Supporting Information for: Unusual para-substituent ...

31
Supporting Information for: Unusual para -substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches Xin Su a ,M¨ art L˜ okov b , Agnes K ¨ utt b , Ivo Leito *b and Ivan Aprahamian *a a Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. b Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia. E-mail: [email protected]; [email protected] Website: www.dartmouth.edu/ ~ aprahamian/ Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Transcript of Supporting Information for: Unusual para-substituent ...

Page 1: Supporting Information for: Unusual para-substituent ...

Supporting Information for:

Unusual para-substituent effects on the

intramolecular hydrogen-bond in hydrazone-based

switches

Xin Sua, Mart Lokovb, Agnes Kuttb, Ivo Leito∗b and Ivan Aprahamian∗a

aDepartment of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA.

bInstitute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia.

E-mail: [email protected]; [email protected]: www.dartmouth.edu/~aprahamian/

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 2: Supporting Information for: Unusual para-substituent ...

Table of Contents

1 General S1

2 Synthesis S1

3 Summary of Analyzed Data S4

4 pKa Measurements Data S5

5 Analysis Plots S6

6 Single Crystal Diffraction S9

7 Computational Methods S13

8 NMR Spectra S18

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 3: Supporting Information for: Unusual para-substituent ...

1 General

All reagents and starting materials were purchased from commercial sources and used as sup-

plied unless otherwise indicated. All experiments were conducted in air unless otherwise

noted. Column chromatography was performed on silica gel (SiliCycle®, 60 Å, 230-400 mesh).

Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. and used as

received. NMR spectra were recorded on a Varian Mercury 300 MHz NMR spectrometer,

with working frequencies of 299.97 MHz for 1H nuclei and 75.44 MHz for 13C nuclei, re-

spectively. Chemical shifts are quoted in ppm relative to tetramethylsilane (TMS), using the

residual solvent peak as the reference standard. Mass spectra were obtained either on a Shi-

madzu GCMS-QP2010S gas chromatograph/ EI mass spectrometer or on a Waters Quattro II

ESI mass spectrometer. Melting points were measured on an Electrothermal Thermo Scientific

IA9100X1 digital melting point instrument. The pKa measurements were conducted using a

previously reported methodology.S1,S2

2 Synthesis

Compound p-H was synthesized by following a reported procedure.S3 All other hydrazone

derivatives were synthesized in a similar manner starting from the corresponding p-substituted

anilines and ethyl-2-pyridyl acetate.

Scheme S1: The synthesis and structures of the hydrazone derivatives with different para-substituents on the phenyl ring.

p-NMe2: obtained as a red crystalline powder, yield 79%, m.p. 99.2 – 99.4 °C; 1H NMR (300

MHz, CD3CN) δ 14.78 (s, N–H), 8.68 (ddd, J= 5.0, 1.9, 1.0 Hz, H1), 8.19 (dt, J= 8.4, 1.0

Hz, H4), 7.87 (ddd, J= 8.4, 7.5, 1.9 Hz, H3), 7.47 – 7.21 (m, H2 and H5), 6.88 – 6.70 (d, J=

9.0 Hz, H6), 4.30 (qd, J= 7.1, 1.8 Hz, –CH2–), 2.89 (s, –N(CH3)2), 1.37 (t, J= 7.1 Hz, –CH3)

S1

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 4: Supporting Information for: Unusual para-substituent ...

ppm; 13C NMR (75 MHz, CD3CN) δ 166.47, 153.88, 148.54, 147.55, 137.71, 134.92, 124.51,

124.36, 123.83, 122.92, 116.70, 116.37, 114.60, 61.27, 41.14, 14.64 ppm. MS (ESI): m/z found

[M–H+] for C17H21N4O+2 313.2 (calcd. 313.2).

p-OH: obtained as a yellow powder, yield 82%, m.p. 178.9 – 179.3 °C; 1H NMR (300 MHz,

CD3CN) δ 14.64 (s, N–H), 8.70 (d, J= 5.0 Hz, H1), 8.16 (d, J= 8.4 Hz, H4), 7.97 – 7.83 (m,

H3), 7.34 (dd, J= 6.5, 5.1 Hz, H2), 7.24 (d, J= 8.9 Hz, H5), 6.83 (d, J= 8.9 Hz, H6), 6.74

(s, –OH), 4.31 (q, J = 7.1 Hz, –CH2–), 1.37 (t, J = 7.1 Hz, –CH3) ppm; 13C NMR (75 MHz,

