Supplementary Materials for · 2020. 4. 29. · 2 Materials and Methods Experimental Methods The...

25
science.sciencemag.org/content/368/6490/513/suppl/DC1 Supplementary Materials for Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst Zongyuan Liu*, Erwei Huang*, Ivan Orozco, Wenjie Liao, Robert M. Palomino, Ning Rui, Thomas Duchoň, Slavomir Nemšák, David C. Grinter, Mausumi Mahapatra, Ping Liu, José A. Rodriguez, Sanjaya D. Senanayake*These authors contributed equally to this work. †Corresponding author. Email: [email protected] (P.L.); [email protected] (J.A.R.); [email protected] (S.D.S.) Published 1 May 2020, Science 368, 513 (2020) DOI: 10.1126/science.aba5005 This PDF file includes: Materials and Methods Figs. S1 to S14 Tables S1 and S2 References

Transcript of Supplementary Materials for · 2020. 4. 29. · 2 Materials and Methods Experimental Methods The...

  • science.sciencemag.org/content/368/6490/513/suppl/DC1

    Supplementary Materials for

    Water-promoted interfacial pathways in methane oxidation to methanol

    on a CeO2-Cu2O catalyst

    Zongyuan Liu*, Erwei Huang*, Ivan Orozco, Wenjie Liao, Robert M. Palomino,

    Ning Rui, Thomas Duchoň, Slavomir Nemšák, David C. Grinter, Mausumi Mahapatra,

    Ping Liu†, José A. Rodriguez†, Sanjaya D. Senanayake†

    *These authors contributed equally to this work.

    †Corresponding author. Email: [email protected] (P.L.);

    [email protected] (J.A.R.); [email protected] (S.D.S.)

    Published 1 May 2020, Science 368, 513 (2020)

    DOI: 10.1126/science.aba5005

    This PDF file includes:

    Materials and Methods

    Figs. S1 to S14

    Tables S1 and S2

    References

    mailto:[email protected]:[email protected]:[email protected]

  • 2

    Materials and Methods

    Experimental Methods

    The ambient-pressure XPS experiments for the catalysts were performed at the Advanced

    Light Source in Lawrence Berkeley National Laboratory (beamline 9.3.2). The model catalyst was

    generated in a preparation chamber connected to the analysis chamber by vapor evaporating Ce

    metal onto a Cu(111) single crystal held at 600 K in the presence of 5 × 10−7 torr O2 and

    subsequentially post-annealing at the same conditions for 5 minutes, which led to the formation of

    CeO2/Cu2O/Cu(111) surfaces (16). The ceria coverages presented in this work are estimated to be

    0.3-0.5 ML where a maximum of methane to methanol conversion has been observed (16). The

    prepared surfaces were then exposed to different reactant feeds (CH4, CH4/O2, CH4/O2/H2O) at a

    range of temperatures (300-550 K) while performing the AP-XPS measurements. The spectra were

    recorded using a VG-Scienta R4000 HiPP analyzer. A photon energy of 650 eV was used to excite

    the O 1s region. The C 1s, Cu 3p, and Ce 4d regions were probed with a photon energy of 490 eV.

    The total energy resolution in the photoemission experiments was ∼0.2 eV. Similar experiments were also performed in a commercial SPECS AP-XPS chamber equipped with a PHOIBOS 150

    EP MCD-9 analyzer at the Chemistry Division of Brookhaven National Laboratory (BNL) to

    acquire the Cu 2p, Cu LMM and Ce 3d spectra using a Mg K-α source.

    Density Functional Theory (DFT) Calculations

    In these calculations, we used Ce3O6 cluster which was employed before to model the

    CeO2/Cu2O/Cu(111) system (16), reproducing well its chemical properties. Images of scanning

    tunneling microscopy for CeO2/Cu2O/Cu(111) surfaces show two types of ceria nanoparticles (22).

