Supplemental Information The Protein ATG16L1 Suppresses ...

15
Immunity Volume 39 Supplemental Information The Protein ATG16L1 Suppresses Inflammatory Cytokines Induced by the Intracellular Sensors Nod1 and Nod2 in an Autophagy-Independent Manner Matthew T. Sorbara, Lisa K. Ellison, Mahendrasingh Ramjeet, Leonardo H. Travassos, Nicola L. Jones, Stephen E. Girardin, and Dana J. Philpott

Transcript of Supplemental Information The Protein ATG16L1 Suppresses ...

Page 1: Supplemental Information The Protein ATG16L1 Suppresses ...

Immunity Volume 39

Supplemental Information

The Protein ATG16L1 Suppresses Inflammatory

Cytokines Induced by the Intracellular Sensors

Nod1 and Nod2 in an Autophagy-Independent Manner

Matthew T. Sorbara, Lisa K. Ellison, Mahendrasingh Ramjeet, Leonardo H. Travassos, Nicola L. Jones,

Stephen E. Girardin, and Dana J. Philpott

Page 2: Supplemental Information The Protein ATG16L1 Suppresses ...

Inventory  of  Supplemental  Information       4  Supplemental  Figures:  

Figure  S1:  Knockdown  of  ATG5,  ATG9a,  and  ATG16L1  in  ModeK  Cells,  Related  to  Figure  2.  Figure  S2:    The  increased  cytokine  response  in  ATG16L1-­‐deficient  cells  in  response  to  cyto-­‐invasion  is  not  dependent  on  increased  bacterial  load,  related  to  Figure  3.  Figure  S3:  Knockdown  of  ATG16L1  but  not  ATG5  or  ATG9a  triggers  increased  Nod  responses  in  ModeK  cells,  related  to  Figure  4.  Figure  S4:  A  truncated  ATG16L1  lacking  the  N-­‐terminal  binds  Nod1  and  Nod2  but  not  ATG5,  related  to  Figure  6.  

      Supplemental  Experimental  Procedures         References  for  Supplemental  Experimental  Procedures       3  Supplemental  Tables,  related  to  Supplemental  Methods:  

Table  S1:  shRNA  sequences  used  for  ATG5,  ATG9a  and  ATG16L1  knockdown  Table  S2:  Primers  used  to  generate  pLJM1-­‐ATG16L1  constructs.  Table  S3:    Primer  sequences  for  qPCR  

   

Page 3: Supplemental Information The Protein ATG16L1 Suppresses ...

Supplemental  Experimental  Procedures  

shRNAs,  expression  constructs,  and  Lentivirus  Production:  HEK293T  cells  were  

seeded   at   a   density   of   3   x   106   per   10   cm   plate.     The   following   day,   cells   were  

transfected  with  2.25  μg  of  psPax2,  0.75  μg  pMDG,  and  3  μg  of  either  pLKO-­‐shRNA  

plasmid  or  pLJM1  constructs  (See  below)  using  Fugene  HD  (Roche)  according  to  the  

manufacturer’s  protocols.    shRNA  sequences  are   listed  in  Table  S1.    48  hours  after  

transfection,   the   supernatant   of   the   cultures  was   collected,   filtered   to   remove   cell  

debris,  and  buffered  with  100  mM  HEPES.      

Knockdown   procedure:     ModeK,   MEF,   or   MDAMC   cells   were   seeded   in   6   well  

plates  at  densities  of  4  x  105,  2.5  x  105,  or  2  x  105  cells/well,  respectively.    1  day  later,  

1  mL  of   lentivirus  preparation  was  added   to   the   cells   in   the  presence  of  8  μg/mL  

polybrene,   and   the   cells  were   centrifuged   at   3500   rpm   for   90  minutes.     24   hours  

post-­‐transduction,  cells  were  split   into  10  cm  plates   in  media  containing  8  μg/mL,  

3µg/mL,   or   2   μg/mL   puromycin   for  ModeK,  MEF   and  MDAMC   cells,   respectively.    

Cells   were   used   at   day   5   post-­‐transduction.     Knockdown   cells   were   prepared  

independently   for   each   infection   and   stimulation   experiment   to   avoid   serially  

passaging  cells  deficient  in  autophagy.  

Rescue   Plasmid   construction:     Flag-­‐tagged   ATG16L1   and   mCherry   constructs  

were  amplified  using  the  primers  listed  in  Table  S2.    Amplified  inserts  were  cloned  

into   the  AgeI  and  EcoRI  sites  of  pLJM1.    The  300A  and  300T  variants  of  ATG16L1  

were   subcloned   from   previously   described   plasmids   (Raju   et   al.,   2012).   Positive  

clones  were  verified  by  sequencing.  

