Supersonic - BANAL 2013

download Supersonic - BANAL 2013

of 282

Transcript of Supersonic - BANAL 2013

  • 7/25/2019 Supersonic - BANAL 2013

    1/282

  • 7/25/2019 Supersonic - BANAL 2013

    2/282

    Howtoughisthisgonna get?

  • 7/25/2019 Supersonic - BANAL 2013

    3/282

    Justhavetherightattitude,youllbefine.

  • 7/25/2019 Supersonic - BANAL 2013

    4/282

    Coverage

    CompressibleFlow

    SupersonicFlowNormalShockWaves

    ObliqueShockWavesExpansionWaves

    CompressibleFlowThroughNozzles,Diffusers

    andWindTunnels

  • 7/25/2019 Supersonic - BANAL 2013

    5/282

  • 7/25/2019 Supersonic - BANAL 2013

    6/282

    CompressibleFlow

  • 7/25/2019 Supersonic - BANAL 2013

    7/282

  • 7/25/2019 Supersonic - BANAL 2013

    8/282

    PerfectGas

    Aperfectgasisquite,discreetanddefinitelyjustagas.

  • 7/25/2019 Supersonic - BANAL 2013

    9/282

    PerfectGas

    RTp =pressure density

    specificgasconstant

    R=287J/(kgK)=1716(ftlb)/(slugR)

    forair

    temperature

  • 7/25/2019 Supersonic - BANAL 2013

    10/282

    InternalEnergy

    dvv

    e

    dTT

    e

    de

    +

    =

    Mathematically,

    But,

    )()( vfTfe =Thus,

    dTcdTTede v==

  • 7/25/2019 Supersonic - BANAL 2013

    11/282

    Enthalpy

    pveh +=

  • 7/25/2019 Supersonic - BANAL 2013

    12/282

    Enthalpy

    dTT

    h

    dpp

    h

    dh

    +

    =

    Mathematically,

    But,

    )()( pfTfh =Thus,

    dTcdTThdh p==

  • 7/25/2019 Supersonic - BANAL 2013

    13/282

    SpecificHeatsPreviously,

    Alternativeview:

    v

    vTec

    =

    dTcdTT

    e

    de v=

    = dTcdTT

    h

    dh p=

    =

    p

    pThc

    =

    constantvolume

    specificheat

    constantpressure

    specificheat

  • 7/25/2019 Supersonic - BANAL 2013

    14/282

    SpecificHeats

    dTcde v= dTcdhp

    =

    Tce v= Tch p=

    CaloricallyPerfectGas:cvandcpareassumedconstant.

  • 7/25/2019 Supersonic - BANAL 2013

    15/282

    RelationBetweenSpecificHeats

    pveh +=

    RTTcTcvp

    +=

    Rcc vp +=

  • 7/25/2019 Supersonic - BANAL 2013

    16/282

    RelationBetweenSpecificHeats

    Rcc vp +=

    pp

    v

    p

    p

    c

    R

    c

    c

    c

    c+=

    v

    p

    c

    c=

    pc

    R+=

    11

    1=

    Rcp

  • 7/25/2019 Supersonic - BANAL 2013

    17/282

    RelationBetweenSpecificHeats

    Rcc vp +=

    RcR

    v+=

    1

    1=

    R

    cv

  • 7/25/2019 Supersonic - BANAL 2013

    18/282

    SpecificHeatsRatio

    v

    p

    c

    c

    =

    airfor4.1=

  • 7/25/2019 Supersonic - BANAL 2013

    19/282

    FirstLawofThermodynamics

    dewq =+

  • 7/25/2019 Supersonic - BANAL 2013

    20/282

    Processes

    AdiabaticProcess.

    Oneinwhichnoheatisaddedtoortakenawayfromthesystem.

    ReversibleProcess.

    Oneinwhichnodissipativephenomenaoccur,thatis,wheretheeffects

    ofviscosity,thermalconductivityandmassdiffusionareabsent.

    IsentropicProcess.

    Onethatisbothadiabaticandreversible.

  • 7/25/2019 Supersonic - BANAL 2013

    21/282

    WorkForareversibleprocess,closedsystem

    depdvq =

    pdvw =

    TheFirstLawbecomes,

  • 7/25/2019 Supersonic - BANAL 2013

    22/282

    Entropy

    irrev

    dsT

    qds +=

    T

    q

    ds rev

    =

  • 7/25/2019 Supersonic - BANAL 2013

    23/282

    SecondLawofThermodynamics

    T

    qds

    0ds

  • 7/25/2019 Supersonic - BANAL 2013

    24/282

    Entropy

    depdvq =

    depdvTds =

    depdvTds +=

    vdppdvdedh ++=

    vdpdhq =

    vdpdhTds =

  • 7/25/2019 Supersonic - BANAL 2013

    25/282

    EntropydepdvTds += vdpdhTds =

    T

    pdv

    T

    dTcds v +=

    T

    vdp

    T

    dTcds

    p =

    v

    Rdv

    T

    dTc

    ds v

    += p

    Rdp

    T

    dTc

    ds p

    =

  • 7/25/2019 Supersonic - BANAL 2013

    26/282

    v

    Rdv

    T

    dTcds v +=

    p

    Rdp

    T

    dTcds

    p =

    1

    2

    1

    2 lnlnp

    pR

    T

    Tcs p =

    1

    2

    1

    2 lnlnv

    vR

    T

    Tcs v +=

    Entropy

  • 7/25/2019 Supersonic - BANAL 2013

    27/282

    IsentropicProcessLets=0inthepreviousequations.

    )1/(

    1

    2

    1

    2

    1

    2

    =

    =

    T

    T

    p

    p

    Tattoothisexpressiononyourminds.

  • 7/25/2019 Supersonic - BANAL 2013

    28/282

    Example

    1) A perfect gas is expanded adiabatically from 5 to 1 bar

    by the law pV1.2 = constant. The initial temperature is200C. Calculate the change in specific entropy. R = 287.15

    J/kgK, =1.4

  • 7/25/2019 Supersonic - BANAL 2013

    29/282

    Example

    1) Consider a point in a flow where the velocity andtemperature are 230m/s and 375K respectively.Calculate the total enthalpy at this point.

    2) An airfoil is in a freestream where P

    = 0.75 atm, = 0.942 kg/m

    3 and V = 325 m/s. At a point onthe airfoil surface, the pressure is 0.62 atm.Assuming isentropic flow, calculate the velocity at

    the point.

  • 7/25/2019 Supersonic - BANAL 2013

    30/282

    ExampleConsideraBoeing747flyingatastandardaltitudeof36,000ft.The

    pressureatapointonthewingis400Ib/ft2.Assumingisentropicflow

    overthewing,calculatethetemperatureatthispoint.

    R.391Tandlb/ft476pft,36,000ofaltitudestandardaAt 2 ==

    )1/(

    =

    T

    T

    p

    p

    R372476

    400

    91.3

    4.1/4.0/)1(

    =

    =

    =

    p

    p

    TT

  • 7/25/2019 Supersonic - BANAL 2013

    31/282

  • 7/25/2019 Supersonic - BANAL 2013

    32/282

    CompressibilityMeasureoftherelativevolumechangewithpressure

    p p+dp

    dpd

    1=

  • 7/25/2019 Supersonic - BANAL 2013

    33/282

    Compressibility

    T

    Tdp

    d

    =

    1

    Isothermalcompressibility

    Isentropiccompressibility

    s

    s dp

    d

    =

    1

  • 7/25/2019 Supersonic - BANAL 2013

    34/282

    Compressibility

    dp

    d

    1=

    dp

    d

    1=

    dpd =

    Wheneverafluidexperiencesachangeinpressure,

    thereisacorrespondingchangeindensity.

  • 7/25/2019 Supersonic - BANAL 2013

    35/282

    Compressibility

    dpd =

    forsolidsandliquidsissmall;

    thusdissmallforeverydp

    (ispracticallyconstant)

    foragasinlowspeedflowmaybelarge,

    butasmalldp dominates

  • 7/25/2019 Supersonic - BANAL 2013

    36/282

    Compressibility

    p +dp

    p

    p +dp

    p

    IncompressibleFlow

    CompressibleFlow

  • 7/25/2019 Supersonic - BANAL 2013

    37/282

  • 7/25/2019 Supersonic - BANAL 2013

    38/282

    ContinuityEquation

    =+

    S

    SdVdt 0VV

    0=+ V

    t

  • 7/25/2019 Supersonic - BANAL 2013

    39/282

    MomentumEquation

    +=+

    S SdfSpdVSdVdVt

    VVV)(V

    xfx

    p

    Dt

    Du +

    = yf

    y

    p

    Dt

    Dv +

    =

    zfz

    p

    Dt

    Dw +

    =

  • 7/25/2019 Supersonic - BANAL 2013

    40/282

    EnergyEquation

    +=

    ++

    +

    S S

    dVfSdVpdqSdVVedVet

    VV

    2

    V

    2

    V)(V2

    V2

    &

    )()2/( 2

    VfVpqDt

    VeD+=+ &

  • 7/25/2019 Supersonic - BANAL 2013

    41/282

    Dontpanic,thingsdonthavetobethishard.

  • 7/25/2019 Supersonic - BANAL 2013

    42/282

    OtherEquations

    RTp =

    Tce v=

  • 7/25/2019 Supersonic - BANAL 2013

    43/282

  • 7/25/2019 Supersonic - BANAL 2013

    44/282

    StagnationProperties

    Propertiesthatwouldexistatapointinaflow

    IF(inourimagination)thefluidelementpassingthroughthatpointwerebroughtdown

    torestadiabatically.

    Everypointinaflowhasbothstaticand

    stagnationproperties.

