

Dead load on truss DL 1109.30 KN Seismic coefficient 0.08

Live Load on truss LL 324.76 KN Coefficient on soil foundation type 1.2

Lateral Seismic load EQL 165.20 KN Importance factor 1.2

Lateral Wind Load WL 57.81 KN Acting at, lever arm from bearing

Logitudinal Braking load BL 63.80 KN

Additional load on leeward truss due to wind V_WL 44.49 KN

Allowable bearing pressure on concrete 4000 KN/m^2

Area required for base plate 0.36 m^2

Size of base plate 750 mm

use base plate of size 750mmx750mm 0.56 m^2

A large size plate is being used to cater to wind stresses

6.1 Design of Rocker Bearing

Allowable stresses in mild steel pin

Allowable stress in shear 100 N/mm^2

Allowable stress in bearing 209 N/mm^2

Alowable stress in bending 165 N/mm^2

Assume a pin of diameter 150 mm 150 mm

Thickness of bearing plate required 45.74 mm

use four plates of 20mm thickness 20 mm

Load in each plate 369.64 KN

Let the gap between the two outer plates of top casting

and bottom casting be 3mm 3 mm

The distance between c/c of outer plates is 23 mm

Maximum Bending Moment on pin 8.50 KN-m

Bending stress 25.65 N/mm^2 less than 209 N/mm^2, OK

Maximum shear stress 27.89 N/mm^2 less than 100 N/mm^2, OK

Considering wind and seismic loads

Total vertical loads 1478.55 KN

let the pin be 300 mm above base 300 mm

Moment due to worst of wind or seismic about base 49.56 KN-m

Moment due to longitudianl force 19.14 KN-m

Maximum pressure below base from all loads, moments 3617 KN/m^2 less than 1.33x4000 KN/m^2, OK