Cell  Culture  and  Bacteria  Strains:  S.  flexneri  M90T  (Shigella),  S.  flexneri  M90T-­‐RFP,  

S.  flexneri  BS176  (non-­‐invasive)  were  grown  in  TSB  broth.    For  M90T-­‐RFP  TSB  broth  

was  supplemented  with  100μg/mL  ampicillin.    L.  monocytogenes  10403S  (Listeria)  

and   the   isogenic  Δhly,plcAB   (DP-­‐2319  –  endosome-­‐confined  strain)  were  grown   in  

BHI   broth.     Salmonella   enterica   serovar   Typhimurium   strain   (Salmonella)   SL1344  

and  the  isogenic  ΔphoP,  and  ΔSPI-­‐1/pInv  strains  were  grown  in  LB  broth.    

Page 4: Supplemental Information The Protein ATG16L1 Suppresses ...

Protein   Blots:     Cells   were   lysed   in   RIPA   buffer   and   separated   by   SDS-­‐PAGE   and  

transferred  to  PVDF  membranes.    Membranes  were  blocked  with  5%  milk  in  TBS-­‐T,  

and  incubated  overnight  with  the  following  primary  antibodies:  1:1000  rabbit  anti-­‐

ATG16L1    for  human  ATG16L1(Novus  Biologicals),  1:2500  rabbit  anti-­‐ATG16L1  for  

mouse   ATG16L1   (Cosmo   Bio   Co),   1:1000   rabbit   anti-­‐ATG5   (Novus   Biologicals),  

1:1000   rabbit   anti-­‐ATG9a   (Novus   Biologicals)   1:10000   mouse   anti-­‐α   Tubulin  

(Sigma),     1:1500   rabbit   anti-­‐LC3   (Cell   Signaling),   1:3000  mouse  anti-­‐Flag   (Sigma),  

1:10000   rabbit   anti-­‐Flag   (Sigma),   1:2500   mouse   anti-­‐HA   (Abcam),   1:1000   rabbit  

anti-­‐Rip2   (Santa   Cruz   Biotechnology),   1:1500   rabbit   anti-­‐p62   (Cell   Signaling)  

1:1000   rabbit   anti-­‐K63   Ubiquitin   (Millipore).     Following   washing   and   incubation  

with  appropriate  HRP-­‐conjugated  secondary  antibodies,  blots  were  developed  with  

ECL-­‐Prime  (GE  Healthcare).  

Immunofluorescence   and  Quantifications:    For   immunofluorescence,  cells  were  

seeded   in  24  well  plates  on  glass  coverslips.    Cells  were  washed  2x  with  PBS,  and  

fixed  for  15  minutes  with  4%  PFA  in  PBS.    Fixed  cells  were  mounted  with  Prolong  

Gold   Antifade   reagent   with   DAPI   (Invitrogen),   and   imaged   and   analyzed   using   a  

Carlo   Zeiss   Axiovert   200   microscope   with   a   63X   oil   immersion   objective   and  

Volocity  software  (Quorum  Technologies).    For  quantifications,  at  least  25  cells  were  

counted  from  each  of  three  independent  experiments  per  condition.  

Luciferase   Assays:     ModeK   cells   were   transfected   with   75   ng   of   NF-­‐κB   driven  

luciferase   (Igκ-­‐luc,   Invitrogen),   25   ng   of   constitutive   β-­‐gal,   and   200   ng   of   empty  

pcDNA3.     24   hours   post-­‐transfection,   cells   were   stimulated   (as   described   in  

Experimental   Procedures),   and   4.5   hours   post-­‐stimulation   luciferase   activity   was  

measured.    

qRT-­‐PCR   and   ATG16L1   Rescue   Analysis:    RNA  was   isolated   from   infected   cells  

with   the  RNeasy  Kit   (Qiagen)  and  treated  with   the  TURBO  DNA-­‐free  kit   (Ambion).    

Reverse   transcription   was   performed   using   the   SuperScript   III   First-­‐Strand  

Synthesis   Kit   (Invitrogen),   and   cDNA   was   treated   with   RNASE   H   (New   England  

Biolabs).    All  procedures  were  performed  according  to  the  manufacturers  protocols.    

