Supercritical Fluid Chromatography · Supercritical Fluid Chromatography Theory, Design and...

56
Supercritical Fluid Chromatography Theory, Design and Applications DJ Tognarelli Chromatography Application Scientist JASCO Seminar Series

Transcript of Supercritical Fluid Chromatography · Supercritical Fluid Chromatography Theory, Design and...

  • Supercritical Fluid ChromatographyTheory, Design and Applications

    DJ TognarelliChromatography Application Scientist

    JASCO Seminar Series

  • Founding Members

    1958

    Established at the Optical Research Institute at Tsukuba University, Tokyo

    Founding members include: World famous physicist Yoshio Fujioka Nobel Prize winner Shinichiro Tomonaga

    (1965 - Physics for QED with Richard Feynman)

    1972

    JASCO in the USA

    HPLC Products

    1985

    SFC – First dynamic BPR

    Dr. Tomonaga

  • Products

  • Overview

    Section I Introduction to Supercritical Fluids Advantages of SFC

    Section II SFC System Preparative Unique Capabilities

    Section III Applications

  • Overview

    Section I Introduction to Supercritical Fluids Advantages of SFC

    Section II SFC System Preparative Unique Capabilities

    Section III Applications

  • SupercriticalFluid

    -56.4

    0.51

    31.3

    7.29

    Triple Point

    Critical Point

    SolidLiquid

    Gas

    Temperature (oC)

    Pres

    sure

    (MPa

    )

    Phase Diagram for CO2- Critical temperature (Tc):

    the temperature above whicha distinct liquid phase can NOTexist, regardless of pressure

    - Critical pressure (Pc): the vapor pressure at the

    critical temperature

    At T and P above itscritical point (Tc, Pc), a substance exists in

    a supercritical fluid state!

    Introduction to Supercritical Fluid

  • Compound Tc (C) Pc (Mpa)

    NH3 132 11.28

    CO2 31 7.38

    N2O 36 7.24

    H2O 374 22.06

    C3H8 97 4.25

    C6H14 234 2.97

    CH3OH 239 8.09

    C2H5OH 243 6.38

    C6H5(CH3) 318 4.11

    Critical Temperatures and Pressures

  • Advantages of SC-CO2

    SC-CO2 → Non toxic, non flammable, inexpensive

    Low Cp and CtEasy removal of CO2 by decompression

    Environmentally friendly (alternative solvent to hazardous organic solvents)Safely used in food and pharmaceutical products.

  • Gas-liquid 2-phase state

    Supercritical State1-phase state

    Critical pointRayleigh Scattering

    Phase Transition

    72.9 atm (bar) / 31.3 C

  • Diffusivity (cm2/s)

    Density (g/cm3)

    Viscosity (g/cm · s)

    Gas 10-1 10-3 10-4

    Supercritical Fluid

    10-4 – 10-3Liquid Like

    0.2-0.8Liquid Like

    10-4Gas Like

    Liquid 10-5 - 10-6 1 10-2

    Physical Properties

    High diffusivity and densitywith low viscosity

    Faster flow rates with lower pressure=

  • 1. SFC is a normal phase technique where CO2 replaces hexane

    2. Faster separation/analysis time (3 to 5 times faster than HPLC)

    SFC Advantages

  • -1000

    100200300400500600700800900

    0 1 2 3 4 5 6 7 8 9 10 11 12

    Time (min)

    mAU

    -1000

    100200300400500600700800900

    0 1 2 3 4 5 6 7 8 9 10 11 12

    Time (min)

    mAU

    -1000

    100200300400500600700800900

    0 1 2 3 4 5 6 7 8 9 10 11 12

    Time (min)

    mAU

    HPLC

    SFC

    HT-SFC

    Mobile phase: Hexane/Isopropanol (IPA)(60/40)Flow rate: 0.5 mL/minColumn: CHIRALCEL OD (4.6 mm ID x 250 mm L)Column temp.: 40 ºCWavelength: 230 nm

    CO2 : 3.0 mL/minModifier: Methanol, 0.1 mL/minColumn: CHIRALCEL OD (4.6 mm ID x 250 mm L)Column temp.: 40 ºCPressure: 20 MPaWavelength: 230 nm

    CO2 : 5.0 mL/minModifier: Methanol, 2.5 mL/minColumn: CHIRALPAK OD (4.6 mm ID x 150 mm L)Column temp.: 40 ºCPressure: 20 MPaWavelength: 230 nm

    HPLC, SFC, and HT-SFC

  • System Column ID HPLC Flow Rate SFC Flow Rate

    Analytical 3mm, 4.6mm 0.6mL/min, 1mL/min 2mL/min, 5mL/min

    Hybrid 4.6mm, 10mm 1mL/min, 5mL/min 5mL/min, 20mL/min

    Semi-Preparative 4.6mm, 10mm, 20mm 1mL/min, 5mL/min, 20mL/min 5mL/min, 20mL/min, 90mL/min