  • 7/25/2019 Supersonic - BANAL 2013

    45/282

    Apoint(orpoints)intheflowwhereV=0.

    a)Fluidelementadiabaticallyslowdown

    b)Aflowimpingesonasolidobject

    V1

    V2=0

    Total(Stagnation)Conditions

  • 7/25/2019 Supersonic - BANAL 2013

    46/282

    Thesamething

    TotalPressure

    StagnationPressurePitot Pressure

    ReservoirPressure

    ImpactPressure

    HeadPressure

    NosePressure

  • 7/25/2019 Supersonic - BANAL 2013

    47/282

    TotalEnthalpyTotalenthalpyisconstantinasteadyadiabaticinviscid flow.

    2

    constant2

    0

    Vhh +==

    Thisistheenergyequationforsteadyadiabaticinviscid flow.

  • 7/25/2019 Supersonic - BANAL 2013

    48/282

    TotalTemperatureTotaltemperatureisconstantinasteadyadiabaticinviscid flow

    foracaloricallyperfectgas.

    00 Tch p=

    constant0=T

  • 7/25/2019 Supersonic - BANAL 2013

    49/282

    TotalEnthalpyandTotalTemperature

  • 7/25/2019 Supersonic - BANAL 2013

    50/282

    TotalPressureandTotalDensityTotalpressureandtotaldensitycanalsobedefined

    inaflowsimilartohowtotalenthalpyortotaltemperatureisdefined,butthereisanadditional

    requirementtotheprocessofbringingaparticleto

    rest,thatis,theprocessmustalsobereversible,inotherwords,theprocesshastobeisentropic.

    0p 0

  • 7/25/2019 Supersonic - BANAL 2013

    51/282

    TotalPressureandTotalDensityTotalpressureandtotaldensityareconstantinanisentropicflow.

  • 7/25/2019 Supersonic - BANAL 2013

    52/282

  • 7/25/2019 Supersonic - BANAL 2013

    53/282

    FlowRegimes

  • 7/25/2019 Supersonic - BANAL 2013

    54/282

    FlowRegimes

  • 7/25/2019 Supersonic - BANAL 2013

    55/282

    FlowRegimes

    SubsonicFlow

    TransonicFlow

  • 7/25/2019 Supersonic - BANAL 2013

    56/282

    FlowRegimes

    TransonicFlow

  • 7/25/2019 Supersonic - BANAL 2013

    57/282

    FlowRegimes BowShockWave

    BowShock M>1

    M

    >1

    M

  • 7/25/2019 Supersonic - BANAL 2013

    58/282

    FlowRegimesSupersonicFlow

  • 7/25/2019 Supersonic - BANAL 2013

    59/282

    FlowRegimesHypersonicFlow

  • 7/25/2019 Supersonic - BANAL 2013

    60/282

    WhatisaShockWave?

    Shockwave:Alargeamplitudecompression

    wave,suchasthatproducedbyanexplosion,

    causedbysupersonicmotionofabodyina

    medium.

    FromtheAmericanHeritageDictionary

    oftheEnglishLanguage,1969

  • 7/25/2019 Supersonic - BANAL 2013

    61/282

    WhatisaShockWave?

    Ashockwaveisanextremelythinregion,

    typicallyontheorder105 cm,acrosswhich

    theflowpropertiescanchangedrastically.

  • 7/25/2019 Supersonic - BANAL 2013

    62/282

    NormalShockWaves

  • 7/25/2019 Supersonic - BANAL 2013

    63/282

    ObliqueShockWaves

  • 7/25/2019 Supersonic - BANAL 2013

    64/282

    ObliqueShockWave

  • 7/25/2019 Supersonic - BANAL 2013

    65/282

    Whatwediscussedsofar

    Taketimetochewtheinformation.

  • 7/25/2019 Supersonic - BANAL 2013

    66/282

  • 7/25/2019 Supersonic - BANAL 2013

    67/282

    NormalShockWaves

  • 7/25/2019 Supersonic - BANAL 2013

    68/282

    NSWEquations

    assumptions1]Theflowissteady

    2]Theflowisadiabatic

    3]Therearenoviscous

    effectsonthesidesofthe

    controlvolume.

    4]Therearenobody

    forces

  • 7/25/2019 Supersonic - BANAL 2013

    69/282

    NSWEquations

    continuity

    =+

    S

    SdVdt

    0VV

    zero

    =S

    SdV 0

    2211 uu =

  • 7/25/2019 Supersonic - BANAL 2013

    70/282

    NSWEquations

    momentum

    zero

    +=+

    S S

    dfSpdVSdVdVt

    VV

    V)(V

    zero

    =S S

    SpdVSdV )(

    2

    222

    2

    111 upup +=+

  • 7/25/2019 Supersonic - BANAL 2013

    71/282

    NSWEquations

    energy

    zero zero

    +=

    ++

    +

    S S

    dVfSdVpdqSdVV

    edV

    et

    VV

    2

    V

    2

    V)(V2

    V2

    &

    zero

    =

    +

    S S

    SdVpSdVV

    e2

    2

    22

    2

    22

    2

    11

    uh

    uh +=+

  • 7/25/2019 Supersonic - BANAL 2013

    72/282

    NSW:5equations,5unknowns

    2211 uu =2

    222

    2

    111 upup +=+

    22

    2

    22

    2

    11

    uh

    uh +=+

    momentum

    energy

    continuity

    22 Tch p=

    222 RTp =equationofstate

    enthalpy

  • 7/25/2019 Supersonic - BANAL 2013

    73/282

  • 7/25/2019 Supersonic - BANAL 2013

    74/282

    Whatissoundandhowdoesittravel?

  • 7/25/2019 Supersonic - BANAL 2013

    75/282

    Whatissoundandhowdoesittravel?

  • 7/25/2019 Supersonic - BANAL 2013

    76/282

    Whatissoundandhowdoesittravel?

  • 7/25/2019 Supersonic - BANAL 2013

    77/282

    SpeedofSound

  • 7/25/2019 Supersonic - BANAL 2013

    78/282

    SpeedofSound

    s

    pa

    =

    p

    a=

    RTa =

    Thespeedofsoundina

    caloricallyperfectgasisafunctionoftemperatureonly.

    Atsealevel,a=340.9m/s

    ora=1117ft/s.

  • 7/25/2019 Supersonic - BANAL 2013

    79/282

  • 7/25/2019 Supersonic - BANAL 2013

    80/282

    SpecialFormsoftheEnergyEquation

    22

    22

    2

    21

    1

    uhuh +=+

    22

    2

    22

    2

    11

    VhVh +=+

  • 7/25/2019 Supersonic - BANAL 2013

    81/282

    SpecialFormsoftheEnergyEquation

    22

    2

    22

    2

    11

    uTcuTc pp +=+

    2121

    2

    2

    2

    2

    2

    1

    2

    1 uaua +

    =+

  • 7/25/2019 Supersonic - BANAL 2013

    82/282

    SpecialFormsoftheEnergyEquation

    2121

    2

    2

    2

    2

    2

    1

    2

    1 uaua +

    =+

    121

    2

    022

    =+

    aua

  • 7/25/2019 Supersonic - BANAL 2013

    83/282

    SpecialFormsoftheEnergyEquation

    2121

    2

    2

    2

    2

    2

    1

    2

    1 uaua +

    =+

    2*22

    )1(2

    1

    21aua

    +=+

  • 7/25/2019 Supersonic - BANAL 2013

    84/282

    SpecialFormsoftheEnergyEquation

    22

    2

    22

    2

    11 uTcuTc pp +=+

    0

    2

    2TcuTc pp =+

  • 7/25/2019 Supersonic - BANAL 2013

    85/282

    SpecialFormsoftheEnergyEquation

    20

    2

    11 M

    T

    T +=

  • 7/25/2019 Supersonic - BANAL 2013

    86/282

    SpecialFormsoftheEnergyEquation

    )1(

    20

    211

    +=

    Mp

    p

    )1(1

    20

    211

    +=

    M

  • 7/25/2019 Supersonic - BANAL 2013

    87/282

    SonicConditions

    Similartotheideaofastagnationcondition.

    Howeverinsteadofbringingaparticletorest,

    itisacceleratedordeceleratedtoMach1.

    Everypointinaflowhasanassociatedstatic,

    stagnationandsonicproperties.

    *p

    * *T

  • 7/25/2019 Supersonic - BANAL 2013

    88/282

    SonictoStagnationRatios

    833.01

    2

    0

    *

    =+= T

    T

    528.01

    2 )1(

    0

    *

    =

    +=

    p

    p

    634.01

    2 )1(1

    0

    *

    =

    +=

  • 7/25/2019 Supersonic - BANAL 2013

    89/282

    Characteristic(reference)MachNumber

    **

    *

    a

    u

    RT

    uM ==

  • 7/25/2019 Supersonic - BANAL 2013

    90/282

    M&M*

    2*22

    )1(2

    1

    21 a

    ua

    +

    =+

    2*2

    )1(2

    1

    2

    1

    1

    )/(

    +=+

    u

    aua

    2

    11

    )1(2

    1

    1

    )/1( 2

    *

    2

    +=

    M

    M

    2

    22*

    )1(2

    )1(

    M

    MM

    +

    +=

    )1(/)1(

    22*

    2

    +=

    MM

  • 7/25/2019 Supersonic - BANAL 2013

    91/282

    ExampleConsiderapointinanairflowwherethelocalMachnumber,static

    pressure,andstatictemperatureare3.5,0.3atm,and180K,respectively.

    Calculatethelocalvaluesofp0,T0,T*,a*,andM*atthispoint.

    )1(

    20

    2

    11

    +=

    Mp

    p

    20

    2

    11 M

    T

    T +=

    )14.1(4.1

    20 5.32

    14.11

    3.0

    +=

    patm9.220=p

    20 5.32

    14.11

    180

    +=

    TK6210=T

  • 7/25/2019 Supersonic - BANAL 2013

    92/282

    ExampleConsiderapointinanairflowwherethelocalMachnumber,static

    pressure,andstatictemperatureare3.5,0.3atm,and180K,respectively.