Page 5: Supplemental Information The Protein ATG16L1 Suppresses ...

qPCR  was  performed  with  Power  SYBR  Green  (Applied  Biosystems),  using  primers  

listed   in  Table  S3.    Values  presented  are  normalized   to  Rpl19   for  murine   samples  

and  β-­‐actin  for  human  samples  and  each  condition’s  unstimulated  control.      

Rescue   Analysis:   to   calculate   rescue   percentages   the   following   formula  was   used:    

rescue%=(3’UTR  response  –  rescue  response)/(3’UTR  response  –  control  response).  

References    Raju,  D.,  Hussey,  S.,  Ang,  M.,  Terebiznik,  M.R.,  Sibony,  M.,  Galindo-­‐Mata,  E.,  Gupta,  V.,  Blanke,  S.R.,  Delgado,  A.,  Romero-­‐Gallo,  J.,  et  al.  (2012).  Vacuolating  Cytotoxin  and  Variants  in  Atg16L1  That  Disrupt  Autophagy  Promote  Helicobacter  pylori  Infection  in  Humans.  Gastroenterology  142,  1160-­‐1171.    

Page 6: Supplemental Information The Protein ATG16L1 Suppresses ...

Supplementary  Figures  

Figure   S1:    Knockdown  of  ATG5,  ATG9a,   and  ATG16L1   in  ModeK  Cells,   related   to  

Figure   2.     (A)     Left   panel:  Lysates   of   cells   transduced  with   the   indicated   shRNA’s  

were  analyzed  by  protein  blot   for  ATG16L1  (top),   the  ATG5-­‐12  conjugate  (middle)  

and   Tubulin   (bottom).     Right   panel:     Cells   transduced   with   scrambled   or   ATG9a  

shRNA   were   probed   for   the   expression   of   ATG9a   (top)   or   tubulin   (bottom)   by  

protein   blot.   *   indicates   a   non-­‐specific   band.     (B-­‐D)     Expression   of   ATG5   (B),  

ATG16L1   (C),   and   ATG9a   (D)   mRNA   was   measured   in   cells   transduced   with   the  

indicated  shRNAs  (n=3,  **,  p<0.01  by  t  test).    (E-­‐F)  Scrambled,  ATG5,  and  ATG16L1  

(E)    or  Scrambled,  ATG16L1,  and  ATG9a  (F)  knockdown  cells  were  stimulated  with  

rapamycin  (25  µg/mL)  for  2  hours.    Formation  of  LC3-­‐II  was  measured  by  protein  

blot  (top).    Tubulin  was  used  as  a  loading  control  (bottom).    Blots  are  representative  

of  three  independent  experiments.    (G)    Representative  images  of  Scrambled,  ATG5,  

and   ATG16L1   knockdown   cells   transduced   with   GFP-­‐LC3   and   infected   with   RFP  

expressing  Shigella    for  3.5  hours.    (H)    Quantification  of  GFP-­‐LC3  autophagosomes  

targeted  to  intracellular  Shigella  in  control  and  knockdown  cells  (n=3,  with  25  cells  

counted  per  condition  per  experiment,  *   indicates  p<0.05  by  t   test).   (I)    Lysates  of  

MDAMC  cells  transduced  with  the  indicated  shRNA’s  were  analyzed  by  protein  blot  

for   expression   of   ATG16L1   (top   panel),   and   Tubulin   (bottom).       (J)   Expression   of  

ATG16L1  relative  to  β-­‐actin  in  MDAMC  cells  was  quantified  in  control  and  ATG16L1  

knockdown  cells  (n=3,  **,  p<0.01  by  t  test).    All  values  are  present  as  mean+SEM.  

Figure  S2:    The  increased  cytokine  response  in  ATG16L1-­‐deficient  cells  in  response  

to   cyto-­‐invasion   is  not  dependent  on   increased  bacterial   load,   related   to  Figure  3.  

(A)   Scrambled   (left),   ATG5   (middle)   or   ATG16L1   (right)   knockdown   cells   were  

infected  with  invasive  or  non-­‐invasive  Shigella,  or  wild  type  or  endosome-­‐confined  

Listeria.     At   16   hour’s   post-­‐infection   secretion   of   CXCL1  was   quantified   by   ELISA  

(n=5-­‐8).   (B)   Representative   images   of   ModeK   cells   (Blue   –   DAPI)   3.5   hours   after  

being  infected  with  RFP-­‐Shigella  (Red).    To  block  bacterial  replication  post-­‐invasion,  

cells   were   treated   with   5µg/mL   chloramphenicol   30   minutes   post-­‐infection.     (C)    

Page 7: Supplemental Information The Protein ATG16L1 Suppresses ...

