Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1...

31
Superselection Rules from Measurement Theory Shogo Tanimura Department of Complex Systems Science Graduate School of Information Science Nagoya University Reference: arXiv 1112.5701

Transcript of Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1...

Page 1: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Superselection Rules from Measurement Theory

Shogo Tanimura Department of Complex Systems Science Graduate School of Information Science

Nagoya University

Reference: arXiv 1112.5701

Page 2: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

My recent popular articles โ€œParadox of Photonโ€ Nikkei Science, 2012 March โ€œNew Uncertainty Relation,โ€ 2012 April โ€œWhat is Measurable?,โ€ 2012 July

Read it!

Page 3: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Plan of this talk โ€ข Introduction โ€ข A toy model: momentum superselection rule โ€ข Tool: von Neumannโ€™s indirect measurement

model โ€ข Basic notions: isolated conservation law,

covariant indicator โ€ข Main theorem: we derive the superselection

rule from a conservation law in measurement process. 3

Page 4: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Superselection Rule โ€ข ๐ฝ: superselection charge โ€ข ๐ด : self-adjoint operator, ๐ดโ€  = ๐ด The superselection rule states ๐ด is measurable โ‡’ ๐ด, ๐ฝ = 0 By contraposition, ๐ด, ๐ฝ โ‰  0 โ‡’ ๐ด is non-measurable

The superselection rule is a necessary condition for a self-adjoint operator ๐ด to be a measurable quantity.

4

Page 5: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

History of superselection rule Wick, Wigner, Wightman (1952) noticed that not every self-adjoint operator represents a physically measurable quantity. ๐œ“๏ผš Dirac field operator These are self-adjoint but they are not measurable. Charge density and current density are measurable. Although the intensity of electron wave is measurable, its phase is non-measurable.

12๐œ“ + ๐œ“โ€  , 1

2๐‘–๐œ“ โˆ’ ๐œ“โ€ 

๐œ“โ€ ๐œ“, ๐œ“๏ฟฝ๐›พ๐œ‡๐œ“

We can observe an interference fringe of the electron wave but we cannot determine its phase.

5

Page 6: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Univalence superselection rule

๐ฝ = ๐‘… 2๐œ‹ : rotation by 360 degree around any axis. A measurable quantity ๐ด must satisfy On the other hand, the Dirac spinor field ๐œ“ satisfies Thus the Dirac spinor field ๐œ“ itself is not a measurable quantity even though ๐œ“โ€ ๐œ“ is measurable.

๐‘… 2๐œ‹ โ€ ๐ด๐‘… 2๐œ‹ = ๐ด or equivalently, ๐ด, ๐ฝ = 0

๐‘… 2๐œ‹ โ€ ๐œ“๐‘… 2๐œ‹ = โˆ’๐œ“, ๐‘… 2๐œ‹ โ€ ๐œ“โ€ ๐‘… 2๐œ‹ = โˆ’๐œ“โ€ 

another derivation by Hegerfeldt, Kraus, Wigner (1968)

6

Page 7: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

How did they notice it? Around 1950, physicists discussed definition of the parity transformation of the Dirac field. It was not uniquely defined but it had an ambiguity. Parity transform: The phase factor is not uniquely determined. In 1952, WWW noted that the parity transformation of the Dirac spinor is allowed to be unfixed since the Dirac spinor itself is non-measurable.

๐œ“ ๐’™, ๐‘ก โ†’ ๐›ฑ๐œ“ ๐’™, ๐‘ก = ๐‘’๐‘–๐œƒ๐›พ0๐œ“ โˆ’๐’™, ๐‘ก

๐‘’๐‘–๐œƒ

7

Page 8: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Correspondence of mathematical notion to physical observable

โ€ข Mathematical notion: self-adjoint operator โ€ข Physical notion: observable (measurable quantity) Do they have one-to-one correspondence? In the usual framework of quantum mechanics, their one-to-one correspondence is assumed.

8

Page 9: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

von Neumannโ€™s argument (1932) After showing that every observable is representable by a self-adjoint operator, von Neumann argued that it is appropriate to assume that there is a physical observable corresponding to each self-adjoint operator. observable โ‡’ (โ‡?) self-adjoint: ๐ดโ€  = ๐ด The superselection rule tells that this assumption is not appropriate. There is a self-adjoint operator that does NOT correspond to any physical observable.