maximum projection of base 0.085 m

Maximum cantilever moment 13.07 KN-m/m

Equating this to moment of resistance of section

thick ness of base plate t 20.59 mm

use 25 mm thickness base plate 25 mm

Height of supporting plates 213 mm

Check for bending a middle of plate

Maximum moment at section a-a 381.48 KN-m

c.g. of section from base y 75.79 mm

Moment of Inertia about c.g. Ixx 222.72 mm^4x10^6

Bending stress 9.52 N/mm^2 less than 165 N/mm^2, OK

supstr-s.xls/s_bearing 52 of 58

Page 53: supstr-s

6.2 Design of Roller Bearing

Diameter of roller 100 mm

bearing capacity of roller 491 N/mm

length of roller 2580 mm

No of rollers of length 600mm 5

Use 5 segmental rollers, of segment size 80 mm

Angle theta 0.93 radians

minimum clearance desired 22 mm

Distance between rollers 27.2423 mm

Say 30 mm

Center to center distance between rollers 110 mm

supstr-s.xls/s_bearing 53 of 58

Page 54: supstr-s

13.0 Joint Designs (Rivets)

13.1 Design of Joint L 1

Force in member L1U1 1138.97 KN

Force in member L1L2 784.46 KN

Use rivets of diameter 22 mm

Gross diameter 23.5 mm

Gusset plates used 12 mm

Strength in single shear 38.01 KN

Strength in bearing 65.42 KN

Rivet Value 38.01 KN

Number of rivets required for L1U1 29.97 nos

Since there are two side gusset plates

Number on each side 14.99 Say 20 nos

Place in three rows -7, 6, 7

Pitch of rivets, minimum 55 Use spacing 80

length of joint required 560 mm

Number of rivets required for L1L2 20.64 nos

Since there are two side gusset plates

Number on each side 10.32 Say 14 nos

Place in three rows - 5, 4, 5

length of joint required 400 mm

13.2 Design of Joint L 2

Force in member L2U1 326.00 KN

Difference in force in member L1L2 and L2L3 57.84 KN

Use rivets of diameter 22 mm

Gross diameter 23.5 mm

Gusset plates used 12 mm

Strength in single shear 38.01 KN

Strength in bearing 65.42 KN

Rivet Value 38.01 KN

Number of rivets required for L2U1 8.58 nos

Since there are two side gusset plates

Number on each side 4.29 Say 8 nos

Place in two rows - 4, 4

Pitch of rivets, minimum 55 Use spacing 80

length of joint required 560 mm

Number of rivets required for L1L2 1.52 Say 4 nos

Since there are two side gusset plates

Number on each side 12 nos

Place in three rows - 5, 4, 5

length of joint required 400 mm

13.3 Design of Joint L 3

Force in member L3U1 818.61 KN

Force in member L3U2 423.98 KN

Force difference in bottom members 536.97 KN

Use rivets of diameter 22 mm

Gross diameter 23.5 mm

supstr-s.xls/R_Joints 54 of 58

Page 55: supstr-s

Gusset plates used 12 mm

Strength in single shear 38.01 KN

Strength in bearing 65.42 KN

Rivet Value 38.01 KN

Number of rivets required for L3U1 21.54 nos

Since there are two side gusset plates

Number on each side 10.77 Say 16 nos

Place in three rows - 6, 4, 6

Pitch of rivets, minimum 55 Use spacing 80

length of joint required 480 mm

Number of rivets required for L3U2 11.15 nos

Since there are two side gusset plates

Number on each side 5.58 Say 10 nos

Place in three rows - 4, 2, 4

length of joint required 320 mm

Rivets in bottom member 14

On each side 7 Say 10 nos Extra

Total numbers 36

Rivets in three rows of - 13, 12, 13 38 nos

13.4 Design of Joint L 4

Force difference in bottom members 303.12 KN

Rivets in bottom member 8.00

On each side 4 nos Extra

Total numbers 33

Rivets in three rows of - 12, 11, 12 35 nos

13.5 Design of Joint L 5

Force difference in bottom members 88.12 KN

Rivets in bottom member 3.00

On each side 1.5 Say 5 nos Extra

Total numbers 31

Rivets in three rows of - 11, 10, 11 32 nos

13.6 Design of Joint L 6

Force in member L6U4 -343.72 KN

Force in member L6U5 0.00 KN

Use rivets of diameter 22 mm

Gross diameter 23.5 mm

Gusset plates used 12 mm

Strength in single shear 38.01 KN

Strength in bearing 65.42 KN

Rivet Value 38.01 KN

Number of rivets required for L3U1 -9.04 nos

Since there are two side gusset plates

Number on each side -4.52 Say 16 nos

Place in three rows - 6, 4, 6

Pitch of rivets, minimum 55 Use spacing 80

length of joint required 480 mm

Number of rivets required for L3U2 0.00 nos

Since there are two side gusset plates

Number on each side 0.00 Say 10 nos

Place in three rows - 4, 2, 4

length of joint required 320 mm

supstr-s.xls/R_Joints 55 of 58

Page 56: supstr-s

Quantities Estimate

Weight of One Through Type Truss

S No. Members Nos

Length

cm

Width

cm

Thickne

ss cm

Area sq.

cm

Volume

cu. cm

Unit weight

(t/m^3) or

(Kg/m) Weight Kg

1 Top Members U 1 U 2 to U 8 U 9 (11 to 18)

ISA 130x130x10 2 437.5 25.06 219.3 19.70 172.38

ISA 75x75x10 2 437.5 14.02 122.7 11.00 96.25

Top plate 1 437.5 50 1.60 80 35000.0 7.70 269.50

Web plate 2 437.5 40 1.00 40 35000.0 7.70 269.50

Lacing ISA 75x50x8 12 63.6 9.38 71.6 7.40 56.48

864.11

Total Members 8 6,912.88

2 Bottom Members 4 to 7

ISA 110x110x12 4 437.5 25.02 437.9 19.60 343.00

Web plate 2 437.5 40 2.00 80 70000.0 7.70 539.00

Lacing 65x10 22 36.8 6.5 1.00 6.5 5262 7.70 40.52

922.52

Total Members 4 3,690.08

3 Bottom Members 1 to 3 & 8 to 10

ISA 110x110x12 4 437.5 25.02 437.9 19.60 343.00

Web plate 2 437.5 40 1.20 48 42000.0 7.70 323.40

Lacing 65x10 22 36.8 6.5 1.00 6.5 5262 7.70 40.52

706.92

Total Members 6 4,241.52

4 Vertical Members 1 to 3 & 8 to 10

ISMC 250 2 510 38.67 394.4 30.40 310.08

Lacing 65x10 25 36.8 6.5 1.00 6.5 5980 7.70 46.05

Total Members 9 3,205.17

5 Diagonal Members 1 to 3 & 8 to 10

ISA 100x100x10 4 650 19.03 494.8 14.90 387.40

Web plate 1 650 30.6 1.20 36.72 23868.0 7.70 183.78

571.18

Total Members 6 3,427.08

6 End Post Members L 1 U 1 to L 11 U 9 (19 to 20)

ISA 75x75x10 4 700 14.02 392.6 11.00 308.00

Top plate 1 700 30.6 1.60 48.96 34272.0 7.70 263.89

Web plate 2 700 40 1.20 48 67200.0 7.70 517.44

Lacing 65x10 30 36.8 6.5 1.00 6.5 7176 7.70 55.26

1144.59

Total Members 2 2,289.18

7 Gusset plates

Gusset plates L1 and L11 4 110 105 1.2 126 55440.0 7.70 426.89

Gusset plates L2, U5 and L10 6 70 65 1.2 78 32760.0 7.70 252.25

Gusset plates L3, L4, L5, L7, L8, L9 12 125 110 1.2 132 198000.0 7.70 1524.60

Gusset plates U1 and U9 4 150 115 1.2 138 82800.0 7.70 637.56

Gusset plates U2, U3, U4, U6, U7, U8 12 125 110 1.2 132 198000.0 7.70 1524.60

Total Weight 4365.90

8 Splices in top & Bottom members

Splicing in L3, L5, L7& L9 8 100 40 1.2 48 38400.0 7.70 295.68

8 100 40 0.8 32 25600.0 7.70 197.12

8 100 30.6 1.0 30.6 24480.0 7.70 188.50

Filler 4 100 20 1.0 20 8000.0 7.70 61.60

Splicing in U3, U5 & U7

6 100 38 0.8 30.4 18240.0 7.70 140.45

6 100 50 0.8 40 24000.0 7.70 184.80

Filler 6 100 19.5 1.0 19.5 11700.0 7.70 90.09

Total Weight 1158.24

Total weight for one Truss 29,290.05

supstr-s.xls/R_EST 56 of 58

Page 57: supstr-s

Floor Structure and Bracings

S No. Members Nos

Length

cm

Width

cm

Thickne

ss cm

Area sq.

