Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional...

22
Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design May, EdX/MIT Joseph Jay Williams [email protected] www.josephjaywilliams.com/education lytics.stanford.edu Lytics Lab, Graduate School of Education & Office of the Vice Provost for Online Learning Stanford University (Formerly) Graduate School of Education, UC Berkeley

description

Abstract: How can online learning platforms provide useful information about pedagogy to instructors teaching online, while ensuring that course teams are not constrained in leveraging their teaching expertise to personalize their MOOC? The scientific literature on learning and education provides hundreds of detailed studies, which can be synthesized to identify effective instructional strategies, and mined for examples of how an instructional strategy can be implemented in a specific environment, set of educational materials, or student population. This talk illustrates this approach, by presenting a worksheet guide that supports MOOC designers in using two instructional strategies: increasing student motivation to think through challenges by designing exercises which encourage students to see their intelligence as malleable, and enhancing deep understanding with questions and prompts for students to explain. The talk explains how these two instructional strategies are motivated by both existing literature and recently conducted experimental studies. It also presents the specific details of how the guide is targeted at MOOC instructors and provides them with multiple actionable strategies they can use in their courses.

Transcript of Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional...

Page 1: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Supporting Instructors in MOOCs:Using cognitive science research to guide pedagogy &

instructional designMay, EdX/MIT

Joseph Jay [email protected]

www.josephjaywilliams.com/educationlytics.stanford.edu

Lytics Lab, Graduate School of Education & Office of the Vice Provost for Online Learning

Stanford University(Formerly) Graduate School of Education, UC Berkeley

Page 2: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Abstract

• How can online learning platforms provide useful information about pedagogy to instructors teaching online, while ensuring that course teams are not constrained in leveraging their teaching expertise to personalize their MOOC? The scientific literature on learning and education provides hundreds of detailed studies, which can be synthesized to identify effective instructional strategies, and mined for examples of how an instructional strategy can be implemented in a specific environment, set of educational materials, or student population. This talk illustrates this approach, by presenting a worksheet guide that supports MOOC designers in using two instructional strategies: increasing student motivation to think through challenges by designing exercises which encourage students to see their intelligence as malleable, and enhancing deep understanding with questions and prompts for students to explain. The talk explains how these two instructional strategies are motivated by both existing literature and recently conducted experimental studies. It also presents the specific details of how the guide is targeted at MOOC instructors and provides them with multiple actionable strategies they can use in their courses.

Page 3: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Complementary Knowledge in Instruction

• Instructors• Instructional Designers• EdX• Researchers: Cognitive & Learning Scientists

Page 4: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Overview

• I. Incorporating cognitive & learning sciences research

• II. Increasing motivation by changing beliefs about intelligence

• III. Enhancing understanding by engaging students in generating explanations

Page 5: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

III. Cognitive & Learning Sciences Research

• Synthesizing & Applying Broad Principles & Recent Findings• Williams, J.J. (2013). Improving Learning in MOOCs by Applying Cognitive Science.

Paper presented at the MOOCshop Workshop, International Conference on Artificial Intelligence in Education, Memphis, TN.

• Pashler, H., Bain, P., Bottge, B., Graesser, A., Koedinger, K., McDaniel, M., Metcalfe, J.: Organizing Instruction and Study to Improve Student Learning (NCER 2007-2004). Washington, DC: Institute of Education Sciences, U.S. Department of Education (2007)

• Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., Norman, M. K.: How learning works: Seven research-based principles for smart teaching. Jossey-Bass (2010)

• Willingham, D. T.: Why Don't Students Like School. Jossey-Bass (2010)• Clark, R. C., & Mayer, R. E.: E-learning and the science of instruction: Proven

guidelines for consumers and designers of multimedia learning. Pfeiffer (2004)

• Specific detailed studies

Page 6: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

II. Increase motivation – change beliefs about intelligence

• Many ways to increase motivation• Change students’ beliefs about whether intelligence

is fixed or malleable (Dweck, 2011; Yeager & Walton, 2012)

Page 7: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Implicit beliefs about Intelligence

• On a scale from 1 to 10, how much do you agree that?• Your intelligence is something very basic about you

that you can’t change very much.• No matter how much intelligence you have, you can

always change it quite a bit.

• Fixed Mindset• Growth Mindset (Dweck, 2006)

Page 8: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Boost GPA with 2 class lessons?