9

Page 10: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

von Neumann, โ€œMathematical Foundations of Quantum Mechanics,โ€ Section IV.2

โ€ข ไบ•ไธŠใƒปๅบƒ้‡ใƒปๆ’่—ค ่จณ๏ผˆ1957ๅนด๏ผ‰ p.250 ใ€Š้‡ๅญๅŠ›ๅญฆ็š„็ณปใฎ็‰ฉ็†้‡ใซๅฏพใ—ใฆ่ถ…ๆฅตๅคงใชใ‚จใƒซใƒŸใƒผใƒˆไฝœ็”จ็ด ใ‚’ไธ€ๆ„็š„ใซๅฏพๅฟœใ•ใ›ใ‚‰ใ‚Œใ‚‹ใ“ใจใฏ๏ผŒๆˆ‘ใ€…ใฎ็Ÿฅใฃใฆใ„ใ‚‹้€šใ‚Šใงใ‚ใ‚‹ใŒ๏ผŒใใ‚ŒใซๅŠ ใˆใฆ๏ผŒใ“ใ‚Œใ‚‰ใฎๅฏพๅฟœใฏไธ€ๅฏพไธ€ใงใ‚ใ‚‹๏ผŒใ™ใชใ‚ใก๏ผŒใ™ในใฆใฎ่ถ…ๆฅตๅคงใ‚จใƒซใƒŸใƒผใƒˆไฝœ็”จ็ด ใฏ็พๅฎŸใซ็‰ฉ็†้‡ใซๅฏพๅฟœใ—ใฆใ„ใ‚‹๏ผŒใจไปฎๅฎšใ™ใ‚‹ใฎใŒ้ƒฝๅˆใŒใ‚ˆใ„๏ผŽใ€‹

โ€ข Original German expression by von Neumann (1932) ใ€Š... es ist zweckmรคssig anzunehmen, ...ใ€‹

โ€ข English translation by Beyer (1955) ใ€Š... it is convenient to assume, ...ใ€‹

โ€ข English translation by Wightman (1995) ใ€Š... it is appropriate to assume, ...ใ€‹

10

Page 11: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Other examples: Not every self-adjoint operator

corresponds to observable

โ€ข Lorentz boost generators โ€ข Dilatation generator

11

Page 12: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

For making a clear argument we need a clear definition

โ€ข self-adjoint: mathematically well-defined notion

โ€ข observable (something measurable): not clear

It is necessary to formulate the notion of measurement.

12

Page 13: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Toy model to help understanding of the superselection rule

โ€ข ๐‘› particles in one-dimensional space โ€ข masses: ๐‘š1,๐‘š2, โ€ฆ ,๐‘š๐‘› โ€ข positions: ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘› โ€ข momenta: ๐‘1,๐‘2, โ€ฆ , ๐‘๐‘› โ€ข An apparatus has a meter observable ๐‘€. โ€ข Time-evolution of the whole system is

described by a unitary operator ๐‘ˆ ๐‘€

๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4 ๐‘ฅ5 13

Page 14: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Indirect measurement model โ€ข The object system (๐‘›-particle system) has a Hilbert space โ„Œ,

while the apparatus has a Hilbert space ๐”Ž. โ€ข The initial state of the whole system is ๐œ“โจ‚๐œ‰ โˆˆ โ„Œโจ‚๐”Ž โ€ข An observable ๐ด to be measured is a self-adjoint operator on โ„Œ, while a meter observable ๐‘€ is a self-adjoint operator on ๐”Ž.

โ€ข Interaction between them is described by a unitary operator ๐‘ˆ = ๐‘’โˆ’๐‘–๐‘–๐‘–/โ„ on the composite system โ„Œโจ‚๐”Ž.

โ€ข The meter ๐‘ˆโ€ ๐‘€๐‘ˆ is read out by means of the Born probability rule.