    The first type, has a size of 30-50 nm and the essential chemistry occurs on the borders which can

    be represented by a Ce3O6 cluster where the atoms have a low coordination (16). The second type

    of ceria nanoparticle is much smaller (ranging from 0.5 to 5 nm) and is well represented by the

    Ce3O6 cluster embedded on a copper oxide film supported on Cu(111) (16). All the calculations

    were performed by Vienna Ab Initio Simulation Package (VASP) (16, 21, 22 27) based on spin-

    polarized DFT. A 400eV kinetic energy cutoff (16, 22) and the projector augmented wave method

    (PAW) together with GGA exchange correlation functional with the PBE functional (16) were

    employed. The Brillouin zone of all the surface calculations was sampled by Monkhorst-Pack )

    meshes with 3×3×1 while 9×9×9 was applied for all gas-phase species (16). Geometry

    optimizations were converged with criteria that total energy change and the maximum forces on

    all atoms were less than 10−5 eV and 0.02 eV Å−1, respectively. A Gaussian smearing with width

    0.05 eV was used to improve the convergence. The Cu (3p, 3d, 4s), Ce (4f, 5s, 5p, 5d, 6s), C (2s,

    2p), O (2s, 2p) and H (1s) electrons were treated as valence states, while the remaining electrons

    were kept frozen as core states. For each reaction intermediates, calculations with nudged elastic

    band method (NEB) (16, 21) were performed to derive their transition states. The dispersion forces

    were not considered here due to the overestimation the strong interactions, e.g. water and oxygen,

    which represent the major part of the reaction network and thus the activity/selectivity.

    CeO2/Cu2O/Cu(111) catalyst was modeled with 3 layer of 4×4 Cu(111) surface and one

    monolayer of CuxO (x 1.13) with Ce3O6 cluster deposited on top (Fig. S5), according to our

    previous works (16, 22). The Hubbard-like U term was also considered to address Cu 3d and Ce

    4f electrons for the CuxO surface (Ueff = 5.2) and Ce3O6 cluster (Ueff = 4.5), in which the Coulomb

    U and exchange J parameters were combined into a single parameter Ueff = U - J.

    The adsorption energy obtained directly from DFT calculations for adsorbate on the

    CeO2/Cu2O/Cu(111) model surface was calculated as:

  • 3

    ΔEads = E(Adsorbate/Surface) − E(Adsorbate) − E(Surface)

    where E is the total energy calculated using DFT. The zero-point energy (ZPE) correction

    (EZPE) was included as:

    𝐸𝑍𝑃𝐸 = ∑1

    2ℎ𝑣𝑖

    𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠

    𝑖=1

    where vi is DFT obtained vibrational frequency for each intermediate.

    Kinetic Monte Carlo (KMC) Simulations

    In KMC simulations, to describe CeO2/Cu2O/Cu(111), CeO2 cluster were randomly

    distributed on a Cu2O layer supported by a 128 128 matrix of Cu(111), corresponding to 0.1

    monolayer (ML) of coverage with respect to Cu on Cu(111) (Fig. S9). Only the CeO2-

    Cu2O/Cu(111) interface site were considered as the active sites for selective CH4 oxidation

    according to the DFT calculations. All elementary steps involved in the KMC simulations were

    listed in Fig. S14 and Table S1. The experimental conditions (pressure ratio: CH4:O2 = 2:1 or

    CH4:O2:H2O = 2:1:8; T = 450K) were considered. The elementary reactions rate constant k was

    calculated by Arrhenius equation given by:

    𝑘 = 𝐴0 ∗ 𝑒𝑥𝑝 (−𝐸𝑎

    𝑘𝐵𝑇)

    in which, Ea is the activation energy with ZPE-correction from DFT calculations for each

    elementary reaction; kB is the Boltzmann constant and the T stands for the absolute temperature

    implemented in KMC simulations. A0 represents pre-exponential factor, a constant for each

    elementary reaction which may vary by several orders of magnitude for different elementary

    reactions (28). In the present work, A0 was calculated by (29):