    Calculatethelocalvaluesofp0,T0,T*,a*,andM*atthispoint.

    833.01

    2

    0

    *

    =+

    =T

    T

    m/s456)5.517)(287(4.1** === RTa

    833.0621

    *

    =T

    K5.517* =T

  • 7/25/2019 Supersonic - BANAL 2013

    93/282

    ExampleConsiderapointinanairflowwherethelocalMachnumber,static

    pressure,andstatictemperatureare3.5,0.3atm,and180K,respectively.

    Calculatethelocalvaluesofp0,T0,T*,a*,andM*atthispoint.

    2

    22*

    )1(2

    )1(

    M

    MM

    +

    +=

    06.25.3)14.1(2

    5.3)14.1(*

    2

    2

    =+

    +=M

  • 7/25/2019 Supersonic - BANAL 2013

    94/282

    ExampleConsideranairfoil inafreestream whereM=0.6andP =1atm,as

    shownbelow.Atpoint1ontheairfoil thepressureisP1=0.7545atm.

    CalculatethelocalMachnumberatpoint1.Assumeisentropicflowover

    theairfoil.

  • 7/25/2019 Supersonic - BANAL 2013

    95/282

    ExampleConsideranairfoil inafreestream whereM=0.6andP =1atm,as

    shownbelow.Atpoint1ontheairfoil thepressureisP1=0.7545atm.

    CalculatethelocalMachnumberatpoint1.Assumeisentropicflowover

    theairfoil.

    )1(

    20

    211

    +=

    Mp

    p

    Thefreestream totalpressureis,

    )14.1(4.1

    20 6.0214.11

    1

    +=p atm276.10=p

    Thisisalsothetotalpressureatpoint1because

    totalpressureisconstantinanisentropicflow.

  • 7/25/2019 Supersonic - BANAL 2013

    96/282

    ExampleConsideranairfoil inafreestream whereM=0.6andP =1atm,as

    shownbelow.Atpoint1ontheairfoil thepressureisP1=0.7545atm.

    CalculatethelocalMachnumberatpoint1.Assumeisentropicflowover

    theairfoil.

    )1(20

    2

    11

    +=

    Mp

    p )14.1(4.12

    2

    14.11

    7545.0

    276.1

    += M 0.91=M

    Atpoint1,

  • 7/25/2019 Supersonic - BANAL 2013

    97/282

    Example

    V1

    =?

    Consideranairfoil inafreestream whereM=0.6andP =1atm,as

    shownbelow.Atpoint1ontheairfoil thepressureisP1=0.7545atm.

    Calculatethevelocityatpoint1whenthefreestream temperatureis59oF.

    Assumeisentropicflowovertheairfoil.

  • 7/25/2019 Supersonic - BANAL 2013

    98/282

    ExampleConsideranairfoil inafreestream whereM=0.6andP =1atm,as

    shownbelow.Atpoint1ontheairfoil thepressureisP1=0.7545atm.

    Calculatethevelocityatpoint1whenthefreestream temperatureis59oF.

    Assumeisentropicflowovertheairfoil.

    )1(

    11

    =

    T

    T

    p

    p R9.4781

    7545.0519

    4.1/)14.1(/)1(

    1

    1 =

    =

    =

    p

    pTT

    ft/s6.1072)9.478)(1716(4.111 === RTa

    R51959460 =+=T

    ft/s4.965)6.1072)(9.0(111 === aMV

  • 7/25/2019 Supersonic - BANAL 2013

    99/282

  • 7/25/2019 Supersonic - BANAL 2013

    100/282

    Whenisaflowcompressible?

    3.0>MRuleofthumb:

    Why?BecauseChuckNorrissaysso?

  • 7/25/2019 Supersonic - BANAL 2013

    101/282

    Thisguydontthinkso.

  • 7/25/2019 Supersonic - BANAL 2013

    102/282

    Whenisaflowcompressible?

    0

    2

    4

    6

    8

    10

    12

    14

    0 0.5 1 1.5 2 2.5 3

    Mach Number

    Stagnat

    ion

    toStaticDensityRatio

    Cp/Cv=1.4

    1

    1

    20

    2

    11

    +=

    M

  • 7/25/2019 Supersonic - BANAL 2013

    103/282

    Whenisaflowcompressible?

    )1(1

    20

    2

    1

    1

    +=

    M

  • 7/25/2019 Supersonic - BANAL 2013

    104/282

    Whenisaflowcompressible?

    0

    2

    4

    6

    8

    10

    12

    14

    0 0.5 1 1.5 2 2.5 3

    Mach Number

    Stagnat

    ion

    to

    StaticDensityRatio

    Cp/Cv=1.4

    0.95

    1

    1.05

    1.1

    1.15

    1.2

    0 0.1 0.2 0.3 0.4 0.5

    Mach Number

    Stagnation

    to

    StaticDensityRa

    tio

    Cp/Cv=1.4

    1

    1

    20

    211

    +=

    M

  • 7/25/2019 Supersonic - BANAL 2013

    105/282

    CompressibilitySensitivitywith

    0

    5

    10

    15

    20

    25

    30

    0 0.5 1 1.5 2 2.5 3

    Mach Number

    Stagnati

    on

    to

    StaticDensityRat

    io

    Cp/Cv=1.4

    Cp/Cv=1.2

  • 7/25/2019 Supersonic - BANAL 2013

    106/282

  • 7/25/2019 Supersonic - BANAL 2013

    107/282

    NormalShockWaves

  • 7/25/2019 Supersonic - BANAL 2013

    108/282

    NSW:5equations,5unknowns

    2211 uu =2222

    2111 upup +=+

    22

    2

    22

    2

    11

    uh

    uh +=+

    momentum

    energy

    continuity

    22 Tch p=

    222 RTp =equationofstate

    enthalpy

  • 7/25/2019 Supersonic - BANAL 2013

    109/282

    Prandtl Relation

    21

    2*uua =

  • 7/25/2019 Supersonic - BANAL 2013

    110/282

    MachNumbersRelation

    21

    2*

    uua =*

    2

    *

    11 MM=

    2

    2

    2*

    )1(2)1(

    MMM

    +

    +=

    2/)1(

    ]2/)1[(1

    21

    2

    12

    2

    +=

    M

    MM

  • 7/25/2019 Supersonic - BANAL 2013

    111/282

    MachNumbersRelation

    2/)1(

    ]2/)1[(12

    1

    2

    12

    2

    +=

    M

    MM

  • 7/25/2019 Supersonic - BANAL 2013

    112/282

    DensityRatio

    2211 uu =

    2*

    12*

    2

    1

    12

    2

    1

    2

    1

    1

    2 Ma

    u

    uu

    u

    u

    u====

    2

    2

    2*

    )1(2

    )1(

    M

    MM +

    +=

    2

    1

    21

    1

    2

    )1(2

    )1(

    M

    M

    ++=

  • 7/25/2019 Supersonic - BANAL 2013

    113/282

    DensityRatio

    2

    1

    2

    1

    1

    2

    )1(2

    )1(

    M

    M

    +

    +=

  • 7/25/2019 Supersonic - BANAL 2013

    114/282

    PressureRatio2

    222

    2

    111 upup +=+

    ===

    1

    22

    112111

    2

    22

    2

    1112 1)(uuuuuuuupp

    =

    =

    =

    1

    22

    1

    1

    2

    2

    1

    2

    1

    1

    2

    1

    2

    11

    1

    12 111

    u

    uM

    u

    u

    a

    u

    u

    u

    p

    u

    p

    pp

    +

    +=

    2

    1

    2

    12

    1

    1

    12

    )1(

    )1(21

    M

    MM

    p

    pp

  • 7/25/2019 Supersonic - BANAL 2013

    115/282

    PressureRatio

    ( )1)1(

    21

    2

    1

    1

    2

    +

    += M

    p

    p

  • 7/25/2019 Supersonic - BANAL 2013

    116/282

    TemperatureRatio

    =

    1

    2

    1

    2

    1

    2

    pp

    TT

    ( ) 21

    2

    12

    1

    1

    2

    )1(

    )1(211

    21

    M

    MMT

    T

    +

    +

    ++=

  • 7/25/2019 Supersonic - BANAL 2013

    117/282

    ( ) 2

    1

    2

    12

    1

    1

    2

    )1(

    )1(21

    1

    21

    M

    MM

    T

    T

    +

    +

    ++=

    TemperatureRatio

  • 7/25/2019 Supersonic - BANAL 2013

    118/282

    EntropyChange

    WhymustM1 1?

    Theequationsdescribingtherelationship

    betweenupstreamanddownstream

    propertiesdonotexplicitlyrestrictthevalue

    fortheupstreamMachnumber.

    Whathas the2ndLawofThermodynamics

    gottosayaboutthis?

  • 7/25/2019 Supersonic - BANAL 2013

    119/282

    EntropyChange

    ( )

    ( )

    ++

    +

    +

    ++=

    1)1(

    21ln

    )1(

    )1(21

    1

    21ln

    2

    1

    2

    1

    2

    12

    1

    MR

    M

    MMcs p

    1

    2

    1

    2 lnln

    p

    pR

    T

    Tcs p =

  • 7/25/2019 Supersonic - BANAL 2013

    120/282

    EntropyChange

    ( ) ( )

    ++

    +

    +

    ++= 1

    )1(

    21ln

    )1(

    )1(21

    1

    21ln

    2

    121

    2

    12

    1

    MRM

    MMcs

    p

    The2ndLawstatesthat 0sIf 11=M 12 ss = 0=sthen or

    If 11>M then 0>s

    Butif 11

  • 7/25/2019 Supersonic - BANAL 2013

    121/282

    WhathappenstothetotalpropertiesacrossaNSW?