Object System Apparatus (observing system)

meter ๐‘€โŸถ ๐‘ˆโ€ ๐‘€๐‘ˆ observables ๐ด,๐ต ๐‘ˆ initial state ๐œ“ โˆˆ โ„Œ initial state ๐œ‰ โˆˆ ๐”Ž

interaction

14

Page 15: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

โ€ข Suppose that we want to measure the position of the center of mass of the particles:

๐ด = ๐‘‹ โ‰”โˆ‘ ๐‘š๐‘–๐‘ฅ๐‘–๐‘›๐‘–=1โˆ‘ ๐‘š๐‘–๐‘›๐‘–=1

โ€ข Assume that the total momentum of the particles is conserved during the measurement process (isolated conservation law):

๐ฝ = ๐‘ƒ โ‰”๏ฟฝ ๐‘๐‘–๐‘›

๐‘–=1, ๐‘ˆโ€ ๐‘ƒ๐‘ˆ = ๐‘ƒ

โ€ข Does the meter move as ๐‘ˆโ€ ๐‘€๐‘ˆ = ๐‘€ + ๐‘‹ ? โ€ข Answer: It is impossible.

Requirement

15

Page 16: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

The total momentum of the particles ๐‘ƒ = ๐‘ƒโจ‚1 and the meter position operator ๐‘€ = 1โจ‚๐‘€ on โ„Œโจ‚๐”Ž commute

๐‘ƒ,๐‘€ = 0 Since the time-evolution acts as an automorphim,

๐‘ˆโ€ ๐‘ƒ๐‘ˆ,๐‘ˆโ€ ๐‘€๐‘ˆ = ๐‘ˆโ€  ๐‘ƒ,๐‘€ ๐‘ˆ = 0 On the other hand, the momentum conservation and the meter shift condition imply

๐‘ˆโ€ ๐‘ƒ๐‘ˆ,๐‘ˆโ€ ๐‘€๐‘ˆ = ๐‘ƒ,๐‘€ + ๐‘‹ = ๐‘ƒ,๐‘‹ = โˆ’๐‘–โ„ These give a contradiction. In general, a quantity ๐ด measurable in the sense ๐‘ˆโ€ ๐‘€๐‘ˆ = ๐‘€ + ๐ด must satisfy ๐‘ƒ,๐ด = 0.

Proof

16

Page 17: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

General scheme which gives a rise of superselection rule

Object System Apparatus (observing system)

covariant meter ๐‘€โŸถ ๐‘ˆโ€ ๐‘€๐‘ˆ = ๐‘€ + ๐ด

observable ๐ด

isolated conserved quantity ๐ฝ โŸถ ๐‘ˆโ€ ๐ฝ๐‘ˆ = ๐ฝ

๐‘ˆ

interaction

Derivation of the superselection rule

๐ฝ,๐‘€ = 0, 0 = ๐‘ˆโ€  ๐ฝ,๐‘€ ๐‘ˆ

= ๐‘ˆโ€ ๐ฝ๐‘ˆ,๐‘ˆโ€ ๐‘€๐‘ˆ= ๐ฝ,๐‘€ + ๐ด= ๐ฝ,๐ด

โˆด ๐ฝ,๐ด = 0. 17

definition of measurability

A more general proof is given in my paper.

Page 18: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Measurability โ€ข Physically meaningful measurement requires

covariance between the quantity to be measured and the quantity to be read out.

โ€ข But the structure of interaction between the object system and the apparatus may or may not allow the covariance.

18

: quantity to be read

: quantity to be known

meter ๐‘€

human weight ๐ด

meter ๐‘€ โ†’ ๐‘€๐‘€ weight ๐ด โ†’ ๐ด๐‘€

covariance is necessary for making meaningful measurement.