CD3CN) δ 166.38, 153.84, 153.67, 147.71, 137.84, 137.47, 137.18, 125.29, 124.71, 123.23,

116.88, 116.83, 116.51, 61.41, 14.62 ppm. MS (ESI): m/z found [M–H+] for C15H16N3O+3

286.1 (calcd. 286.1).

p-OnHex: obtained as bright yellow flakes, yield 89%, m.p. 74.0 – 74.4 °C; 1H NMR (300

MHz, CD3CN) δ 14.67 (s, N–H), 8.75 – 8.66 (m, H1), 8.16 (d, J= 8.4 Hz, H4), 7.87 (ddd,

J= 24.0, 12.6, 8.7 Hz, H3), 7.36 – 7.27 (m, H2 and H5), 6.90 (dd, J= 10.3, 5.6 Hz, H6),

4.31 (q, J= 7.1 Hz, –OCH2CH3), 3.94 (dd, J= 9.0, 4.1 Hz, –OCH2CH2–), 1.83 – 1.64 (m, –

OCH2CH2–), 1.55 – 1.20 (m, –CH2CH2CH2CH2CH3 and –OCH2CH3), 0.91 (dd, J= 9.6, 4.3

Hz, –CH2CH2CH3) ppm; 13C NMR (75 MHz, CD3CN) δ 166.34, 156.16, 153.55, 147.69,

137.93, 137.83, 125.53, 124.71, 123.26, 116.64, 116.36, 116.21, 69.06, 61.43, 32.23, 29.92,

26.34, 23.24, 14.59, 14.25 ppm. MS (EI): m/z found M+ for C21H27N3O+3 369 (calcd. 369).

p-OMe: obtained as a dark yellow powder, yield 69%, m.p. 71.9 – 72.3 °C; 1H NMR (300

MHz, CD3CN) δ 14.66 (s, N–H), 8.70 (ddd, J= 5.0, 1.8, 0.9 Hz, H1), 8.15 (dt, J= 8.3,

0.9 Hz, H4), 7.88 (ddd, J= 8.4, 7.6, 1.9 Hz, H3), 7.39 – 7.27 (m, H2 and H5), 6.94 (d,

J= Hz, H6), 4.31 (q, J= 7.1 Hz, –CH2–), 3.77 (s, –OCH3), 1.37 (t, J= 7.1 Hz, –CH2CH3)

ppm; 13C NMR (75 MHz, CD3CN) δ 166.35, 156.72, 153.59, 147.74, 138.11, 137.88, 125.65,

124.76, 123.32, 116.67, 116.33, 115.61, 115.55, 61.46, 56.07, 14.62 ppm. MS (EI): m/z found

M+ for C16H17N4O+2 299 (calcd. 299).

p-F: obtained as a bright yellow powder, yield 75%, m.p. 61.7 – 62.0 °C; 1H NMR (300 MHz,

CD3CN) δ 14.60 (s, N–H), 8.71 (ddd, J= 5.0, 1.8, 1.0 Hz, H1), 8.12 (dt, J= 8.3, 1.0 Hz, H4),

7.90 (ddd, J= 8.4, 7.6, 1.9 Hz, H3), 7.46 – 7.33 (m, H2 and H5), 7.17 – 7.02 (m, H6), 4.33

S2

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 5: Supporting Information for: Unusual para-substituent ...

(qd, J = 7.1, 1.9 Hz, –CH2–), 1.38 (t, J = 7.2 Hz, –CH3) ppm; 13C NMR (75 MHz, CD3CN)

δ 166.17, 161.11, 157.95, 153.20, 147.89, 140.95, 138.01, 129.91, 124.98, 123.69, 116.94,

116.75, 116.65, 61.65, 14.55 ppm. MS (EI): m/z found M+ for C15H14FN3O+2 287 (calcd. 287).

p-Cl: obtained as a bright yellow powder, yield 81%, m.p. 85.9 – 86.3 °C; 1H NMR (300 MHz,

CD3CN) δ 14.58 (s, N–H), 8.72 (ddd, J= 5.0, 1.9, 1.0 Hz, H1), 8.10 (dt, J= 8.3, 1.0 Hz, H4),

7.98 – 7.84 (m, H3), 7.49 – 7.17 (m, H2, H5 and H6), 4.32 (qd,J= 7.2, 4.2 Hz, –CH2–), 1.36 (t,