    𝐴0 =𝑘𝐵𝑇

    ℎ𝑒𝑥𝑝 (

    ∆𝑆

    𝑘𝐵)

    in which, h is Planck’s constant. ∆S is the entropy change from initial state to transition state

    for each elementary reaction. The entropy (S) for each intermediate was estimated with their

    corresponding DFT calculated vibrational frequency (29):

    𝑆 = 𝑘𝐵 ∑ {

    ℎ𝑣𝑖𝑘𝐵𝑇

    𝑒𝑥𝑝 (ℎ𝑣𝑖

    𝑘𝐵𝑇⁄ ) − 1

    − ln [1 − 𝑒𝑥𝑝 (−ℎ𝑣𝑖

    𝑘𝐵𝑇⁄ )]}

    𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠

    𝑖=1

    where vi is the above DFT obtained vibrational frequency for each intermediate during the

    vibrational frequency calculations.

    The entropy for gas phase molecules involving in the elementary steps was taken from NIST

    Computational Chemistry Comparison and Benchmark DataBase (CCCBDB) (30). The calculated

    pre-exponential factor for each step was listed in Table S2.

    Furthermore, the adsorption coefficient for gas phase molecules was calculated as (29):

    𝑘𝑎𝑑𝑠 = 𝑃𝐴𝑠𝑖𝑡𝑒𝜎

    √2𝜋𝑚𝑘𝐵𝑇

    where P is the pressure of the adsorption gas, Asite is the area of a single site, 𝜎 is the sticking coefficient, and m is the mass of adsorption gas. The sticking coefficients for O2, CH4 and H2O

    are all set to 1 in our KMC model, the coverage of adsorbed molecules on the surface, which is

    catalytically interesting, strongly depends on the desorption rate or the binding energy of each

    molecule.

  • 4

    Fig. S1. O 1s region of the AP-XPS spectra after exposing the CeO2/Cu2O/Cu(111) surface (θCeO2~

    0.5 ML) to 80 mTorr of H2O from 300 K to 450 K. Two types of hydroxyl species were observed,

    -OH(1) and -OH(2), and they are assigned to hydroxyls bound to Cu2O (~ 531.1 eV) and CeO2 sites

    (~ 532.1 eV), respectively.

  • 5

    Fig. S2. Deconvoluted C 1s region of the AP-XPS spectra shown in Fig. 2A collected while

    exposing a CeO2-Cu2O-Cu(111) surface to 20 mTorr of CH4 + 80 mTorr of H2O + 10 mTorr of O2

    at 300 K.

  • 6

    Fig. S3. Deconvoluted C 1s region of the AP-XPS spectra of the CeO2-Cu2O-Cu(111) surface at

    450 K under a 20 mTorr CH4 + 80 mTorr H2O + 10 mTorr O2 (top) and 20 mTorr CH4 + 80 mTorr

    H2O (bottom) of gas mixture.

  • 7

    Fig. S4. Ce 3d region in AP-XPS for a CeO2-Cu2O-Cu(111) surface exposed to a 20 mTorr of

    CH4 at different temperatures (θ ≈ 0.5 ML).

  • 8

    Fig. S5. Ce 3d region in AP-XPS for a CeO2-Cu2O-Cu(111) surface exposed to a 20 mTorr of

    CH4 + 80 mTorr of H2O + 10 mTorr of O2 at different temperatures (θ ≈ 0.5 ML).

  • 9

    Fig. S6. (A) Top and side view of DFT-optimized structure for CeO2/Cu2O/Cu(111); (B) Partial

    density of states (PDOS) of Ce 4f for CeO2/Cu2O/Cu(111); Yellow: Ce; brown: Cu; red: O.

  • 10

    Fig. S7. DFT-calculated potential energy diagram of CH4 oxidation by O2 on CeO2/Cu2O/Cu(111).