Page 19: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

The superselection rule associated to the momentum conservation law demands any measurable quantity ๐ด must satisfy ๐‘ƒ,๐ด = 0, where ๐‘ƒ = โˆ‘ ๐‘๐‘–๐‘– is the total momentum. Measurable: relative coordinates

๐ด = ๐‘ฅ๐‘Ÿ โˆ’ ๐‘ฅ๐‘ , ๐ด =๐‘š1๐‘ฅ1 + ๐‘š2๐‘ฅ2๐‘š1 + ๐‘š2

โˆ’ ๐‘ฅ3

Non-measurable: absolute coordinates of the particle

๐ด = ๐‘ฅ๐‘Ÿ , ๐ด =โˆ‘ ๐‘š๐‘–๐‘ฅ๐‘–๐‘›๐‘–=1โˆ‘ ๐‘š๐‘–๐‘›๐‘–=1

Measurable/non-measurable quantities

19

Page 20: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Symmetries / Superselection charges

โ€ข 2ฯ€ rotation invariance / univalence The Dirac spinor, which is not invariant under 2ฯ€ rotation, is non-measurable.

โ€ข U(1) invariance / electric charge, baryon number The phases of matter waves of electron or neutron are non-measurable.

โ€ข Notice: Photon number is not conserved, hence, the phase of electromagnetic wave is measurable.

20

Page 21: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Paradox associated with Non-abelian symmetry

For example, SO(3) rotation invariance implies the conservation of angular momenta ๐ฝ๐‘ฅ, ๐ฝ๐‘ฆ , ๐ฝ๐‘ง, which are noncommutative each other. Hence the superselection rule prohibits the measurements of angular momenta. But, in actual experiments, we measure the spin angular momenta of electrons or photons. How is it possible? 21

Page 22: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Solution of the angular momentum paradox

The SO(3) rotation invariance is broken by introducing external magnetic field (Zeeman effect or Stern-Gerlach setting) for nuclei or electrons, polarization filter or birefringent crystal for photons. All of the measurements of angular momenta introduce a coupling of the object system and the apparatus that breaks the isolation of the system and allows exchange of angular momenta between the two systems.

๐ป = ๐‘”๐‘บ โˆ™ ๐‘ฉ [๐ป,๐‘บ] โ‰  0 ๐‘†

๐‘ฉ ๐ป = ๐‘”๐‘บ โˆ™ ๐‘ณ ๐ป,๐‘บ โ‰  0

๐ป,๐‘บ + ๐‘ณ = 0

object spin external field

22

Page 23: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Why we can measure rotationally non-invariant quantities?

If the SO(3) rotation invariance is preserved within a microscopic system, we cannot measure any rotationally variant quantity from outside. However, actually we can measure it since the rotation invariance is spontaneously broken at the macroscopic scale. We can construct apparatus which has a non-spherical shape. Thus, we can apply rotationally non-invariant external field on a microscopic system.

23

Page 24: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

How can we overcome the U(1) superselection rule?

The isolated conservation of the U(1) charge makes measurements of gauge variant quantities impossible. By breaking the isolation, we can make such a measurement possible. Example: superconductivity, Josephson junction

๐œ‘1 = ๐œ‘1 ๐‘’๐‘–๐œƒ1

๐œ‘2 = ๐œ‘2 ๐‘’๐‘–๐œƒ2

๐ป = ๐‘”๐œ‘1โ€ ๐œ‘2 + ๐‘”๐œ‘2โ€ ๐œ‘1

๐ผ = ๐œ‘1โ€ ๐œ‘2 โˆ’ ๐œ‘2โ€ ๐œ‘1

isolation is broken.

Superconductor

Cooper condensate ๐œ‘ = ๐œ‘ ๐‘’๐‘–๐œƒ

superselection rule prevents the measurement.

๐ผ

24

Page 25: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Why the SU(3) color is invisible?

In QCD, colored quantities like quark and gluon fields are non-measurable from outside of hadrons. Moreover, since SU(3) is non-abelian, color charge itself is non-measurable. If there are objects in which the color symmetry are spontaneously broken, we can measure their relative color difference.

๐œ“1๐œ“1 Color superconductor

๐œ“๐œ“

superselection rule prevents the measurement.