J= 7.2 Hz –CH3) ppm; 13C NMR (75 MHz, CD3CN) δ 166.07, 152.99, 147.98, 143.35, 138.75,

138.08, 130.14, 127.57, 125.14, 124.19, 123.90, 117.66, 116.73, 61.77, 14.52 ppm. MS (EI):

m/z found M+ for C15H1435ClN3O+

2 303 (calcd. 303) and C15H1437ClN3O+

2 305 (calcd. 305).

p-Br: obtained as a bright yellow powder, yield 83%, m.p. 91.5 – 92.0 °C; 1H NMR (300

MHz, CD3CN) δ 14.57 (s, 1H), 8.78 – 8.66 (m, H1), 8.10 (dt, J= 8.3, 1.0 Hz, H4), 8.01 –

7.85 (m, H3), 7.54 – 7.45 (m, H6), 7.39 (ddd, J= 7.5, 5.0, 1.1 Hz, H2), 7.33 – 7.25 (m, H5),

4.33 (qd, J= 7.1, 2.8 Hz, –CH2–), 1.37 (t, J = 7.2 Hz CH3) ppm; 13C NMR (75 MHz, CD3CN)

δ 166.07, 153.02, 149.61, 148.03, 143.83, 138.12, 133.11, 128.05, 125.20, 123.95, 117.15,

116.83, 115.04, 61.80, 14.56 ppm. MS (EI): m/z found M+ for C15H1479BrN3O+

2 347 (calcd.

347) and C15H1481BrN3O+

2 349 (calcd. 350).

p-MC: obtained as a bright yellow powder, yield 80%, m.p. 92.7 – 93.1 °C; 1H NMR (300

MHz, CD3CN) δ 14.64 (s, N–H), 8.79 – 8.70 (m, H1), 8.07 (dt, J= 8.3, 1.0 Hz, 4H), 8.02 –

7.87 (m, H3 and H5), 7.47 – 7.36 (m, H2 and H6), 4.35 (qd, J = 7.1, 1.9 Hz, –CH2–), 3.84 (s,

–OCH3), 1.38 (t, J= 7.2 Hz, –CH2CH3) ppm; 13C NMR (75 MHz, CD3CN) δ 167.31, 165.95,

152.69, 148.32, 148.20, 138.25, 131.98, 129.71, 125.44, 124.60, 124.29, 116.11, 114.79, 62.00,

52.37, 14.53 ppm. MS (EI): m/z found M+ for C17H17N3O+4 327 (calcd. 327).

p-CN: obtained as a bright yellow powder, yield 80%, m.p. 95.7 – 95.9 °C; 1H NMR (300

MHz, CD3CN) δ 14.65 (s, N–H), 8.84 – 8.65 (m, H1), 8.06 (d, J= 8.3 Hz, H4), 7.99 – 7.88 (m,

H3), 7.65 (d, J= 7.7 Hz, H5), 7.49 – 7.28 (m, H2 and H6), 4.35 (q, J= 7.1 Hz, –CH2–), 1.38

(t, J= 7.1 Hz, –CH3) ppm; 13C NMR (75 MHz, CD3CN) δ 165.80, 152.40, 150.76, 149.56,

148.22, 138.30, 135.13, 134.65, 129.90, 125.51, 124.48, 120.18, 115.46, 105.07, 62.09, 14.46

ppm. MS (EI): m/z found M+ for C16H14N4O+2 294 (calcd. 294).

S3

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 6: Supporting Information for: Unusual para-substituent ...

p-NO2: obtained as a bright yellow powder, yield 77%, m.p. 124.2 – 124.5 °C; 1H NMR

(300 MHz, CD3CN) δ 14.77 (s, N–H), 8.75 (ddd, J= 4.9, 1.8, 1.0 Hz, H1), 8.25 – 8.13 (m,

H6), 8.05 (dt, J= 8.2, 1.0 Hz, H4), 7.99 – 7.90 (m, H3), 7.49 – 7.38 (m, H2 and H5), 4.37

(dq, J= 14.2, 7.0 Hz, –CH2–), 1.39 (t, J= 7.1 Hz, –CH3) ppm; 13C NMR (75 MHz, CD3CN)

δ 201.96, 165.68, 152.17, 149.87, 148.28, 142.90, 138.36, 131.51, 126.55, 125.61, 124.66,

114.77, 114.42, 110.52, 62.19, 14.42 ppm. MS (EI): m/z found M+ for C15H14N4O+4 314

(calcd. 314).