  • 7/25/2019 Supersonic - BANAL 2013

    122/282

    TotalTemperatureChange

    BecausetheflowacrossaNSWisadiabatic,

    totaltemperatureisconserved.

    2,01,0 TT =

  • 7/25/2019 Supersonic - BANAL 2013

    123/282

    TotalPressureChange

    a

    a

    a

    apaa

    p

    pR

    T

    Tcss

    1

    2

    1

    212 lnln =

    1,0

    2,0

    1,0

    2,0

    12 lnlnp

    pR

    T

    Tcss p =

    1,0

    2,0

    12 ln

    p

    pRss =

    Rsse

    p

    p/)(

    1,0

    2,0 12 =

  • 7/25/2019 Supersonic - BANAL 2013

    124/282

    TotalPressureChange

    Rss

    ep

    p/)(

    1,0

    2,0 12

    =

    Since 012 ss

    1,02,0 pp < Thatis,totalpressuredecreases

    acrossaNSW.

  • 7/25/2019 Supersonic - BANAL 2013

    125/282

    NormalShockWave

  • 7/25/2019 Supersonic - BANAL 2013

    126/282

    NormalShockWave

  • 7/25/2019 Supersonic - BANAL 2013

    127/282

    ExampleConsideranormalshockwaveinairwheretheupstreamflowproperties

    areu1=680m/s,T1=288K,andp1=1atm.Calculatethevelocity,

    temperature,andpressuredownstreamoftheshock.

    ( )1

    )1(

    21

    2

    11

    2 +

    += Mp

    p

    ( ) 2

    1

    2

    12

    1

    1

    2

    )1(

    )1(21

    1

    21

    M

    MM

    T

    T

    +

    +

    ++=

    m/s340)288)(287(4.111 === RTa

    2340/680/ 111 === auM

    ( )12

    )14.1(

    )4.1(21

    1

    22 +

    +=p

    atm5.42=

    p

    K4862 =T

  • 7/25/2019 Supersonic - BANAL 2013

    128/282

    ExampleConsideranormalshockwaveinairwheretheupstreamflowproperties

    areu1=680m/s,T1=288K,andp1=1atm.Calculatethevelocity,

    temperature,andpressuredownstreamoftheshock.

    m/s442)486)(287(4.122 === RTa

    m/s255)442(5774.0222 === aMu

    2/)1(

    ]2/)1[(12

    1

    2

    12

    2

    +=

    M

    MM 5774.0

    2/)14.1()2(4.1

    2]2/)14.1[(12

    2

    2 =

    +=M

  • 7/25/2019 Supersonic - BANAL 2013

    129/282

    Example

    2=M

    K3.223

    N/m10x65.2 24

    =

    =

    T

    p 2.02 =M

    isentropic

    ?pand? 22 ==T

  • 7/25/2019 Supersonic - BANAL 2013

    130/282

    TheSolutionPlanGiven: 2=M

    24 N/m10x65.2=p K3.223=T

    Required: 22 andTp

    )1(

    2,0

    211

    +=

    Mp

    p

    =p

    p

    p

    p

    p

    p

    p

    p1

    ,01

    1,0

    ,0

    1,0

    = ,0,0

    1,0

    1,0NSWbehindpressuretotalCompute pp

    pp

    )1(

    2

    1

    1

    1,0

    2

    11

    +=

    Mp

    p ( )1)1(

    21

    21 +

    +=

    Mp

    p

    2/)1(]2/)1[(1

    2

    2

    2

    1

    +=

    MMM

  • 7/25/2019 Supersonic - BANAL 2013

    131/282

    TheSolutionPlanGiven: 2=M

    24 N/m10x65.2=p K3.223=T

    Required: 22 andTp

    2,0

    2

    11

    += MT

    T

    ThetotaltemperaturesinfrontofandbehindtheNSWarethesame

    becausetheflowacrossaNSWisadiabatic;also,totaltemperatureand

    totalpressuresremainconstantinanisentropicflow,thus,

    ComputethetotaltemperatureinfrontofandbehindtheNSW.

    == ,02,01,0 TTT = ,02,01,0 ppp

  • 7/25/2019 Supersonic - BANAL 2013

    132/282

    TheSolutionPlanGiven: 2=M

    24 N/m10x65.2=p K3.223=T

    Required: 22 andTp

    Computethepressureandtemperatureatpoint2using,

    )1(

    2

    2

    2

    2,0

    2

    1,0

    2

    1

    1

    +==

    Mp

    p

    p

    p 22

    2

    2,0

    2

    ,0

    2

    1

    1 MT

    T

    T

    T

    +==

  • 7/25/2019 Supersonic - BANAL 2013

    133/282

    ExampleGiven:

    )1(

    2,0

    2

    11

    +=

    Mp

    p

    2,0

    2

    11

    += MT

    T

    2=M24N/m10x65.2=p 2.02 =M

    Thefreestream totalpressureandtotaltemperatureare,

    K3.223=T

    )14.1(4.1

    2,0 22

    14.11

    26500

    +=

    p 25,0 N/m10x07.2=p

    2,0 22

    14.11

    3.233

    +=

    TK9.014,0 =T

  • 7/25/2019 Supersonic - BANAL 2013

    134/282

    ExampleGiven: 2=M

    24 N/m10x65.2=p 2.02=M

    TheMachnumberbehindtheNSWis,

    K3.223=T

    2/)1(

    ]2/)1[(12

    22

    1

    +=

    M

    MM

    577.02.0)2(4.1

    )2(2.012

    2

    1 =

    +=M

    25

    ,0

    N/m10x07.2=

    p K9.014,0

    =TComputed:

  • 7/25/2019 Supersonic - BANAL 2013

    135/282

    Example

    Thepressureratiosare,

    Given: 2=M24 N/m10x65.2=p 2.02=MK3.223=T

    25

    ,0

    N/m10x07.2=

    p K9.014,0

    =TComputed: 577.01

    =M

    824.7

    2

    11

    )1(

    2,0 =

    +=

    M

    p

    p

    253.12

    11

    )1(

    2

    1

    1

    1,0 =

    +=

    Mp

    p

    ( ) 5.41)1(

    21

    21 =+

    +=

    Mp

    p

  • 7/25/2019 Supersonic - BANAL 2013

    136/282

    Example

    ThetotalpressurebehindtheNSWis,

    Given: 2=M24 N/m10x65.2=p 2.02=MK3.223=T

    25

    ,0

    N/m10x07.2=

    p K9.014,0

    =TComputed: 577.01

    =M

    7209.0)5.4)(824.7/1)(253.1(1

    ,01

    1,0

    ,0

    1,0 ===

    pp

    pp

    pp

    pp

    824.7,0 =

    p

    p253.1

    1

    1,0 =p

    p5.41 =

    p

    p

    255

    ,0

    ,0

    1,0

    1,0 N/m10x49.1)10x07.2)(7209.0( ===

    pp

    pp

  • 7/25/2019 Supersonic - BANAL 2013

    137/282

    Example

    ThetotaltemperaturesinfrontofandbehindtheNSWarethesame,

    Given: 2=M24 N/m10x65.2=p 2.02=MK3.223=T

    25

    ,0

    N/m10x07.2=p K9.014,0

    =TComputed: 577.01

    =M

    824.7,0 =

    p

    p253.1

    1

    1,0 =p

    p5.41 =

    p

    p 251,0 N/m10x49.1=p

    K9.014,01,0 == TT

  • 7/25/2019 Supersonic - BANAL 2013

    138/282

    Example

    Theflowbetweenpoints1and2isisentropic,thus,thetotalpressureandthetotaltemperatureareconstant.

    Given: 2=M24 N/m10x65.2=p 2.02=MK3.223=T

    25

    ,0

    N/m10x07.2=p K9.014,0 =TComputed: 577.01=M

    824.7,0 =

    p

    p253.1

    1

    1,0 =p

    p5.41 =

    p

    p 251,0 N/m10x49.1=p

    K9.014,01,0 == TT

    )1(

    2

    2

    2

    2,0

    2

    11

    +=

    Mp

    p ( ) atm42.1)2.0(2.01149000 25.32

    2

    =+= pp

  • 7/25/2019 Supersonic - BANAL 2013

    139/282

    Example

    Theflowbetweenpoints1and2isisentropic,thus,thetotalpressureandthetotaltemperatureareconstant.

    Given: 2=M24 N/m10x65.2=p 2.02=MK3.223=T

    25

    ,0

    N/m10x07.2=p K9.014,0 =TComputed: 577.01=M

    824.7,0 =

    p

    p253.1

    1

    1,0 =p

    p5.41 =

    p

    p 251,0 N/m10x49.1=p

    K9.014,01,0 == TT

    2

    2

    2

    2,0

    2

    11 M

    T

    T += K399)2.0(2.01

    9.4012

    2

    2

    =+= TT

  • 7/25/2019 Supersonic - BANAL 2013

    140/282

    SCRAMJETTheresultsofthepreviousexampleare,

    K3992=Tatm42.12=p

    ,2originaltheofinstead10If == MM

    K46532=Tatm7.322=p

    Theseresultsdescribeanextremeenvironmentthatisverydifficultto

    handleforaramjet.

    Thesolutionis,DONOTslowtheflowtoM2=0.2.

    Keeptheflowsupersonicallthroughout.