    Inset: Structures for selected intermediates. Yellow: Ce; brown: Cu; red: O in

    CeO2/Cu2O/Cu(111); green: O in O2 gray: C; white: H.

  • 11

    *CH4 + *O TS of *CH4 + *O to *CH3OH *O

    A B C

    TS of *CH4 + *O to *CH3O + *H *CH3O + *H*CH3OH

    D E F

    G H I

    TS of *CH2O + 2*H

    to *HCO + *H2O + *H + *Ov*CH2O + 2*H

    TS of *CH3O + *H

    to *CH2O + 2*H

  • 12

    Fig. S8. Top and side view for the structures of reaction intermediates and transition states (TS)

    involved in CH4 oxidation by O2 on CeO2/Cu2O/Cu(111), where the corresponding energies

    were shown in Fig. S7. Yellow: Ce; brown: Cu; red: O in CeO2/Cu2O/Cu(111); green: O in O2;

    gray: C; white: H.

    *HCO + *H2O + *H + *Ov *HCO + *H + *Ov *HCOO + *H + *Ov

    J K L

    M N O

    *CO2 + *H2O + 2*OvTS of *HCOO + *H + *Ov

    to *COO + *H2O + 2*Ov*CO2 + 2*Ov

    *CO2 + *Ov *CO2 Model Catalyst

    P Q R

  • 13

    Fig. S9. KMC snapshot of CeO2/Cu2O/Cu(111) matrix under steady states when exposure to

    CH4/O2 with pressure ratio of 2:1 and 450K. Yellow: Ce; Big red: O in CeO2: Small Red: O in

    Cu2O; small brown: Cu in in Cu2O; small gray (inset): Cu in Cu(111).

  • 14

    Fig. S10. DFT-calculated potential energy diagram of CH4 oxidation by H2O and O2 on

    CeO2/Cu2O/Cu(111). Inset: Structures for selected intermediates. Yellow: Ce; brown: Cu; red: O

    in CeO2/Cu2O/Cu(111); green: O in O2 gray: C; white: H.

  • 15

    *H2O *OH +*H *CH4 + *OH + *H

    A B C

    2*H*CH3OH + 2*HTS of *CH4 + *OH + *H

    to *CH3OH + 2*H

    D E F

  • 16

    Fig. S11. Top and side view for the structures of reaction intermediates and transition states (TS)

    involved in CH4 oxidation by O2 and H2O on CeO2/Cu2O/Cu(111), where the corresponding

    energies were shown in Fig. S10. Yellow: Ce; brown: Cu; red: O in CeO2/Cu2O/Cu(111); green:

    O in O2; purple: O in H2O gray: C; white: H.

    *H2O + *OH + *H + *OvTS of *H2O + 2*H to

    *H2O + *OH + *H + *Ov*H2O + 2*H

    G H I

    *OH + *H + *Ov *H2O*OH + *H

    J K L

  • 17

    Fig. S12. Top and side view for the structures of reaction intermediates and transition states (TS)

    involved in the conversion process from *CH3O to CH3OH by water extraction on

    CeO2/Cu2O/Cu(111), where the corresponding energies were shown in Fig. 3C. Yellow: Ce;

    brown: Cu; red: O in CHxO and CeO2/Cu2O/Cu(111); purple: O in H2O gray: C; white: H.

    A B C

    D E

    *OH *CH3O

  • 18

    Fig. S13. KMC screenshot of CeO2/Cu2O/Cu(111) matrix under steady states when exposure to

    CH4/O2/H2O with pressure ratio of 2:1:8 and 450K. Yellow: Ce; Big red: O in CeO2: Small Red:

    O in Cu2O; small brown: Cu in in Cu2O; small gray: Cu in Cu(111); pink: *OH; blue: *CH3O.

  • 19

    Fig. S14. KMC-extracted major operating pathway on CeO2/Cu2O/Cu(111) on exposure to

    CH4/O2 (A) and CH4/O2/H2O (B).