3 Summary of Analyzed Data

Table S1: A summary of Hammett constants, chemical shifts (CD3CN), N· · ·N distances andpKa values.

σp δN−H,Z/ppm δN−H,E/ppm δH5/ppm d(N· · ·N)/Å pKa

p-NMe2 -0.83 11.85 14.78 8.68 2.6349(14) 13.39p-OH -0.37 11.67 14.64 8.69 - 12.92p-OnHex -0.34 11.67 14.67 8.69 2.6312(37) 12.86p-OMe -0.27 11.66 14.66 8.70 - 12.82p-H 0 11.48 14.55 8.72 2.6580(23) 12.26p-F 0.06 11.46 14.60 8.71 - 12.26p-Cl 0.23 11.36 14.58 8.72 2.6198(32) 12.08p-Br 0.23 11.34 14.57 8.72 2.6280(27) 12.08p-MC 0.45 11.290 14.643 8.744 - 11.6p-CN 0.66 11.15 14.65 8.74 - 11.4p-NO2 0.78 11.16 14.77 8.75 2.6027(16) 10.2

S4

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 7: Supporting Information for: Unusual para-substituent ...

4 pKa Measurements Data

Table S2: Results of the experimental pKa measurements.

Base Reference base pKa ∆pKa pKa pKa(B)(B) (RB) RBa pKa(RB) - pKa(B) (B) Assigned

p-NMe2 2-Me-Pyridine 13.32 -0.09 13.41 13.392,6-Me2-Pyridine 14.13 0.76 13.37

p-OH Pyridine 12.53 -0.36 12.89 12.922-Me-Pyridine 13.32 0.38 12.94

p-OnHex Pyridine 12.53 -0.28 12.81 12.862-Me-Pyridine 13.32 0.38 12.94

p-OMe 2-Me-Pyridine 13.32 0.47 12.85 12.82Pyridine 12.53 -0.26 12.79

p-H 4-MeO-Aniline 11.86 -0.40 12.26 12.262-Me-Aniline 10.50 -1.71 12.21

Pyridine 12.53 0.22 12.31p-F 4-MeO-Aniline 11.86 -0.39 12.25 12.26

Pyridine 12.53 0.39 12.26p-Cl Pyridine 12.53 0.44 12.09 12.08

4-MeO-Aniline 11.86 -0.21 12.07p-Br 4-MeO-Aniline 11.86 -0.16 12.02 12.08

Pyridine 12.53 0.39 12.14p-MC Aniline 10.62 -0.89 11.51 11.6

4-MeO-Aniline 11.86 0.16 11.70N,N-Me2-Aniline 11.43 -0.14 11.57

p-CN 2-Me-Aniline 10.50 -0.57 11.07 11.44-MeO-Aniline 11.86 0.42 11.44

N,N-Me2-Aniline 11.43 -0.02 11.45p-NO2 N,N-Me2-Aniline 11.43 0.88 10.55 10.2

2-Me-Aniline 10.50 0.71 9.79

a pKa values of reference bases were taken from Refs. S1 and S2.

S5

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 8: Supporting Information for: Unusual para-substituent ...

5 Analysis Plots

Figure S1: The plot of δN−H,Z of the different derivatives (Z configuration) vs. the correspond-ing σp values, and the linear regression fitting results.

Figure S2: The plot of δN−H,E of the different derivatives (E configuration) vs. the correspond-ing σp values, and the linear regression fitting results.

S6

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 9: Supporting Information for: Unusual para-substituent ...

Figure S3: The plot of δH5 of the different derivatives vs. the corresponding σp values, and thelinear regression fitting results.

Figure S4: The plot of the pKas of the different derivatives vs. the corresponding σp values, andthe linear regression fitting results.

S7

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 10: Supporting Information for: Unusual para-substituent ...

Figure S5: The plot of δN−H,E of the different derivatives (E configuration) vs. the correspond-ing pKa values.

Figure S6: The plot of the predicted pKa values of the different derivatives vs. the correspondingexperimental pKa values, and the linear regression fitting results.

S8

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 11: Supporting Information for: Unusual para-substituent ...