  • 7/25/2019 Supersonic - BANAL 2013

    141/282

  • 7/25/2019 Supersonic - BANAL 2013

    142/282

    SubsonicCompressibleFlow

  • 7/25/2019 Supersonic - BANAL 2013

    143/282

    SubsonicCompressibleFlow)1(

    20

    2

    11

    +=

    Mp

    p

    =

    11

    2)1(

    02

    p

    pM

    =

    11

    2 )1(02

    p

    paV

  • 7/25/2019 Supersonic - BANAL 2013

    144/282

    SupersonicCompressibleFlow

  • 7/25/2019 Supersonic - BANAL 2013

    145/282

    SupersonicCompressibleFlow

    1

    2

    2

    2,0

    1

    2,0

    p

    p

    p

    p

    p

    p=

    )1(

    2

    2

    2

    2,0

    2

    11

    +=

    Mp

    p

    ( )1)1(

    21

    2

    1

    1

    2

    +

    += M

    p

    p

    2/)1(

    ]2/)1[(12

    1

    2

    12

    2

    +=

    M

    MM

  • 7/25/2019 Supersonic - BANAL 2013

    146/282

    SupersonicCompressibleFlow

    121

    )1(24

    )1( 2

    1

    )1(

    2

    1

    2

    12

    1

    2,0

    ++

    +=

    M

    M

    Mp

    p

    RayleighPitot TubeFormula

  • 7/25/2019 Supersonic - BANAL 2013

    147/282

    Example

    APitot tubeisinsertedintoanairflowwherethestaticpressureis1atm.

    CalculatetheflowMachnumberwhenthePitot tubemeasures(a)1.276

    atm,(b)2.714atm,(c)12.06atm.

    First,determinethetotalpressurethatdividessubsonicandsupersonicflow.

    )1(

    20

    2

    11

    +=

    Mp

    pppp 893.11

    2

    14.11

    )14.1(4.1

    2

    0 =

    +=

    subsonic.isflowtheatm,893.1When 0p

  • 7/25/2019 Supersonic - BANAL 2013

    148/282

    Example

    APitot tubeisinsertedintoanairflowwherethestaticpressureis1atm.

    CalculatetheflowMachnumberwhenthePitot tubemeasures(a)1.276

    atm,(b)2.714atm,(c)12.06atm.

    (a)Flowissubsonic

    =

    11

    2)1(

    02

    p

    pM

    =

    11

    276.1

    14.1

    2 4.1)14.1(

    M

    6.01=M

  • 7/25/2019 Supersonic - BANAL 2013

    149/282

    Example

    APitot tubeisinsertedintoanairflowwherethestaticpressureis1atm.

    CalculatetheflowMachnumberwhenthePitot tubemeasures(a)1.276

    atm,(b)2.714atm,(c)12.06atm.

    (b)Flowissupersonic

    3.11=M1

    21

    )1(24

    )1( 2

    1

    )1(

    2

    1

    2

    1

    2

    1

    2,0

    +

    +

    +=

    M

    M

    M

    p

    p

    1

    714.2

    4.2

    8.2)4.0(

    8.06.5

    76.5 2

    1

    5.3

    2

    1

    2

    1

    1

    2,0 =+

    =

    M

    M

    M

    p

    p

  • 7/25/2019 Supersonic - BANAL 2013

    150/282

    Example

    APitot tubeisinsertedintoanairflowwherethestaticpressureis1atm.

    CalculatetheflowMachnumberwhenthePitot tubemeasures(a)1.276

    atm,(b)2.714atm,(c)12.06atm.

    (c)Flowissupersonic

    0.31=M1

    21

    )1(24

    )1( 2

    1

    )1(

    2

    1

    2

    1

    2

    1

    2,0

    +

    +

    +=

    M

    M

    M

    p

    p

    1

    06.12

    4.2

    8.2)4.0(

    8.06.5

    76.5 2

    1

    5.3

    2

    1

    2

    1

    1

    2,0 =+

    =

    M

    M

    M

    p

    p

  • 7/25/2019 Supersonic - BANAL 2013

    151/282

    Example

    Consider a hypersonic missile

    flying at Mach 8 at analtitude of 20,000 ft, where

    the pressure is 973.3 Ib/ft2.

    The nose of the missile is

    blunt and is shaped like that

    shown below. Calculate the

    pressure at the stagnation

    point on the nose.

  • 7/25/2019 Supersonic - BANAL 2013

    152/282

    Example

    Given: 8=M 2lb/ft3.973=p

    Required: ?0=p

    4.2

    8.2)4.0(

    8.06.5

    76.5 2

    5.3

    2

    2

    0

    +

    =

    M

    M

    M

    p

    p

    4.2

    )8(8.2)4.0(

    8.0)8(6.5

    )8(76.5 25.3

    2

    2

    0

    +

    = pp

    24

    0 lb/ft10x07.8)87.82)(3.973( ==p

    atm1.380=p

  • 7/25/2019 Supersonic - BANAL 2013

    153/282

    Whatwediscussed

  • 7/25/2019 Supersonic - BANAL 2013

    154/282

  • 7/25/2019 Supersonic - BANAL 2013

    155/282

    ObliqueShockWave

  • 7/25/2019 Supersonic - BANAL 2013

    156/282

    ExpansionWave

  • 7/25/2019 Supersonic - BANAL 2013

    157/282

    PropagationofDisturbance

  • 7/25/2019 Supersonic - BANAL 2013

    158/282

    PropagationofDisturbance

  • 7/25/2019 Supersonic - BANAL 2013

    159/282

    PropagationofDisturbance

    Thephysicalgenerationofwavesina

    supersonicflowisduetothepropagationof

    informationviamolecularcollisionsanddue

    tothefactthatsuchpropagationcannot

    workitswayintocertainregionsofthesupersonicflow.

  • 7/25/2019 Supersonic - BANAL 2013

    160/282

    Whydoesithavetobeoblique?

  • 7/25/2019 Supersonic - BANAL 2013

    161/282

    MachWave

    Mv

    a

    Vt

    at 1sin ===

    M

    1sin 1=

    Machangle

  • 7/25/2019 Supersonic - BANAL 2013

    162/282

    OSWvs MachWave

  • 7/25/2019 Supersonic - BANAL 2013

    163/282

    ObliqueShockWaves

  • 7/25/2019 Supersonic - BANAL 2013

    164/282

    ObliqueShockWaves

    waveangle

    deflectionangle

    OSW

  • 7/25/2019 Supersonic - BANAL 2013

    165/282

    ContinuityEquation

    controlvolume

    =+

    S

    SdVdt

    0VV

    zero

    2211 uu =

    =S

    SdV 0

  • 7/25/2019 Supersonic - BANAL 2013

    166/282

    MomentumEquation

    controlvolume

    zero

    21 ww =

    +=+

    S S

    dfSpdVSdVdVt

    VV

    V)(V

    zero

    =S S SpdVSdV )(

    =S S

    SpdwSdV tangential)()(tangentialcomponent

  • 7/25/2019 Supersonic - BANAL 2013

    167/282

    MomentumEquation

    controlvolume

    zero

    2

    222

    2

    111 upup +=+

    +=+

    S S

    dfSpdVSdVdVt

    VV

    V)(V

    zero

    =S SSpdVSdV )(

    =S S

    SpduSdV normal)()(normalcomponent

  • 7/25/2019 Supersonic - BANAL 2013

    168/282

    EnergyEquation

    controlvolume

    zero

    22

    2

    22

    2

    11

    uh

    uh +=+

    zero

    +=

    ++

    +

    S S

    dVfSdVpdqSdVV

    edV

    et

    VV

    2

    V

    2

    V)(V2

    V2

    &

    zero

    =

    +

    S S

    SdVpSdVV

    e2

    2

  • 7/25/2019 Supersonic - BANAL 2013

    169/282

    Summary

    continuity

    momentum

    energy

    2211 uu =

    21 ww =2

    222

    2

    111 upup +=+

    22

    2

    22

    2

    11

    uh

    uh +=+

  • 7/25/2019 Supersonic - BANAL 2013

    170/282

    Summary

    TheseequationsaresimilartotheNSWequations.

    2211 uu = 21 ww = 2

    222

    2

    111 upup +=+22

    2

    22

    2

    11

    uh

    uh +=+

    TheonlydifferenceisthatuhereisnotthetotalvelocityasinaNSW,butratherthenormalvelocity

    oftheOSW.

  • 7/25/2019 Supersonic - BANAL 2013

    171/282

    Summary

    Hencesimilarresultscanbeexpected.

    2211 uu = 21 ww = 2

    222

    2

    111 upup +=+22

    2

    22

    2

    11

    uh

    uh +=+

  • 7/25/2019 Supersonic - BANAL 2013

    172/282

    OSWEquations

    2/)1(

    ]2/)1[(12

    1,

    2

    1,2

    2,

    +=

    n

    n

    nM

    MM

    2

    1,

    2

    1,

    1

    2

    )1(2

    )1(

    n

    n

    M

    M

    +

    +=

    ( )1)1(

    21

    2

    1,

    1

    2 +

    += nM

    p

    p

    ( ) 2

    1,

    2

    1,2

    1,

    1

    2

    )1(

    )1(21

    1

    21

    n

    n

    nM

    MM

    T

    T

    +

    +

    ++=

    sin11, MMn =

    )sin(

    2,

    2

    = nM

    M

  • 7/25/2019 Supersonic - BANAL 2013

    173/282

    MRelation

    2)2cos(

    1sincot2tan

    2

    1

    22

    1

    ++

    =

    M

    M

  • 7/25/2019 Supersonic - BANAL 2013

    174/282

    MRelation

  • 7/25/2019 Supersonic - BANAL 2013

    175/282

    MRelation

  • 7/25/2019 Supersonic - BANAL 2013

    176/282

    Whatdoesthegraphortheequationsay?

    Thereexistsamaximumdeflection

    angleforeveryupstreamMachnumber.

  • 7/25/2019 Supersonic - BANAL 2013

    177/282

    Whatdoesthegraphortheequationsay?

    Thereexistsamaximumdeflection

    angleforeveryupstreamMachnumber.

  • 7/25/2019 Supersonic - BANAL 2013

    178/282

    Whatdoesthegraphortheequationsay?

    Thereisaweakshockandastrongshock

    solutioncorrespondingtothetwovaluesof

    thewaveangle.

  • 7/25/2019 Supersonic - BANAL 2013

    179/282

    Whatdoesthegraphortheequationsay?