๐œ“2๐œ“2

isolation is broken. 25

Page 26: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Uncertainty relation under a conservation law: Wigner-Araki-Yanase-Ozawa theorem

๐ด : observable to be measured ๐‘€ : meter of the apparatus ๐ฝ1 : quantity of the object system ๐ฝ2 : quantity of the apparatus ๐‘ˆ : unitary time-evolution ๐›บ = ๐œ“โŠ— ๐œ‰ : initial state of the whole system

๐œ€ ๐ด 2 = ๐›บ ๐‘ˆโ€ ๐‘€๐‘ˆ โˆ’ ๐ด 2 ๐›บ : measurement error

๐œŽ ๐ฝ1 2 = ๐›บ ๐ฝ1 2 ๐›บ โˆ’ ๐›บ ๐ฝ1 ๐›บ 2 : standard deviation Assume ๐‘ˆโ€  ๐ฝ1 + ๐ฝ2 ๐‘ˆ = ๐ฝ1 + ๐ฝ2

๐œ€ ๐ด 2 โ‰ฅ๐ด, ๐ฝ1 2

4 ๐œŽ ๐ฝ1 2 + ๐œŽ ๐ฝ2 2 2 Theorem:

interaction

Object Apparatus

๐‘€, ๐ฝ2, ๐œ‰ ๐ด, ๐ฝ1,๐œ“ ๐ด, ๐ฝ1 โ‰  0

๐‘ˆ

26

Page 27: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Comparison of the WAY-Ozawa theorem with the superselection rule

The WAY theorem: The conservation of total charge ๐‘ˆโ€  ๐ฝ1 + ๐ฝ2 ๐‘ˆ = ๐ฝ1 + ๐ฝ2 implies that a non-vanishing error of the measurement ๐œ€ ๐ด is evitable.

Superselection rule: The isolated conservation law ๐‘ˆโ€ ๐ฝ1๐‘ˆ = ๐ฝ1 implies the impossibility of ๐‘€โŸถ ๐‘ˆโ€ ๐‘€๐‘ˆ = ๐‘€ + ๐ด, that is, the meter ๐‘€ cannot move covariantly to the object quantity ๐ด. This is an extremal form of the error-disturbance uncertainty relation.

๐‘ˆ

interaction

Object Apparatus ๐ด, ๐ฝ1,๐œ“ ๐ด, ๐ฝ1 โ‰  0 ๐‘€, ๐ฝ2, ๐œ‰

27

Page 28: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Accessible and Inaccessible Levels of the World Macroscopic level

Microscopic level

Invisible quantity ๐ต such that [๐ต, ๐ฝ] โ‰  0

Visible quantity ๐ด must satisfy [๐ด, ๐ฝ] = 0 barrier by the

isolated conservation law

quantity ๐ด

Less isolated conservation laws open the window of measurement and control

symmetry breaking at macroscopic scale

More visible quantities

28

Page 29: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Hierarchical structure of the nature

Quarks and Gluons

Hadrons and Nuclei Atoms and Molecules

color symmetry is kept chiral symmetry is broken

rotation symmetry is broken

a picture inspired by P. W. Andersonโ€™s โ€œMore is differentโ€

An isolated conservation law, that is, a superselection rule defines a border of two hierarchy, beyond which the underlying entities cannot be seen from the overlying entities. On the other hand, spontaneous symmetry breaking provides a scope or a handle with which we can observe or control the underlying level from the overlying level.

Underlying structure

Life, Society, Planets, Cosmos

Condensed matter, Crystal, Cell

translation symmetry is broken

29

Page 30: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

Conclusion โ€ข The uncertainty relation tells that we cannot precisely

measure a quantity A without disturbing another quantity J such that [A,J ] โ‰  0.

โ€ข If the disturbance of J is absolutely prohibited, namely, if the object system has the isolated conserved quantity J, the measurement of A becomes impossible. This is the superselection rule.

โ€ข The superselection rule is understood as a consequence of symmetry from a viewpoint of measurement theory.

โ€ข We can overcome the superselection rule by introducing explicit or spontaneous symmetry breakings.

โ€ข Isolated conservation laws and spontaneous symmetry breakings build the hierarchical structure of the nature.

30

Page 31: Superselection rules from measurement theoryphys.cs.is.nagoya-u.ac.jp/~tanimura//lectures/super...1 2 ๐œ“+ ๐œ“ โ€ , 1 2๐‘– ๐œ“โˆ’๐œ“ โ€  ๐œ“ โ€  ๐œ“, ๐œ“ ๐›พ ๐œ‡ ๐œ“ We

The End

31