  • 20

    Table S1. ZPE-corrected reaction barrier, Ea (kcal/mol), and reaction energy, E (kcal/mol), for

    each elementary steps involved in selective methane oxidation over CeO2/Cu2O/Cu(111) by O2

    or O2/H2O.

    Elementary Reactions Ea E

    CH4 (g) + * → *CH4 -- -2.54

    O2 (g)+ * → *O2 -- -14.53

    H2O (g) + * → *H2O -- -15.91

    *CH3OH → CH3OH (g) + * 20.06 20.06

    *CO2 → CO2 (g) + * 13.84 13.84

    *CH4 + *H + *OH → *CH3OH + 2*H 22.37 -18.68

    *CH3OH + 2*H → *CH4 + *H + *OH 41.05 18.68

    *H2O + 2*H + * → *H + *OH + *H2O + *Ov 2.31 -8.30

    *H + *OH + *H2O + *Ov → *H2O + 2*H + * 10.61 8.30

    *OH + *H → *H2O + * 18.91 18.91

    *H2O + * → *OH + *H 0.00 -18.91

    *O2 + * → 2*O 5.54 -24.44

    2*O → *O2 + * 29.98 24.44

    *CH4 + *O → *CH3O + *H 18.45 -37.82

    *CH3O + *H → *CH4 + *O 56.27 37.82

    *CH4 + *O → *CH3OH + * 16.37 -23.29

    *CH3OH + * → *CH4 + *O 39.66 23.29

    *CH3OH + * → *CH3O+ *H 0.00 -14.53

    *CH3O + *H → *CH3OH + * 14.53 14.53

    *CH3O + *H + * → *CH2O + 2*H 7.15 -14.53

    *CH2O + 2*H → *CH3O + *H + * 21.68 14.53

    *CH2O + 2*H + * → *HCO + *H2O + *H + *Ov 20.52 -51.89

    *HCO + *H2O + *H + *Ov → *CH2O + 2*H + * 72.41 51.89

    *HCOO + *H + *Ov + *→ *CO2 + *H2O + 2*Ov 7.61 -32.51

    *CO2 + *H2O + 2*Ov → *HCOO + *H + *Ov + * 40.12 32.51

  • 21

    *CH3O + *H2O → *CH3OH + *OH 6.69 4.85

    *CH3OH + *OH → *CH3O + *H2O 1.84 -4.85

  • 22

    Table S2. DFT-calculated pre-exponential factors for each elementary step involved in selective

    methane oxidation over CeO2/Cu2O/Cu(111) by O2 or O2/H2O.

    Elementary Reactions Pre-exponential Factors(s-1)