    If =0, then =90o or =. These

    correspond to a NSW and a Mach

    wave. In both cases, there is no flow

    deflection.

  • 7/25/2019 Supersonic - BANAL 2013

    180/282

    Whatdoesthegraphortheequationsay?

    Ingeneral,forattachedshockswithafixed

    deflectionangle,thewaveangledecreases

    astheupstreamMachnumberincreases

    andtheshockwavebecomesstronger.The

    reverseisalsotrue.

    Wh d h h h i ?

  • 7/25/2019 Supersonic - BANAL 2013

    181/282

    Whatdoesthegraphortheequationsay?

  • 7/25/2019 Supersonic - BANAL 2013

    182/282

    Wh t d th h th ti ?

  • 7/25/2019 Supersonic - BANAL 2013

    183/282

    Whatdoesthegraphortheequationsay?

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    184/282

    Example

    Consider a supersonic flow with M = 2, p = 1 atm, and T = 288 K. This flow

    is deflected at a compression corner through 20o. Calculate M, p, T, p0,

    and T0behind the resulting oblique shock wave.

    M = 2

    p = 1 atm

    T = 288 K

    M = ?

    p = ?, p0= ?

    T = ?, T0= ?

    20o

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    185/282

    Example

    606.14.53sin2sin11, === MMn

    === 4.53,20and2For 1 M2)2cos(

    1sincot2tan

    2

    1

    22

    1

    ++

    =

    M

    M

    ( ) 82.21)1(

    21

    2

    1,

    1

    2 =+

    += nMp

    p

    ( ) 388.1)1(

    )1(21

    1

    21

    2

    1,

    2

    1,2

    1,

    1

    2 =+

    +

    ++=

    n

    n

    nM

    MM

    T

    T

    6684.02/)1(

    ]2/)1[(12

    1,

    2

    1,2

    2, =

    +=

    n

    n

    nM

    MM

    atm82.2)1(82.211

    22 ==

    = p

    p

    pp

    K7.399)288(388.111

    22 ==

    = T

    T

    TT

    21.1)204.53sin(

    6684.0

    )sin(

    2,

    2 =

    =

    =

    nMM

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    186/282

    Example

    atm82.22 =p K7.3992 =T21.12 =M

    457.2211

    )1(

    22

    2

    2,0=

    +=

    Mp

    p

    8.12

    11

    2

    1

    1

    1,0 =+= MT

    T 11

    1,01,02,0 T

    T

    TTT

    ==

    K4.518)288(8.12,0 ==T

    2

    2

    2,0

    2,0 pp

    pp

    =

    atm7)82.2(457.22,0 ==p

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    187/282

    Example

    Consider an oblique shock wave with a wave angle of 30o. The upstream

    flow Mach number is 2.4. Calculate the deflection angle of the flow, the

    pressure and temperature ratios across the shock wave, and the Mach

    number behind the wave.

    M1= 2.4

    M2= ?

    = ?

    = 30o

    p2/p1=?

    T2/T1=?

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    188/282

    Example

    =

    ++

    = 5.6

    2)2cos(

    1sincot2tan

    21

    22

    11

    M

    M

    Given: M1= 2.4 = 30o

    2.130sin4.2sin11, === MMn

    ( ) 513.11)1(

    21

    2

    1,

    1

    2 =+

    += nMp

    p

    ( ) 128.1)1(

    )1(21

    1

    21

    2

    1,

    2

    1,2

    1,

    1

    2 =+

    +

    ++=

    n

    n

    nM

    MM

    T

    T

    11.2

    )5.630sin(

    8422.0

    )sin(

    2,

    2 =

    =

    =

    nMM

    8422.02/)1(

    ]2/)1[(12

    1,

    2

    1,2

    2, =

    +=

    n

    n

    nM

    MM

    What does the example tell us?

  • 7/25/2019 Supersonic - BANAL 2013

    189/282

    Whatdoestheexampletellus?

    Thewaveisweak.

    Producedonly51%increaseinpressure.

    Thisisbecausedeflectionangleissmall.Also,waveangleissmall;closetoMachwaveangleof

    === 306.244.2sinsin 1111M

    Only2propertiesneedtobespecifiedtocompletely

    describe(solve)agivenOSW.

    Inthisexample,thesepropertieswereMand.Inthefirstexample,itwasMand.

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    190/282

    ExampleConsider an oblique shock wave with = 35o and a pressure ratio

    p2/p1= 3. Calculate the upstream Mach number.

    M1= ?

    = 35o

    p2/p1=3

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    191/282

    pConsider an oblique shock wave with = 35o and a pressure ratio

    p2/p1= 3. Calculate the upstream Mach number.

    ( ) 31)1( 21 2

    1,

    1

    2=++=

    nMpp

    6475.112

    )1(1

    1

    21, =+

    +

    =

    p

    pMn

    87.235sin6475.1

    sinsin 1,111, ====

    nn MMMM

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    192/282

    p

    Consider a Mach 3 flow. It is desired to slow this flow to a subsonic speed.

    Consider two separate ways of achieving this:

    (1) the flow is slowed by passing directly through a normal shock wave;

    (2) the flow first passes through an oblique shock with a 40 wave angle,

    and then subsequently through a normal shock.

    Calculate the ratio of the final total pressure values for the two cases.

    Comment on the significance of the result.

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    193/282

    p

    ?1,0

    2,0 =p

    p

    ?1,0

    3,0 =p

    p

    CaseI

  • 7/25/2019 Supersonic - BANAL 2013

    194/282

    1

    1,0

    2

    2,0

    1

    2

    1,0

    2,0

    p

    p

    p

    p

    p

    p

    p

    p

    =

    ( ) 3333.101)1(

    21

    2

    1

    1

    2 =+

    += Mp

    p

    1672.12

    11

    )1(

    2

    2

    2

    2,0 =

    +=

    Mp

    p

    4752.02/)1(

    ]2/)1[(1

    21

    2

    1

    2

    =

    +=

    M

    MM

    7327.362

    11

    )1(

    2

    1

    1

    1,0

    =

    +=

    Mp

    p

    ( ) 7327.361672.13333.101,0

    2,0 =p

    p

    3283.01,0

    2,0 =p

    p

    CaseII

  • 7/25/2019 Supersonic - BANAL 2013

    195/282

    1

    1,0

    2

    2,0

    1

    2

    1,0

    2,0

    p

    p

    p

    p

    p

    p

    p

    p

    =

    ( ) 1717.41)1(

    21

    2

    1,

    1

    2 =+

    += nMp

    p

    2658.12

    11

    )1(

    2

    2

    2

    2,0 =

    +=

    Mp

    p

    5902.02/)1(

    ]2/)1[(1

    21,

    2

    1,

    2, =

    +=

    n

    n

    n M

    M

    M

    72

    11

    )1(

    2

    1,

    1

    1,0

    =

    +=

    nMp

    p

    ( )72658.11717.41,0

    2,0 =p

    p

    7544.0

    1,0

    2,0 =

    p

    p

    9284.140sin3sin11, === MMn

    CaseII

  • 7/25/2019 Supersonic - BANAL 2013

    196/282

    2

    2,0

    3

    3,0

    2

    3

    2,0

    3,0

    p

    p

    p

    p

    p

    p

    p

    p

    =

    ( ) 089.41)1(

    21

    2

    2

    2

    3 =+

    += Mp

    p

    2692.12

    11

    )1(

    2

    3

    3

    3,0 =

    +=

    Mp

    p

    5937.02/)1(

    ]2/)1[(1

    22

    2

    23 =

    +=

    M

    MM

    805.62

    11

    )1(

    2

    2

    2

    2,0

    =

    +=

    Mp

    p

    ( ) 805.62692.1089.42,0

    3,0 =p

    p

    7626.0

    2,0

    3,0 =p

    p

    91.1)2240sin(

    5902.0

    )sin(

    2,

    2 =

    =

    =

    nMM

    CaseII

  • 7/25/2019 Supersonic - BANAL 2013

    197/282

    58.0)7626.0)(7544.0(2,0

    3,0

    1,0

    2,0

    1,0

    3,0 ===p

    p

    p

    p

    p

    p

    33.0

    ICASE1,0

    2,0=

    pp 58.0

    IICASE1,0

    3,0=

    pp

    76.1

    IICASE1,0

    3,0

    ICASE1,0

    2,0 =

    p

    p

    p

    p

    Case II is the more efficient flow with less reduction in total pressure.

    Application Design of supersonic inlets for jet engines.

  • 7/25/2019 Supersonic - BANAL 2013

    198/282

    Scramjet

  • 7/25/2019 Supersonic - BANAL 2013

    199/282

    Scramjet

  • 7/25/2019 Supersonic - BANAL 2013

    200/282

    Scramjet

  • 7/25/2019 Supersonic - BANAL 2013

    201/282

  • 7/25/2019 Supersonic - BANAL 2013

    202/282

  • 7/25/2019 Supersonic - BANAL 2013

    203/282

  • 7/25/2019 Supersonic - BANAL 2013

    204/282

  • 7/25/2019 Supersonic - BANAL 2013

    205/282

  • 7/25/2019 Supersonic - BANAL 2013

    206/282

    Supersonicflowoverwedgesandcones

  • 7/25/2019 Supersonic - BANAL 2013

    207/282

    (1)theshockwaveontheconeisweaker,

    (2)theconesurfacepressureisless,and

    (3)thestreamlinesabovetheconesurfacearecurved

    ratherthanstraight.