6 Single Crystal Diffraction

Data were collected using a Bruker CCD (charge coupled device) based diffractometer equipped

with an Oxford Cryostream low-temperature apparatus operating at 173 K. Data were mea-

sured using ω and φ scans of 0.5° per frame for 30 s. The total number of images was based

on results from the program COSMOS4 where redundancy was expected to be 4.0 and com-

pleteness of 100% out to 0.83 Å. Cell parameters were retrieved using APEX II softwareS5

and refined using SAINT on all observed reflections. Data reduction was performed using the

SAINT softwareS6 which corrects for Lp. Scaling and absorption corrections were applied us-

ing SADABSS7 multi-scan technique, supplied by George Sheldrick. The structures are solved

by the direct method using the SHELXS-97 program and refined by least squares method on

F2, SHELXL-97, which are incorporated in SHELXTL-PC V 6.10.S8 All non-hydrogen atoms

are refined anisotropically. All hydrogens were calculated by geometrical methods and refined

as a riding model.

Figure S7: Ball-stick drawings of the crystal structures of p-NMe2(a), p-OnHex(b), p-Cl(c),p-Br(d) and p-NO2(e).

S9

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 12: Supporting Information for: Unusual para-substituent ...

Table S3: Crystal data and parameters for p-NMe2, p-OnHex, p-Cl, p-Br and p-NO2.

p-NMe2 p-OnHex

CCDC 885513 885514

Empirical formula C17H20N4O2 C21H27N3O3

Formula weight 312.37 369.46

Temperature 173(2) K 173(2) K

Wavelength 0.71073 Å 1.54178 Å

Crystal system Monoclinic Monoclinic

Space group P21/c P21/c

Unit cell dimensions a = 18.9390(13) Å a = 21.5273(7) Å

α = 90° α = 90°

b = 7.5769(5) Å b = 14.3929(5) Å

β = 93.5940(10)° β = 96.137(3)°

c = 11.1814(8) Å c = 6.4359(2) Å

γ = 90° γ = 90°

Volume 1333.2(2) Å3 1982.67(11) Å3

Z 4 4

Density (calcd.) 1.296 Mg·m−3 1.238 Mg·m−3

Absorption coefficient 0.088 mm−1 0.673 mm−1

F000 664 792

Crystal size 0.37 × 0.24 × 0.17 mm3 0.20 × 0.14 × 0.08 mm3

θ range for data collection 2.15 to 25.32° 2.06 to 68.23°

Index ranges -22 ≤ h ≤ 22 -25 ≤ h ≤ 25

-9 ≤ k ≤ 9 -14 ≤ k ≤ 16

-13 ≤ l ≤ 13 -7 ≤ l ≤ 7

Reflections collected 25125 14479

Independent reflections 2925 [Rint = 0.0263] 3505 [Rint = 0.0981]

Completeness to θ = 25.36° 99.9% 96.7%

Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents

Max. and min. transmission 0.9849 and 0.9685 0.9500 and 0.8743

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data / restraints / parameters 2925 / 0 / 211 3505 / 0 / 352

Goodness-of-fit on F2 1.039 1.014

Final R indices [I > 2σ(I)] R1 = 0.0324, ωR2 = 0.0854 R1 = 0.0594, ωR2 = 0.1154

R indices (all data) R1 = 0.0367, ωR2 = 0.0900 R1 = 0.1220, ωR2 = 0.1399

Largest diff. peak and hole 0.143 and -0.202 e·Å−3 0.437 and -0.238 e·Å−3

S10

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 13: Supporting Information for: Unusual para-substituent ...

(Continued)

p-Cl p-Br

CCDC 885515 885516

Empirical formula C15H14ClN3O2 C15H14BrN3O2

Formula weight 303.74 348.20

Temperature 173(2) K 173(2) K

Wavelength 0.71073 Å 0.71073 Å

Crystal system Orthorhombic Orthorhombic

Space group P212121 P212121

Unit cell dimensions a = 4.9468(4) Å a = 7.2194(2) Å

α = 90° α = 90°

b = 9.7236(7) Å b = 10.0881(3) Å

β = 90° β = 90°

c = 29.425(2) Å c = 20.1172(6) Å

γ = 90° γ = 90°

Volume 1415.39(19) Å3 1465.14(7) Å3

Z 4 4

Density (calcd.) 1.425 Mg·m−3 1.579 Mg·m−3

Absorption coefficient 0.278 mm−1 2.813 mm−1

F000 632 704

Crystal size 0.29 × 0.22 × 0.08 mm3 0.29 × 0.19 × 0.10 mm3

θ range for data collection 2.21 to 25.38° 2.02 to 25.34°

Index ranges -5 ≤ h ≤ 5 -8 ≤ h ≤ 5

-11 ≤ k ≤ 11 -10 ≤ k ≤ 12

-35 ≤ l ≤ 35 -24 ≤ l ≤ 19

Reflections collected 11499 7614

Independent reflections 2590 [Rint = 0.0307] 2644 [Rint = 0.0269]