Production  of  CXCL1  in  control  or  ATG16L1-­‐silenced  ModeK  cells  was  measured  by  

ELISA   16   hours   post-­‐infection   with   Shigella   infection   with   or   without  

chloramphenicol  treatment  (n  =  5).    (D)    Following  infection  of  control  of  ATG16L1-­‐

knockdown  ModeK  cells  with  wild-­‐type  Salmonella  or  a  ΔphoP  mutant,  production  

of   CXCL1  was  measured   by   ELISA   at   16   hours   post-­‐infection   (n=3).     At   4.5   hours  

post-­‐infection,  there  was  an  average  of  83.6%  fewer  bacteria  in  wells  infected  with  

ΔphoP  mutant   compared   to   wild   type.     All   values   are   presented   as   mean+SEM.    

*p<0.05,  **,p<0.01  by  t  test.    

Figure  S3:  Knockdown  of  ATG16L1  but  not  ATG5  or  ATG9a  triggers  increased  Nod  

responses   in   ModeK   cells,   related   to   Figure   4.     (A)   Production   of   CXCL1   was  

measured   by   ELISA   after   stimulation   of   control,   ATG5   and   ATG16L1-­‐knockdown  

ModeK   cells   with   C12-­‐iE-­‐DAP   (20   μg/mL)   or   L18-­‐MDP   (20   μg/mL)   for   16   hours  

(n=3).     (B)   Scrambled   (left),  ATG5   (middle)   and  ATG16L1   (right)   knockdown  cells  

were   stimulated   with   C12-­‐iE-­‐DAP   (20   μg/mL),   L18-­‐MDP   (20   μg/mL),   TNF-­‐

α (10ng/mL)  or  LPS  (100  ng/mL).    At  16  hour’s  post-­‐stimulation,  secretion  of  CXCL1  

was  quantified  by  ELISA  (n=3-­‐8).  (C)  Production  of  CXCL1  was  measured  by  ELISA  

after  stimulation  of  control,  ATG9a  and  ATG16L1  deficient  ModeK  cells  with  C12-­‐iE-­‐

DAP   (10   μg/mL)   or   L18-­‐MDP   (10   μg/mL)   for   16   hours   (n=9).   (D)   Production   of  

CXCL1  by  ModeK  cells   in   the  presence  or  absence  of  3-­‐MA  (5  mM)  and  stimulated  

for   16   hours   with   C12-­‐iE-­‐DAP   (20   μg/mL),   L18-­‐MDP   (20   μg/mL),   TNF-­‐α   (10  

ng/mL),  LPS  (100  ng/mL)  (n=3  from  a  representative  experiment).    (E)  Expression  

of  ATG16L1   (top  panel)  was   examined  by  protein   blot   in  ModeK   cells   transduced  

with  control  or  ATG16L1  targeting  shRNAs.    Tubulin  was  used  as  a  loading  control  

(bottom   panel).     (F)   Expression   of   ATG16L1   in   cells   transduced   with   control   or  

ATG16L1  targeting  shRNA  was  quantified  by  qPCR  (n=3).    (G)  Production  of  CXCL1  

was   measured   by   ELISA   after   stimulation   of   control,   or   ATG16L1-­‐knockdown  

ModeK  cells  with  L18-­‐MDP  (20  μg/mL)  or  LPS  (100ng/mL)  for  16  hours  (n=3).    (H)  

Production  of  CXCL1  was  measured  by  ELISA  after   stimulation  of   control,   or  Rip2  

inhibitor-­‐treated   ModeK   cells   with   C12-­‐iE-­‐DAP   (20   μg/mL),   TNF-­‐α   (10   ng/mL),    

L18-­‐MDP  (20  μg/mL)  or  LPS  (100ng/mL)  for  16  hours  (n=3  from  a  representative  

Page 8: Supplemental Information The Protein ATG16L1 Suppresses ...

independent   experiment.).     All   values   are   presented   as  mean+SEM.     *p<0.05,   by   t  

test.  

Figure  S4:  A  truncated  ATG16L1  lacking  the  N-­‐terminal  binds  Nod1  and  Nod2  but  

not  ATG5,   related   to   Figure  6.     A)  HEK293T   cells  were   transfected  with  HA-­‐Nod1  

(left  panels)  or  HA-­‐Nod2   (right  panels)   and  Flag-­‐mCherry,  Flag-­‐ATG16L1,  or  Flag-­‐

85−607  and  interaction  between  the  Flag-­‐tagged  proteins,  Nod1  or  Nod2,  and  ATG5  

was   assessed   by   performing   a   Flag-­‐immunoprecipitation.     Input   lysates   and  

immunoprecipitated   proteins   were   probed   for   Flag   (top),   ATG5   (middle)   and   HA  

(bottom).    