  • 7/25/2019 Supersonic - BANAL 2013

    208/282

    ShockReflections

  • 7/25/2019 Supersonic - BANAL 2013

    209/282

    MachReflection

  • 7/25/2019 Supersonic - BANAL 2013

    210/282

    IntersectionofLeftandRightRunningWaves

  • 7/25/2019 Supersonic - BANAL 2013

    211/282

    IntersectionofLeftandRightRunningWaves

  • 7/25/2019 Supersonic - BANAL 2013

    212/282

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    213/282

    Consider an oblique shock wave generated by a compression corner with

    a 10 deflection angle. The Mach number of the flow ahead of the corner

    is 3.6; the flow pressure and temperature are standard sea levelconditions. The oblique shock wave subsequently impinges on a straight

    wall opposite the compression corner. Calculate the angle of the

    reflected shock wave relative to the straight wall. Also, obtain the

    pressure, temperature, and Mach number behind the reflected wave.

    Example

  • 7/25/2019 Supersonic - BANAL 2013

    214/282

    6.31=M

    =10

    2

    1 lb/ft2116=p

    R5191=T?=

    Example

    2)2cos(

    1sincot2tan

    2

    1

    22

    1

    ++

    =

    M

    M.24,10and63For 11 === .M

  • 7/25/2019 Supersonic - BANAL 2013

    215/282

    )(1

    ( ) 32.21)1( 21 2

    1,

    1

    2=++=

    nMpp

    ( ) 294.1)1(

    )1(21

    1

    21

    2

    1,

    2

    1,2

    1,

    1

    2 =+

    +

    ++=

    n

    n

    nM

    MM

    T

    T

    96.2)1024sin(

    7157.0

    )sin( 1

    2,

    2 =

    =

    =

    nMM

    7175.02/)1(

    ]2/)1[(12

    1,

    2

    1,

    2, =

    +

    =

    n

    n

    nM

    M

    M

    464.124sin6.3sin 111, === MMn

    Example=== 3.17103.272 .3.27,10and96.2For 21 === M

  • 7/25/2019 Supersonic - BANAL 2013

    216/282

    ( ) 991.11)1( 21 2

    2,

    2

    3=++=

    nMpp

    ( ) 229.1)1(

    )1(21

    1

    21

    2

    2,

    2

    2,2

    2,

    2

    3 =+

    +

    ++=

    n

    n

    nM

    MM

    T

    T

    55.2)103.27sin(

    7572.0

    )sin( 2

    3,

    3 =

    =

    =

    nMM

    7572.02/)1(

    ]2/)1[(12

    2,

    2

    2,

    3, =

    +

    =

    n

    n

    nM

    M

    M

    358.13.27sin96.2sin 222, === MMn

    Example

    991.13 =p

    p229.13 =

    T

    T32.22 =

    p

    p294.12 =

    T

    T

  • 7/25/2019 Supersonic - BANAL 2013

    217/282

    2p 2T1p 1T

    3

    1

    1

    2

    2

    33 lb/ft9774)2116)(32.2)(991.1( === p

    p

    p

    p

    pp

    R825)519)(294.1)(229.1(11

    2

    2

    33 === T

    T

    T

    T

    TT

    Example

    R825T

  • 7/25/2019 Supersonic - BANAL 2013

    218/282

    6.31=M

    =10

    2

    1 lb/ft2116=p

    R5191=T

    2

    2 lb/ft4909=p

    R6.6712 =T

    3

    3 lb/ft9774=p

    R8253=T

    = 3.17

    55.23=M

    96.22 =M

    BluntBody

  • 7/25/2019 Supersonic - BANAL 2013

    219/282

    BluntBody

  • 7/25/2019 Supersonic - BANAL 2013

    220/282

  • 7/25/2019 Supersonic - BANAL 2013

    221/282

  • 7/25/2019 Supersonic - BANAL 2013

    222/282

    LudwigPrandtl Theodor Meyer

    PrandtlMeyerExpansion

    (centered expansionwaves)

  • 7/25/2019 Supersonic - BANAL 2013

    223/282

    PrandtlMeyerExpansion

    dV

  • 7/25/2019 Supersonic - BANAL 2013

    224/282

    V

    dVMd 12 =

    ThePrandtlMeyerFunction

    +

    =2

    2

    2

    ]2/)1[(1

    1M

    M

    dM

    M

    M

  • 7/25/2019 Supersonic - BANAL 2013

    225/282

    1tan)1(

    1

    1tan

    1

    1)( 2121

    +

    += MMM

    )()( 12 MM =

    +

    =M

    dM

    M

    MM

    2

    2

    ]2/)1[(1

    1)(

    +1

    ]2/)1[(1M

    MM

    Computingdownstreamproperties

    1 Compute v(M )

  • 7/25/2019 Supersonic - BANAL 2013

    226/282

    1. Compute v(M1).

    2. Compute v(M2) = v(M1) +.3. Obtain M2 corresponding to v(M2).

    4. Use appropriate isentropic equations

    to relate upstream and downstream

    properties.

    ExampleAsupersonicflowwithM1=1.5,P1=1atm,andT1=288Kisexpanded

    aroundasharpcornerthroughadeflectionangleof15o.CalculateM2,

    d h l h h f d d d h

  • 7/25/2019 Supersonic - BANAL 2013

    227/282

    P2,T2,P0,2,T0,2andtheanglesthattheforwardandrearwardMach

    linesmakewithrespecttotheupstreamflowdirection.

    M1=1.5

    P1=1atm

    T1=288K

    15o

    Example

    1 Compute v(M )

  • 7/25/2019 Supersonic - BANAL 2013

    228/282

    1. Compute v(M1).

    v(1.5) = 11.91o2. Compute v(M2) = v(M1) +.

    v(M2) = 11.91o + 15 = 26.91o

    3. Obtain M2 corresponding to v(M2).

    M2 = 2.0 (rounding to nearest entry in table)

    Example

    4. Use appropriate isentropic equations to

    relate upstream and downstream

  • 7/25/2019 Supersonic - BANAL 2013

    229/282

    relate upstream and downstream

    properties.

    45.1T

    Tand671.3

    p

    p,5.1MFor

    1

    0,1

    1

    0,1

    1 ===

    8.1TTand824.7

    pp,0.2MFor

    2

    0,2

    2

    0,2

    2 ===

  • 7/25/2019 Supersonic - BANAL 2013

    230/282

    Example

    4. Use appropriate isentropic equations to

    relate upstream and downstream

  • 7/25/2019 Supersonic - BANAL 2013

    231/282

    relate upstream and downstream

    properties.0,20,10,20,1 TTandpp,isentropicisflowtheSince ==

    atm0.469atm)1)(671.3)(1(824.7

    1p

    p

    p

    p

    p

    p

    pp 1

    1

    0,1

    0,1

    0,2

    0,2

    22 ===

    K232)288)(45.1)(1(8.1

    1T

    T

    T

    T

    T

    T

    TT 1

    1

    0,1

    0,1

    0,2

    0,2

    22 ===

    Example

    4. Use appropriate isentropic equations to

    relate upstream and downstream

  • 7/25/2019 Supersonic - BANAL 2013

    232/282

    relate upstream and downstream

    properties.

    ===

    ===

    1515300.2sin:lineMachrearwardofAngle

    81.415.1sinsin

    :lineMachforwardofAngle

    11

    2

    111

    1

    1

    1

    M

    ShockExpansionTheory:FlatPlate

  • 7/25/2019 Supersonic - BANAL 2013

    233/282

    sin)('

    cos)('

    )('

    23

    23

    23

    cppD

    cppL

    cppR

    =

    =

    =

    ShockExpansionTheory:DiamondShapedAirfoil

  • 7/25/2019 Supersonic - BANAL 2013

    234/282

    Schlieren Photograph SAEP Logo

    ShockExpansionTheory:DiamondShapedAirfoil

  • 7/25/2019 Supersonic - BANAL 2013

    235/282

    tppD

    tpplplpD

    )('

    )2/)((2)sinsin(2'

    32

    3232

    =

    ==

    Example

    Calculatetheliftanddragcoefficientsforaflatplateata50o angleof

    attackinaMach3flow.

  • 7/25/2019 Supersonic - BANAL 2013

    236/282

    M=3.0

    = =50o

    Example== 76.49)0.3()( 1 M

    =+=+= 76.54576.49)()( 12 MM

  • 7/25/2019 Supersonic - BANAL 2013

    237/282

    27.32=M

    73.361

    1,0 =p

    p

    55

    2

    2,0 =p

    p

    668.055

    73.36

    2

    2,0

    1

    1,0

    1

    2 ===p

    p

    p

    p

    p

    p

    Example=== 23.1,5and3For 1 M

    177.11.23sin3sin11, === MMn

  • 7/25/2019 Supersonic - BANAL 2013

    238/282

    458.11

    3

    =p

    p

    cos2

    )2/(

    ''

    1

    2

    1

    3

    2

    1

    2

    111

    ===

    p

    p

    p

    p

    McMp

    L

    Sq

    LCL

    cos)(' 23 cppL =

    ( ) 125.05cos668.0458.1)3)(4.1(

    22

    ==LC

    Example

    i2' 23

    ppD

    C

    sin)(' 23 cppD =

  • 7/25/2019 Supersonic - BANAL 2013

    239/282

    sin1

    2

    1

    3

    2

    11

    ==

    p

    p

    p

    p

    MSq

    CD

    ( ) 011.05sin668.0458.1)3)(4.1(

    22

    ==DC

    tan=L

    D

    C

    C

    011.05tan125.0tan === LD CC

  • 7/25/2019 Supersonic - BANAL 2013

    240/282

    Roadmap

  • 7/25/2019 Supersonic - BANAL 2013

    241/282

    QuasiOneDimensionalFlow

  • 7/25/2019 Supersonic - BANAL 2013

    242/282

    GoverningEquations

    222111 AuAu =

    Continuity

  • 7/25/2019 Supersonic - BANAL 2013

    243/282

    2

    2

    22221

    2

    1111

    2

    1

    AuAppdAAuAp

    A

    A

    +=++

    22

    2

    2

    2

    2

    1

    1

    uh

    uh +=+

    Momentum

    Energy

    22222 and TchRTp p==Foracaloricallyperfectgas

    Differentialforms

    Continuity

  • 7/25/2019 Supersonic - BANAL 2013

    244/282

    0)( =uAd

    ududp =

    0=+ ududh

    Momentum(EulersEquation)

    Energy

    AreaVelocityRelation

  • 7/25/2019 Supersonic - BANAL 2013

    245/282

    ( )u

    duM

    A

    dA12 =

    SubsonictoSupersonic

  • 7/25/2019 Supersonic - BANAL 2013

    246/282

  • 7/25/2019 Supersonic - BANAL 2013

    247/282

    zzle?