Completeness to θ = 25.36° 99.9% 100.0%

Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents

Max. and min. transmission 0.9781 and 0.9233 0.7623 and 0.4948

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Flack parameters -0.02(10) 0.000(9)

Data / restraints / parameters 2590 / 0 / 191 2644 / 0 / 191

Goodness-of-fit on F2 1.049 1.001

Final R indices [I > 2σ(I)] R1 = 0.0441, ωR2 = 0.1058 R1 = 0.0247, ωR2 = 0.0538

R indices (all data) R1 = 0.0522, ωR2 = 0.1124 R1 = 0.0310, ωR2 = 0.0556

Largest diff. peak and hole 0.674 and -0.302 e·Å−3 0.200 and -0.310 e·Å−3

S11

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 14: Supporting Information for: Unusual para-substituent ...

(Continued)

p-NO2

CCDC 885517

Empirical formula C15H14N4O2

Formula weight 314.30

Temperature 173(2) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group Pbca

Unit cell dimensions a = 6.6841(5) Å

α = 90°

b = 19.9101(15) Å

β = 90°

c = 22.7748(17) Å

γ = 90°

Volume 3030.9(4) Å3

Z 8

Density (calcd.) 1.378 Mg·m−3

Absorption coefficient 0.103 mm−1

F000 1312

Crystal size 0.46 × 0.10 × 0.08 mm3

θ range for data collection 1.79 to 26.46°

Index ranges -8 ≤ h ≤ 8

-23 ≤ k ≤ 24

-28 ≤ l ≤ 28

Reflections collected 24984

Independent reflections 3134 [Rint = 0.0449]

Completeness to θ = 25.36° 99.9%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9920 and 0.9542

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3134 / 0 / 264

Goodness-of-fit on F2 1.011

Final R indices [I > 2σ(I)] R1 = 0.0360, ωR2 = 0.0836

R indices (all data) R1 = 0.0573, ωR2 = 0.0954

Largest diff. peak and hole 0.162 and -0.187 e·Å−3

S12

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 15: Supporting Information for: Unusual para-substituent ...

7 Computational Methods

Calculations were performed using density functional theory (DFT) with the B3LYP func-

tionalS9 as implemented in Gaussian 09.S10 Geometry optimizations and frequency analysis

were performed using the 6-311+G(d) basis set. NBO calculations were done using the B3LYP

optimized structures.

Table S4: A summary of the NBO calculated charge distributions on the N–H and the pyridylnitrogens in p-NMe2, p-H and p-NO2.

N–H Nitrogen Pyridyl Nitrogen

p-NMe2 -0.331 -0.536

p-H -0.357 -0.526

p-NO2 -0.345 -0.530

Figure S8: Ball-and-stick drawing of the B3LYP/6-311+G(d) optimized structure of p-NMe2.The NBO calculated charge distribution is shown as well.

S13

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 16: Supporting Information for: Unusual para-substituent ...

Figure S9: Ball-and-stick drawing of the B3LYP/6-311+G(d) optimized structure of p-H. TheNBO calculated charge distribution is shown as well.

Figure S10: Ball-and-stick drawing of the B3LYP/6-311+G(d) optimized structure of p-NO2.The NBO calculated charge distribution is shown as well.

S14

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 17: Supporting Information for: Unusual para-substituent ...

Table S5: Cartesian coordinates for the B3LYP/6-311+G(d) optimized structure of p-NMe2.

O 13.354285 4.5082 5.199623O 11.130906 4.182351 5.196485N 14.06781 2.915084 8.606348H 13.349289 2.60197 9.26945N 13.666881 3.405644 7.469328N 11.518283 2.611802 9.185815N 19.52514 2.404847 9.926753C 15.436945 2.810382 8.907531C 16.434185 3.247536 8.032106H 16.149887 3.687117 7.084163C 17.772711 3.127735 8.37557H 18.509827 3.485857 7.669073C 18.178346 2.558678 9.60386C 17.155065 2.140238 10.480456H 17.395061 1.714856 11.445742C 15.81565 2.259712 10.133772H 15.05635 1.923836 10.83457C 20.522034 3.107086 9.135952H 20.488556 2.791621 8.090122H 21.514103 2.863075 9.513915H 20.401096 4.200409 9.167523C 19.883302 2.063993 11.292756H 19.558537 2.820826 12.02298H 20.965674 1.964422 11.364391H 19.450518 1.103461 11.58405C 12.397323 3.535192 7.139237C 12.202084 4.093933 5.769328C 13.267436 5.027642 3.854604H 14.122715 5.700606 3.777845H 12.348312 5.60536 3.751031C 13.343667 3.919067 2.817707H 14.251169 3.324275 2.947714H 13.361823 4.351751 1.812486H 12.478302 3.257487 2.885097C 11.236351 3.178773 7.98599C 9.893831 3.416182 7.61842H 9.674764 3.861452 6.661317C 8.875894 3.061438 8.489721H 7.842926 3.242416 8.209325C 9.183611 2.475029 9.717125H 8.413143 2.183313 10.421866C 10.524672 2.27549 10.011603H 10.825537 1.824858 10.954247