    *CH4 + *H + *OH → *CH3OH + 2*H 2.74E+12

    *CH3OH + 2*H → *CH4 + *H + *OH 1.15E+15

    *H2O + 2*H + * → *H + *OH + *H2O + *Ov 1.17E+13

    *H + *OH + *H2O + *Ov → *H2O + 2*H + * 4.26E+12

    *OH + *H → *H2O + * 4.05E+12

    *H2O + *→ *OH + *H 2.17E+13

    *O2 + * → 2*O 1.58E+12

    2*O → *O2 + * 3.92E+13

    *CH4 + *O → *CH3O + *H 2.16E+11

    *CH3O + *H → *CH4 + *O 4.73E+14

    *CH4 + *O → *CH3OH + * 2.36E+12

    *CH3OH + * → *CH4 + *O 3.08E+13

    *CH3OH + * → *CH3O + *H 2.63E+13

    *CH3O + *H → *CH3OH + * 3.35E+12

    *CH3O + *H + * → *CH2O + 2*H 1.70E+12

    *CH2O + 2*H → *CH3O + *H + * 6.13E+10

    *CH2O + 2*H + *→ *HCO + *H2O + *H + *Ov 3.81E+15

    *HCO + *H2O + *H + *Ov → *CH2O + 2*H + * 1.04E+16

    *HCOO + *H + *Ov + *→ *CO2 + *H2O + 2*Ov 8.15E+12

    *CO2 + *H2O + 2*Ov → *HCOO + *H + *Ov + * 1.37E+14

    *CH3O + *H2O → *CH3OH + *OH 4.16E+13

    *CH3OH + *OH → *CH3O + *H2O 3.20E+14

  • References and Notes

    1. A. C. Rosenzweig, C. A. Frederick, S. J. Lippard, P. Nordlund, Crystal structure of a bacterial

    non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature

    366, 537–543 (1993). doi:10.1038/366537a0 Medline

    2. S. Sirajuddin, A. C. Rosenzweig, Enzymatic oxidation of methane. Biochemistry 54, 2283–

    2294 (2015). doi:10.1021/acs.biochem.5b00198 Medline

    3. M. O. Ross, F. MacMillan, J. Wang, A. Nisthal, T. J. Lawton, B. D. Olafson, S. L. Mayo, A.

    C. Rosenzweig, B. M. Hoffman, Particulate methane monooxygenase contains only

    mononuclear copper centers. Science 364, 566–570 (2019). doi:10.1126/science.aav2572

    Medline

    4. R. Balasubramanian, S. M. Smith, S. Rawat, L. A. Yatsunyk, T. L. Stemmler, A. C.

    Rosenzweig, Oxidation of methane by a biological dicopper centre. Nature 465, 115–119

    (2010). doi:10.1038/nature08992 Medline

    5. M. Ravi, M. Ranocchiari, J. A. van Bokhoven, The direct catalytic oxidation of methane to

    methanol—A critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

    doi:10.1002/anie.201702550 Medline

    6. V. L. Sushkevich, D. Palagin, M. Ranocchiari, J. A. van Bokhoven, Selective anaerobic

    oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    doi:10.1126/science.aam9035 Medline

    7. S. Grundner, M. A. Markovits, G. Li, M. Tromp, E. A. Pidko, E. J. Hensen, A. Jentys, M.

    Sanchez-Sanchez, J. A. Lercher, Single-site trinuclear copper oxygen clusters in

    mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546

    (2015). doi:10.1038/ncomms8546 Medline

    8. J. Shan, M. Li, L. F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Mild oxidation of methane

    to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608

    (2017). doi:10.1038/nature24640 Medline

    9. C. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N.

    Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, A. F. Carley, S. H.

    Taylor, D. J. Willock, E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely, G. J. Hutchings,

    Direct catalytic conversion of methane to methanol in an aqueous medium by using

    copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).

    doi:10.1002/anie.201108706 Medline

    10. M. H. Groothaert, P. J. Smeets, B. F. Sels, P. A. Jacobs, R. A. Schoonheydt, Selective

    oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite

    zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005). doi:10.1021/ja047158u Medline

    11. P. Tomkins, A. Mansouri, S. E. Bozbag, F. Krumeich, M. B. Park, E. M. C. Alayon, M.

    Ranocchiari, J. A. van Bokhoven, Isothermal cyclic conversion of methane into methanol

    over copper-exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55, 5467–5471

    (2016). doi:10.1002/anie.201511065 Medline

    http://dx.doi.org/10.1038/366537a0http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8255292&dopt=Abstracthttp://dx.doi.org/10.1021/acs.biochem.5b00198http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25806595&dopt=Abstracthttp://dx.doi.org/10.1126/science.aav2572http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31073062&dopt=Abstracthttp://dx.doi.org/10.1038/nature08992http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20410881&dopt=Abstracthttp://dx.doi.org/10.1002/anie.201702550http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28643885&dopt=Abstracthttp://dx.doi.org/10.1126/science.aam9035http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28473586&dopt=Abstracthttp://dx.doi.org/10.1038/ncomms8546http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26109507&dopt=Abstracthttp://dx.doi.org/10.1038/nature24640http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29189776&dopt=Abstracthttp://dx.doi.org/10.1002/anie.201108706http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22488717&dopt=Abstracthttp://dx.doi.org/10.1021/ja047158uhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15686370&dopt=Abstracthttp://dx.doi.org/10.1002/anie.201511065http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27010863&dopt=Abstract