 

Page 9: Supplemental Information The Protein ATG16L1 Suppresses ...
Page 10: Supplemental Information The Protein ATG16L1 Suppresses ...
Page 11: Supplemental Information The Protein ATG16L1 Suppresses ...
Page 12: Supplemental Information The Protein ATG16L1 Suppresses ...
Page 13: Supplemental Information The Protein ATG16L1 Suppresses ...

Table  S1:  shRNA  sequences  used  for  ATG5,  ATG9a  and  ATG16L1  knockdown  

Target shRNA Sequence

Murine ATG16L1 #1 AACAGACTTTGGAAAGATGGG

Murine ATG16L1 #2 AAAGTTCTCAAGAAAGCTACG

Murine ATG16L1 #3 AAACAATGTCATTGCAGCTGG

Murine ATG16L1 #4 AAGTTCTCAAGAAAGCTACGG

Murine ATG5 TTATCTGGGTAGCTCAGATGC

Murine ATG9a ATGTGTGCAAGAATCACTCGG

Human ATG16L1 Coding TTCAGTGTTATTCTTCCAGGC

Human ATG16L1 3’UTR GCATGAATGTGTCTCATTACT

     

Page 14: Supplemental Information The Protein ATG16L1 Suppresses ...

Table  S2:  Primers  used  to  generate  pLJM1-­‐ATG16L1  constructs.  

Construct  

Flag-­‐

mCherry  

Forward   CCCACCGGTGCCACCATGGATTACAAGGATGACGACGATAAAATGGTGAGCAAGGGCGAG

Reverse   CCCGAATTCTTACTTGTACAGCTCGTCCATGC

Flag-­‐

ATG16L1  

Forward   CCCACCGGTGCCACCATGGATTACAAGGATGACGACGATAAAATGTCGTCGGGCCTCCGC

Reverse   CCCGAATTCTCAGTACTGTGCCCACAGCACAG

Flag-­‐85-­‐

607  

Forward   CCCACCGGTGCCACCATGGATTACAAGGATGACGACGATAAAATGGCCCAACTGAGGATT

Reverse   CCCGAATTCTCAGTACTGTGCCCACAGCACAG

Flag-­‐ΔCCD   Amplifying  

1-­‐69  

For: CCCACCGGTGCCACCATGGATTACAAGGATGACGACGATAAAATGTCGTCGGGCCTCCGC Rev: CCGGGCTTGCCGCCTCCTTATCTCGTGCCTGTTTGGTACGTC

Amplifying  

213-­‐607  

For: GACGTACCAAACAGGCACGAGATAAGGAGGCGGCAAGCCCGG Rev: CCCGAATTCTCAGTACTGTGCCCACAGCACAG

     

Page 15: Supplemental Information The Protein ATG16L1 Suppresses ...

Table  S3:    Primer  sequences  for  qPCR  

 

 

Gene   Forward   Reverse  

Murine  Rpl19   GCATCCTCATGGAGCACAT CTGGTCAGCCAGGAGCTT

Murine  Cxcl1   TGGGATTCACCTCAAGAACA TTTCTGAACCAAGGGGAGC

Murine  Cxcl2   CCCCCTGGTTCAGAAAATCA CTCTTTGGTTCTTCCGTTGAGG

Murine  

Atg16L1  

TGTGAATTCAAGGGCTCCCTGTCT TCATCCACAGTCCAGATTCGGCTT

Murine  Atg5   AACCACCTTGAGTCAGGACAACGA TGCATTTCACGAGAAGAGGAGGCT

Murine  Atf3   CGAAGACTGGAGCAAAATGATG CAGGTTAGCAAAATCCTCAAATAC

Murine  Atg9a   GAATTGCTTCTTGTCACCGCTGCT AGGACGTGTTCCACAGCTAACACA

Human  Actb   CGTTGCACATGCCGGAG

GCACAGAGCCTCGCCTT

Human  Il8   ATGACTTCCAAGCTGGCCGTGGCT

TCTCAGCCCTCTTCAAAATCTC

Human  

Atg16L1  

PCR1  

AGACAGGCGTTCGAGGAGATCAT

ATCTCGTGCCTGTTTGGTACGTCA

Human  

Atg16L1  

PCR2  

TAACCAAATGCAGCGGAAGGACAG

TTCAGGGTCTGGTTGGCTCTTTCA