  • 7/25/2019 Supersonic - BANAL 2013

    248/282

    W

    hatisano

    z

    deLavalNozzle

  • 7/25/2019 Supersonic - BANAL 2013

    249/282

    Nozzle

    Thisisarocketnozzle.

  • 7/25/2019 Supersonic - BANAL 2013

    250/282

  • 7/25/2019 Supersonic - BANAL 2013

    251/282

    AreaMachRelation

    )1/()1(

    2

    2

    2

    * 2

    11

    1

    21 +

    +

    +=

    M

    MA

    A

  • 7/25/2019 Supersonic - BANAL 2013

    252/282

    Misafunctionoflocaltothroatarearatio:M=f(A/A*)

    Localtothroatarearatio,A/A* 1

    TherearetwoMsforeachA/A*,asubsonicandasupersonicvalue.

    ForM1,asMincreasesA/A*alsoincreases(divergentduct).ForM=1,A/A*=1.

    IsentropicSupersonicFlow

  • 7/25/2019 Supersonic - BANAL 2013

    253/282

    IsentropicSupersonicFlow

  • 7/25/2019 Supersonic - BANAL 2013

    254/282

    )1/()1(

    2

    2

    2

    * 2

    11

    1

    21 +

    +

    +=

    M

    MA

    A

    IsentropicSupersonicFlow

  • 7/25/2019 Supersonic - BANAL 2013

    255/282

    528.012

    )1(

    0

    *

    =

    +=

    pp

    IsentropicSupersonicFlow

  • 7/25/2019 Supersonic - BANAL 2013

    256/282

    833.012

    0

    *

    =+

    =T

    T

    IsentropicSupersonicFlow

    Th di t ib ti f M d

  • 7/25/2019 Supersonic - BANAL 2013

    257/282

    ThedistributionofM,andtheresultingdistributionof

    pandT,dependonlyonthe

    localarearatioA/A*.

    IsentropicSupersonicFlow

    Foranisentropic

    i fl t h

  • 7/25/2019 Supersonic - BANAL 2013

    258/282

    supersonicflowtohappen,thepressuredifference

    betweentheinletandexit

    hastobejustrightforthe

    geometryoftheduct.

    IsentropicSubsonicFlow

  • 7/25/2019 Supersonic - BANAL 2013

    259/282

    Whathappenswhenthereisan

    inletexitpressuremismatch?

    IsentropicSubsonicFlowFreezesatchokedflow.

  • 7/25/2019 Supersonic - BANAL 2013

    260/282

    For1and2,A* isareferenceareanotequaltoAt.ForsubsonicflowA

    *

  • 7/25/2019 Supersonic - BANAL 2013

    261/282

    Theresaninfinitenumberofisentropicsubsonicsolutionandonlyoneisentropic

    supersonicsolution.

    528.01

    2)1(

    0

    *

    =

    +=

    p

    p

    ChokedFlow

  • 7/25/2019 Supersonic - BANAL 2013

    262/282

    uAm =&

    Chokedthroat

    Aconditioninaconvergent

    divergentductwhereinsonic

    condition has been achieved ath i f i i h

  • 7/25/2019 Supersonic - BANAL 2013

    263/282

    conditionhasbeenachievedatthesectionofminimumarea,the

    throat,andinformationisno

    longerpropagatedfromthe

    convergentportiontothe

    divergentportionoftheduct.

    IsentropicSupersonicFlowwithNSW

  • 7/25/2019 Supersonic - BANAL 2013

    264/282

    IsentropicSupersonicFlowwithNSW

  • 7/25/2019 Supersonic - BANAL 2013

    265/282

    IsentropicSupersonicFlowwithNSW

  • 7/25/2019 Supersonic - BANAL 2013

    266/282

    NSWmovesfurtheraftupon

    exitpressure

    decrease

  • 7/25/2019 Supersonic - BANAL 2013

    267/282

    DiffuserFlow

  • 7/25/2019 Supersonic - BANAL 2013

    268/282

    IdealVSRealDiffuser

  • 7/25/2019 Supersonic - BANAL 2013

    269/282

    Nozzleexhaustingtoatmosphere

  • 7/25/2019 Supersonic - BANAL 2013

    270/282

    Nozzleexhaustingintoaconstantareaduct

  • 7/25/2019 Supersonic - BANAL 2013

    271/282

    SupersonicWindTunnel

  • 7/25/2019 Supersonic - BANAL 2013

    272/282

    cWindTunnel

  • 7/25/2019 Supersonic - BANAL 2013

    273/282

    Supersonic

    ExampleConsidertheisentropicsupersonicflowthroughaconvergentdivergent

    nozzlewithanexittothroatarearatioof10.25.Thereservoirpressure

    andtemperatureare5atm and600R,respectively.CalculateM,p,andT

    atthenozzleexit.

    25.101

    121 )1/()1(2

    2

    2

    *=

    +=

    +

    e MA

    95.3=eM

  • 7/25/2019 Supersonic - BANAL 2013

    274/282

    25.102

    11

    2*

    ++

    e

    e

    MMA

    e

    1422

    11

    )1/(

    20,0 =

    +==

    e

    ee

    eM

    p

    p

    p

    p

    12.42

    11

    20,0 =

    +== eee

    eM

    T

    T

    T

    T

    atm035.0142/500 ===e

    ep

    ppp

    R6.14512.4/60000 ===e

    eT

    TTT

    ExampleConsidertheisentropicflowthroughaconvergentdivergentnozzlewith

    anexittothroatarearatioof2.Thereservoirpressureandtemperature

    are1atm and288K,respectively.CalculatetheMachnumber,pressure,

    andtemperatureatboththethroatandtheexitforthecaseswhere

    (a) theflowissupersonicattheexit,and(b) the flow is subsonic throughout the entire nozzle except at the throat

  • 7/25/2019 Supersonic - BANAL 2013

    275/282

    Given:

    (b)theflowissubsonicthroughouttheentirenozzleexceptatthethroat,

    whereM=1.

    2*=

    A

    Ae atm10 =p K2880 =T

    Example:(a)1* =M

    atm528.0)1(528.00

    **

    ==== p

    p

    ppt

    Atthethroat,

  • 7/25/2019 Supersonic - BANAL 2013

    276/282

    K240)288(833.00

    ** ====

    T

    TTTt

    Example:(a)

    22

    11

    1

    21)1/()1(

    2

    2

    2

    * =

    +

    +=

    +

    e

    e

    e MMA

    A2.2=eM

    ( ) 5.3200 pp

    Attheexit,

    093506910/10p

  • 7/25/2019 Supersonic - BANAL 2013

    277/282

    ( ) 69.102.01 5.320,0 =+== eee

    eM

    p

    p

    p

    p

    968.1211 20,0 =

    +== e

    ee

    e MTT

    TT

    atm0935.069.10/100 ===e

    ep

    ppp

    K146968.1/28800 ===e

    eTTTT

    Example:(b)1* ==MMt

    atm528.0)1(528.00

    **

    ==== p

    p

    ppt

    Atthethroat,

  • 7/25/2019 Supersonic - BANAL 2013

    278/282

    K240)288(833.00

    ** ====

    T

    TTTt

    Example:(b)

    22

    11

    1

    21)1/()1(

    2

    2

    2

    * =

    +

    +=

    +

    e

    e

    e MMA

    A3.0=eM

    ( ) 0641201 5.3200 e Mpp

    Attheexit,

    atm9400641/10p

  • 7/25/2019 Supersonic - BANAL 2013

    279/282

    ( ) 064.12.01 20,0 =+== eee

    eM

    p

    p

    p

    p

    018.1211 20,0 =

    +== e

    ee

    e MTT

    T

    T

    atm94.0064.1/100 ===e

    ep

    ppp

    K9.282018.1/28800 ===e

    eTTTT

    ExampleConsider the isentropic flow through a convergentdivergent nozzle

    with an exittothroat area ratio of 2. The reservoir pressure and

    temperature are 1 atm and 288 K, respectively. The exit pressure is

    0.973 atm. Calculate the Mach number at both the throat and the exit

    for the cases where(a) the flow is supersonic at the exit, and

    (b) h fl i b i h h h i l h

  • 7/25/2019 Supersonic - BANAL 2013

    280/282

    Given:

    (b) the flow is subsonic throughout the entire nozzle except at the

    throat, where M = 1.

    2* =A

    Aeatm10=p K288

    0=T atm973.0=

    ep

    Example:

    028.1

    973.0

    10 ==ep

    p

    Frombefore,theexitpressurecorrespondingtoasubsonicflow

    throughoutthenozzle(exceptatthethroat), atm94.0=ep

    5.3/1

    482.1)964.2(5.0**

    ===

    A

    A

    A

    A

    A

    A e

    e

    tt

    440=M

  • 7/25/2019 Supersonic - BANAL 2013

    281/282

    2.015 0 =

    =

    e

    ep

    pM

    964.22

    111

    21 )1/()1(

    2

    2

    2

    * =

    +

    +=

    +

    e

    e

    e MMA

    A

    44.0=tM

    ExampleFor the preliminary design of a Mach 2 supersonic wind tunnel,

    calculate the ratio of the diffuser throat area to the nozzle throat area.

  • 7/25/2019 Supersonic - BANAL 2013

    282/282