S15

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 18: Supporting Information for: Unusual para-substituent ...

Table S6: Cartesian coordinates for the B3LYP/6-311+G(d) optimized structure of p-H.

O 4.286749 9.236076 5.553032O 3.020645 9.429371 7.400530N 4.218824 11.747371 5.097162N 4.289886 12.970012 4.639244H 3.659487 13.669066 5.046512N 2.351764 13.536336 6.339138C 3.521307 9.934575 6.413635C 3.367540 11.371162 6.021811C 2.340632 12.222295 6.670004C 1.366127 11.725404 7.560085H 1.367746 10.680969 7.827964C 0.427547 12.594772 8.095381H -0.324158 12.217241 8.781277C 0.457366 13.945100 7.751158H -0.258241 14.653681 8.152500C 1.442706 14.359717 6.865722H 1.512073 15.400111 6.558417C 4.548015 7.852290 5.882975H 4.743091 7.385928 4.916526H 3.649611 7.412532 6.317335C 5.739827 7.713984 6.815091H 6.628658 8.183018 6.386152H 5.960414 6.654759 6.979533H 5.535576 8.170747 7.784997C 5.214207 13.310292 3.639686C 5.266112 14.644449 3.217104H 4.603711 15.379590 3.664993C 6.164498 15.024830 2.225358H 6.196995 16.061091 1.904600C 7.017245 14.085170 1.647646H 7.717251 14.383277 0.874497C 6.960138 12.757109 2.073940H 7.618897 12.017579 1.629691C 6.066772 12.361298 3.063469H 6.014983 11.332799 3.396836

S16

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 19: Supporting Information for: Unusual para-substituent ...

Table S7: Cartesian coordinates for the B3LYP/6-311+G(d) optimized structure of p-NO2.

O 1.166048 21.196603 15.718743O 0.745955 22.073143 17.742104O -0.929236 14.642734 11.153427O -1.305192 13.020582 12.546736N 0.035093 17.608869 16.631646H -0.023943 17.260462 17.595263N 0.335111 18.881111 16.46075N 0.256296 18.074786 19.220747N -1.010014 14.184627 12.28956C 0.586531 19.688239 17.455541C 0.837202 21.104004 17.016061C 1.359049 22.536169 15.203483H 2.154652 23.019607 15.774893H 0.442044 23.107463 15.364272C 1.705334 22.41372 13.734773H 2.620314 21.834628 13.591154H 1.861689 23.408365 13.308255H 0.900452 21.928434 13.178203C 0.619781 19.338711 18.89845C 1.038561 20.236399 19.899201H 1.313802 21.245913 19.637872C 1.068325 19.813164 21.220579H 1.388828 20.499196 21.997821C 0.683122 18.512997 21.538397H 0.690101 18.149043 22.559421C 0.28674 17.684489 20.496361H -0.02025 16.659552 20.686564C -0.218099 16.791733 15.535919C -0.137006 17.269472 14.217475H 0.130578 18.303287 14.045324C -0.396909 16.414884 13.159663H -0.339165 16.763933 12.13722C -0.736537 15.085403 13.412719C -0.820167 14.596529 14.715683H -1.0858 13.561451 14.883484C -0.561261 15.449917 15.774404H -0.624031 15.080382 16.792834

S17

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 20: Supporting Information for: Unusual para-substituent ...

8 NMR Spectra

Figure S11: 1H NMR spectrum of p-NMe2 in CD3CN at 294 K in the presence of the minor Zisomer.

Figure S12: 13C NMR spectrum of p-NMe2 in CD3CN at 294 K in the presence of the minorZ isomer.