  • 12. Z. Liang, T. Li, M. Kim, A. Asthagiri, J. F. Weaver, Low-temperature activation of methane

    on the IrO2(110) surface. Science 356, 299–303 (2017). doi:10.1126/science.aam9147

    Medline

    13. Z. Liu, P. Lustemberg, R. A. Gutiérrez, J. J. Carey, R. M. Palomino, M. Vorokhta, D. C.

    Grinter, P. J. Ramírez, V. Matolín, M. Nolan, M. V. Ganduglia-Pirovano, S. D.

    Senanayake, J. A. Rodriguez, In situ investigation of methane dry reforming on

    metal/ceria(111) surfaces: Metal–support interactions and C−H bond activation at low

    temperature. Angew. Chem. Int. Ed. 56, 13041–13046 (2017).

    doi:10.1002/anie.201707538 Medline

    14. P. G. Lustemberg, R. M. Palomino, R. A. Gutiérrez, D. C. Grinter, M. Vorokhta, Z. Liu, P. J.

    Ramírez, V. Matolín, M. V. Ganduglia-Pirovano, S. D. Senanayake, J. A. Rodriguez,

    Direct conversion of methane to methanol on Ni-ceria surfaces: Metal–support

    interactions and water-enabled catalytic conversion by site blocking. J. Am. Chem. Soc.

    140, 7681–7687 (2018). doi:10.1021/jacs.8b03809 Medline

    15. X. Deng, T. Herranz, C. Weis, H. Bluhm, M. Salmeron, Adsorption of water on Cu2O and

    Al2O3 thin films. J. Phys. Chem. C 112, 9668–9672 (2008). doi:10.1021/jp800944r

    16. Z. Zuo, P. J. Ramírez, S. D. Senanayake, P. Liu, J. A. Rodriguez, Low-temperature

    conversion of methane to methanol on CeOx/Cu2O catalysts: Water controlled activation

    of the C–H bond. J. Am. Chem. Soc. 138, 13810–13813 (2016).

    doi:10.1021/jacs.6b08668 Medline

    17. P. J. Smeets, R. G. Hadt, J. S. Woertink, P. Vanelderen, R. A. Schoonheydt, B. F. Sels, E. I.

    Solomon, Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-

    ZSM-5. J. Am. Chem. Soc. 132, 14736–14738 (2010). doi:10.1021/ja106283u Medline

    18. J. S. Woertink, P. J. Smeets, M. H. Groothaert, M. A. Vance, B. F. Sels, R. A. Schoonheydt,

    E. I. Solomon, A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane

    to methanol. Proc. Natl. Acad. Sci. U.S.A. 106, 18908–18913 (2009).

    doi:10.1073/pnas.0910461106 Medline

    19. G. Li, P. Vassilev, M. Sanchez-Sanchez, J. A. Lercher, E. J. M. Hensen, E. A. Pidko,

    Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane

    oxidation to methanol. J. Catal. 338, 305–312 (2016). doi:10.1016/j.jcat.2016.03.014

    20. P. Tomkins, M. Ranocchiari, J. A. van Bokhoven, Direct conversion of methane to methanol

    under mild conditions over Cu-zeolites and beyond. Acc. Chem. Res. 50, 418–425 (2017).

    doi:10.1021/acs.accounts.6b00534 Medline

    21. J. Carrasco, D. López-Durán, Z. Liu, T. Duchoň, J. Evans, S. D. Senanayake, E. J. Crumlin,

    V. Matolín, J. A. Rodríguez, M. V. Ganduglia-Pirovano, In situ and theoretical studies

    for the dissociation of water on an active Ni/CeO2 catalyst: Importance of strong metal-

    support interactions for the cleavage of O-H bonds. Angew. Chem. Int. Ed. 54, 3917–

    3921 (2015). doi:10.1002/anie.201410697 Medline

    22. J. A. Rodriguez, J. Graciani, J. Evans, J. B. Park, F. Yang, D. Stacchiola, S. D. Senanayake,

    S. Ma, M. Pérez, P. Liu, J. Fdez Sanz, J. Hrbek, Water-gas shift reaction on a highly

    active inverse CeOx/Cu(111) catalyst: Unique role of ceria nanoparticles. Angew. Chem.