cm

Volume

cu. cm

Unit weight

(t/m^3) or

(Kg/m) Weight Kg

1 Stringers

ISWB 450 3 437.5 101.15 1327.6 79.40 1042.13

End connection ISA 100x100x10 12 40 19.03 91.3 14.90 71.52

Seat ISA 100x100x10 6 20 50 19.03 22.8 14.90 17.88

1131.53

Total Members 10 11,315.30

2 Cross Girder

ISWB 600 1 517 184.86 955.7 145.10 750.17

End connection ISA 100x100x10 10 55 19.03 104.7 14.90 81.95

Bottom member plate connection 2 55 26.2 2.2 57.64 6340.4 7.70 48.82

832.12

Total Members 11 9,153.32

3 Top Bracing

End Post Bracing

End connection ISA 125x95x10 4 517 21.02 434.7 16.50 341.22

Web plate 1 517 40 1.0 40 20680.0 7.70 159.24

Knee ISA 100x100x10 4 190 19.03 144.6 14.90 113.24

613.70

Total Members 2 1,227.40

Sway Bracing

End connection ISA 100x75x10 4 517 16.5 341.2 13.00 268.84

Web plate 1 517 40 1.0 40 20680.0 7.70 159.24

Knee ISA 100x100x10 2 160 19.03 60.9 14.90 47.68

475.76

Total Members 9 4,281.84

Diagonal Bracing

ISA 100x100x10 8 705 19.03 1073.3 14.90 840.36

Gusset plates 4 30 40 1.0 40 4800.0 7.70 36.96

Gusset plates 1 30 40 1.0 40 1200.0 7.70 9.24

886.56

Total panels 10 8,403.60

Total Top Bracing weight 13,912.84

4 Bottom Bracing

Diagonal Bracing

ISA 100x100x10 8 350 19.03 532.8 14.90 417.20

ISA 100x100x10 4 200 19.03 152.2 14.90 119.20

Gusset plates 4 30 40 1.0 40 4800.0 7.70 36.96

Gusset plates 1 30 40 1.0 40 1200.0 7.70 9.24

582.60

Total panels 10 4,172.00

5 Rocker and Roller Bearings (Altyernate)

Pin of 150 mm diameter 2 75 15 176.71 265.1 7.70 2.04

Shoe plate 2 60 60 2.5 150 18000.0 7.70 138.60

Bearing plate top 8 30 30 2.5 75 18000.0 7.70 138.60

Bearing plate 2 75 75 2.5 19.03 2854.5 7.70 21.98

Bearing plates bottom 8 75 40 2.5 100 60000.0 7.70 462.00

Rollers of 100mm diameter 5 60 10 78.54 235.6 7.70 1.81

Base plate for Roller 1 75 75 2.5 19.03 1427.3 7.70 10.99

776.02

Total pair of Bearings 2 1,552.04

Total Weight of flooring & Bracing 40,105.50

Grand Total weight for one span bridge 98,685.60

supstr-s.xls/R_EST 57 of 58

Page 58: supstr-s

Rivets for one Truss

S No. Members Nos

Spacin

g cm

Dia.

mm

Rivet

nos

Total

Nos

1 Rivets between Stringer and Cross Girder

Stringer and angle 30 22 10 300

Cross Girder and angle 30 22 12 360

Total nos. 660

2 Rivets between Cross Girder and bottom member

Cross Girder and angle 11 22 26 286

Bottom member and angle 11 22 32 352

Total Nos. 638

3 Tacking rivets

Top members 8 22 96 768

Bottom members 10 22 64 640

Vertical members 9 22 38 342

Diagonal members 10 22 32 320

Total Nos. 2070

4 Rivets at Node points

Joints L1 and L11 4 22 38 152

Joints L2, U5 and L10 6 22 20 120

Joints L3, L4, L5, L7, L8, L9 12 22 50 600

Joints U1 and U9 4 22 64 256

Joints U2, U3, U4, U6, U7, U8 12 22 42 504

Joints L9 2 22 66 132

1764

5 Splicing rivets

Top members 3 22 96 288

Bottom members 4 22 120 480

768

6 Rivets for Lacing

Top members 8 14 24 192

Bottom members 10 14 44 440

Vetical member 9 14 100 900

Diagonal member 8 14 120 960

End post 2 14 120 240

2,732

Total rivets for one truss 22 5,900

Total for one bridge 14 5,464

22 11,800

supstr-s.xls/R_EST 58 of 58