S18

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 21: Supporting Information for: Unusual para-substituent ...

Figure S13: 1H NMR spectrum of p-OH in CD3CN at 294 K in the presence of the minor Zisomer.

Figure S14: 13C NMR spectrum of p-OH in CD3CN at 294 K in the presence of the minor Zisomer.

S19

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 22: Supporting Information for: Unusual para-substituent ...

Figure S15: 1H NMR spectrum of p-OnHex in CD3CN at 294 K in the presence of the minorZ isomer.

Figure S16: 13C NMR spectrum of p-OnHex in CD3CN at 294 K in the presence of the minorZ isomer.

S20

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 23: Supporting Information for: Unusual para-substituent ...

Figure S17: 1H NMR spectrum of p-OMe in CD3CN at 294 K in the presence of the minor Zisomer.

Figure S18: 13C NMR spectrum of p-OMe in CD3CN at 294 K in the presence of the minor Zisomer.

S21

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 24: Supporting Information for: Unusual para-substituent ...

Figure S19: 1H NMR spectrum of p-F in CD3CN at 294 K in the presence of the minor Zisomer.

Figure S20: 13C NMR spectrum of p-F in CD3CN at 294 K in the presence of the minor Zisomer.

S22

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 25: Supporting Information for: Unusual para-substituent ...

Figure S21: 1H NMR spectrum of p-Cl in CD3CN at 294 K in the presence of the minor Zisomer.

Figure S22: 13C NMR spectrum of p-Cl in CD3CN at 294 K in the presence of the minor Zisomer.

S23

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 26: Supporting Information for: Unusual para-substituent ...

Figure S23: 1H NMR spectrum of p-Br in CD3CN at 294 K in the presence of the minor Zisomer.

Figure S24: 13C NMR spectrum of p-Br in CD3CN at 294 K in the presence of the minor Zisomer.

S24

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 27: Supporting Information for: Unusual para-substituent ...

Figure S25: 1H NMR spectrum of p-MC in CD3CN at 294 K in the presence of the minor Zisomer.

Figure S26: 13C NMR spectrum of p-MC in CD3CN at 294 K in the presence of the minor Zisomer.

S25

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 28: Supporting Information for: Unusual para-substituent ...

Figure S27: 1H NMR spectrum of p-CN in CD3CN at 294 K in the presence of the minor Zisomer.

Figure S28: 13C NMR spectrum of p-CN in CD3CN at 294 K in the presence of the minor Zisomer.

S26

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 29: Supporting Information for: Unusual para-substituent ...

Figure S29: 1H NMR spectrum of p-NO2 in CD3CN at 294 K in the presence of the minor Zisomer.

Figure S30: 13C NMR spectrum of p-NO2 in CD3CN at 294 K in the presence of the minor Zisomer.

S27

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 30: Supporting Information for: Unusual para-substituent ...

References

(S1) I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito and I. A. Koppel, J.

Org. Chem., 2005, 70, 1019–1028.

(S2) L. Sooväli, I. Kaljurand, A. Kütt and I. Leito, Anal. Chim. Acta, 2006, 566, 290–303.

(S3) S. M. Landge, E. Tkatchouk, D. Benítez, D. A. Lanfranchi, M. Elhabiri, W. A. Goddard,

III and I. Aprahamian, J. Am. Chem. Soc., 2011, 133, 9812–9823.

(S4) Bruker Analytical X-ray Systems, Madison, WI, USA, COSMO V1.58, Software for the

CCD Detector Systems for Determining Data Collection Parameters, 2008.

(S5) Bruker Analytical X-ray Systems, Madison, WI, USA, APEX2 V2008.5-0 Software for

the CCD Detector System, 2008.

(S6) Bruker Analytical X-ray Systems, Madison, WI, USA, SAINT V 7.34 Software for the

Integration of CCD Detector System, 2008.

(S7) R. H. Blessing, Acta Cryst. A, 1995, 51, 33–38.

(S8) G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112–122.

(S9) (a) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785–789; (b) A. D. Becke,

J. Chem. Phys., 1993, 98, 5648–5652; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski

and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627.

(S10) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese-

man, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,

X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,

M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Ki-

tao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark,

J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,

K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,

J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,

S28

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012

Page 31: Supporting Information for: Unusual para-substituent ...

R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.

Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,

J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz,

J. Cioslowski, and D. J. Fox, Gaussian 09 Revision A.1, Gaussian Inc. Wallingford CT

2009.

S29

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2012