• Teach students an incremental/growth theory(Paunesku, Romero et al, 2012)

• Self-fulfilling prophecy• Avoid trying hard and uncomfortable challenges• Avoid asking questions & understanding errors

Page 9: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Jascha Sohl-Dickstein

Teach growth mindset of intelligence to increase motivation

• Growth mindset related to motivation & learning (Dweck, 2008; Yeager & Walton, 2011)

• Embed messages in online Khan Academy exercises• Effect of Growth Mindset beyond encouragement?

Page 10: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Experimentally manipulate added messagesPractice-as-usual

Some of these problems are hard. Do your best!Remember, the more you practice the smarter you become!

Growth Mindset Message

Positive Message

Page 11: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Design

• 50 000+ students per condition• Dependent measures:

– Number of problems attempted– Accuracy

• Growth Mindset Message• "Remember, the more you practice the

smarter you become.”,• "Mistakes help you learn. Think hard to

learn from them.”

• Positive Message• "Some of these problems are hard. Just

do your best."• "This might be a tough problem, but we

know you can do it.”

Practice-as-usual

Page 12: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Number of Problems Attempted by Students

• Unpublished data has been removed from this slide

Page 13: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Accuracy

• Unpublished data has been removed from this slide

Page 15: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

III. Enhance understanding – prompt for explanations

• “Teaching is the best way to learn”• Cognitive Psychology, Education,

Cognitive Tutors(Chi, 2000; Legare, 2012; Lombrozo, 2012; McNamara, 2004; Murphy, 2000; Siegler, 2002)

• Mathematics, Statistics, Physics, Chemistry, Biology• Many age groups• Multiple formats

Page 16: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

16

Explanation and Learning

• General boost to Learning Engagement• The Subsumptive Constraints Account:

Interpret target of why-explanation in terms of a broader generalization (Williams & Lombrozo, 2010)

• Discovery & transfer (Williams & Lombrozo, 2010, Cognitive Science)

• Use of prior knowledge (Williams & Lombrozo, 2013, Cog. Psych.)

• Erroneously overgeneralize at expense of anomalies (Williams et al, 2013, JEP: General)

Page 17: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

17

Anomalies in Mathematics

• Anomalies – contradict existing beliefs

• Often ignored by students (Chinn & Brewer, 1993 )

• Effects of explaining anomalies? (Williams, et al 2012; 2013)

Williams, Walker & Lombrozo, 2012

Page 18: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

18

Using concept of statistical deviation for ranking

• Statistical concepts:• Introductory & central to many disciplines• Difficult but important in everyday reasoning

• Learn to rank using z-scores/standard deviation(Schwartz & Martin, 2004, Belenky & Nokes, 2011)

Sarah got 85% in a Sociology class, where the average score was 79%, the average deviation was 3%, the minimum score was 67%, and the maximum score was 90%.

Tom got 69% in a Art History class, where the average score was 65%, the average deviation was 8%, the minimum score was 42%, and the maximum score was 87%.

Who was ranked higher? XXXX was ranked higher.

Page 19: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

19

Statistical rules for ranking

Type of Information

Sarah Tom

Personal Score 85% 69%

Class Average 79% 65%

Class Maximum 90% 87%

Class Deviation 8% 3%

Sarah was ranked higher.

Anomalous observation

Ranking Rule Use of rule Higher ranked

Higher score 85 > 69 Sarah

Greater distance from average

(85 – 79) > (69 – 65)

Sarah

Closer to maximum

(90 – 85) < (87 – 69)

Sarah

More deviations above the average

(85-79)/8 < (69-65)/3

Tom8% 3%Tom

Tom

Page 20: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

20

Design

Pre-Test Study Items Post-Test

5 ranked student pairs.Make 5 verbal responses

Explain: Why was this person ranked higher?

Write Thoughts: Write your thoughts about this

ranking.

? ?

Page 21: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Improvement in Accuracy

• Unpublished data has been removed from this slide

Page 22: Supporting Instructors in MOOCs: Using cognitive science research to guide pedagogy & instructional design. MIT/EdX

Review

• I. Incorporating cognitive & learning sciences research

• II. Increasing motivation by changing beliefs about intelligence

• III. Enhancing understanding by engaging students in generating explanations