    Int. Ed. 48, 8047–8050 (2009). doi:10.1002/anie.200903918 Medline

    http://dx.doi.org/10.1126/science.aam9147http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28428421&dopt=Abstracthttp://dx.doi.org/10.1002/anie.201707538http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28815842&dopt=Abstracthttp://dx.doi.org/10.1021/jacs.8b03809http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29804460&dopt=Abstracthttp://dx.doi.org/10.1021/jp800944rhttp://dx.doi.org/10.1021/jacs.6b08668http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27718562&dopt=Abstracthttp://dx.doi.org/10.1021/ja106283uhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20923156&dopt=Abstracthttp://dx.doi.org/10.1073/pnas.0910461106http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19864626&dopt=Abstracthttp://dx.doi.org/10.1016/j.jcat.2016.03.014http://dx.doi.org/10.1021/acs.accounts.6b00534http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28151649&dopt=Abstracthttp://dx.doi.org/10.1002/anie.201410697http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25651288&dopt=Abstracthttp://dx.doi.org/10.1002/anie.200903918http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19780089&dopt=Abstract

  • 23. F. Yang, J. Graciani, J. Evans, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodriguez, CO oxidation on

    inverse CeOx/Cu(111) catalysts: High catalytic activity and ceria-promoted dissociation

    of O2. J. Am. Chem. Soc. 133, 3444–3451 (2011). doi:10.1021/ja1087979 Medline

    24. Y. Lykhach, T. Staudt, M. P. A. Lorenz, R. Streber, A. Bayer, H.-P. Steinrück, J. Libuda,

    Microscopic insights into methane activation and related processes on Pt/ceria model

    catalysts. ChemPhysChem 11, 1496–1504 (2010). doi:10.1002/cphc.200900673 Medline

    25. A. Siokou, R. M. Nix, Interaction of methanol with well-defined ceria

    surfaces: Reflection/absorption infrared spectroscopy, X-ray photoelectron spectroscopy,

    and temperature-programmed desorption study. J. Phys. Chem. B 103, 6984–6997

    (1999). doi:10.1021/jp991127h

    26. D. R. Mullins, Variations in the surface chemistry of methanol with CeO2(100) at low and

    elevated pressures. Surf. Interface Anal. 50, 913–920 (2018). doi:10.1002/sia.6266

    27. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and

    semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    doi:10.1016/0927-0256(96)00008-0

    28. C. T. Campbell, L. Árnadóttir, J. R. V. Sellers, Kinetic prefactors of reactions on solid

    surfaces. Z. Phys. Chem. 227, 1435–1454 (2013). doi:10.1524/zpch.2013.0395

    29. S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Active sites for CO2

    hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    doi:10.1126/science.aal3573 Medline

    30. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard

    Reference Database Number 101, R. D. Johnson III, Ed. (2019); https://cccbdb.nist.gov/.

    http://dx.doi.org/10.1021/ja1087979http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21341793&dopt=Abstracthttp://dx.doi.org/10.1002/cphc.200900673http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20108299&dopt=Abstracthttp://dx.doi.org/10.1021/jp991127hhttp://dx.doi.org/10.1002/sia.6266http://dx.doi.org/10.1016/0927-0256(96)00008-0http://dx.doi.org/10.1524/zpch.2013.0395http://dx.doi.org/10.1126/science.aal3573http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28336665&dopt=Abstracthttps://cccbdb.nist.gov/