    Preparative 10mm, 20mm, 30mm 5mL/min, 20mL/min, 40mL/min 20mL/min, 70mL/min, 150mL/min

    HPLC vs SFC Systems

    SFC is 3 – 5 times faster

  • 1. SFC is a normal phase technique where CO2 replaces hexane

    2. Faster separation/analysis time (3 to 5 times faster than HPLC)

    3. Easy removal of mobile phase (typically alcohol)

    4. Using up to 95% less solvent – Cost Savings

    SFC Advantages

  • Tocopherol (Vitamin E)

    HPLCColumn : Finepak SIL-5 (4.6mm I.D. x 250mmL)Eluent : n-Hexane / IPA / CH3COOH (99 / 1 / 0.1)Flowrate : 1.0 mL/min Temperature : 40 deg.CINJ.VOL. : 10 µLWavelength range (PDA) : 200 - 650 nm

    SFCColumn : SFCpak SIL (4.6mm I.D. x 250mmL)CO2 : 3.0 mL/minSolvent (EtOH) : 0.2 mL/min Pressure : 20.0 MPaTemperature : 80 deg.CINJ.VOL. : 10 µLWavelength : 280 nm

    0.0

    1.5E+05

    3.0E+05uV

    5.0 10.0 15.0 20.0 [min]

    0.0

    2.0E+04

    4.0E+04

    6.0E+04 1: Tocopherol α 2: Tocopherol β

    3: Tocopherol γ 4: Tocopherol δ

    12

    3

    4

    12

    3

    4

    HPLC (14min) SFC (8min)Amount Price Amount Price

    Solvent 26.600L $2356 9.680L $1633Column 2cm 2cmFlow rate 19mL/min 60.5mL/minTime 23 hours 13 hoursSolvent disposal cost is not included

  • Column : CrestPak C18S (4.6mm I.D. x 150mmL)Eluent : A; MeOH / H2O (75 / 25)

    : B; /.EtOAc / CH3CN (50 / 50)Flowrate : 1.5 mL/min Temperature : 30 deg.CINJ.VOL. : 15 µLWavelength : 270 nm

    Time(min) A(%) B(%)0.0 90 10

    27.0 0 10032.0 0 100

    Polymer Additives

    Column : SFCpak SIL (4.6mm I.D. x 250mmL)CO2 : 3.0 mL/minSolvent (EtOH) : 0.3 mL/min Pressure : 20.0 MPaTemperature : 60 deg.CINJ.VOL. : 10 µLWavelength : 280 nm

    0.0

    4.0E+04

    8.0E+04

    uV

    10.0 20.0 30.0 [min]0.0

    6.0E+04

    1.2E+05

    1

    2

    3

    1

    23

    1: Irganox 1010 2: Irganox 1076 3: Irgafos 168

    HPLC (42min) SFC (9min)Amount Price Amount Price

    Solvent 267.750L $26,902 21.760L $3,944Column 3cm 3cmFlow rate 42.5mL/min 136mL/minTime 70 hours 15 hoursSolvent disposal cost is not included

    30.0

    [min]

    20.0

    10.0

    0.0

    6.0E+04

    1.2E+05

    0.0

    4.0E+04

    8.0E+04

    uV

  • 1. SFC is a normal phase technique where CO2 replaces hexane

    2. Faster separation/analysis time (3 to 5 times faster than HPLC)

    3. Easy removal of mobile phase (typically alcohol)

    4. Using up to 95% less solvent – Cost Savings

    5. Higher selectivity especially in chiral separation with wider array of columns and co-solvents

    6. Longer column lifetime

    SFC Advantages

  • Solvents and Columns

    Stationary Phase Choices

    Silica

    2-ethylpyridine

    Cyano

    Aminopropyl

    Diol

    Amide

    PFP

    Phenyl

    C18 < C8 Reversed-phase range

    Normal phase range

    SFC range

    Solvent

    Solvent Polarity [P’]

    Pentane, Hexane, Heptane 0.1

    Xylene 2.5

    Toluene 2.4

    Diethyl ether 2.8

    Dichloromethane 3.1

    Chloroform 4.1

    Acetone 5.1

    Dioxane 4.8

    THF 4.0

    MTBE 2.5

    Ethyl acetate 4.4

    DMSO 7.2

    Acetonitrile 5.8

    Isopropanol 3.9

    Ethanol 4.3

    Methanol 5.1

    Water 10.2

  • 1. SFC is a normal phase technique where CO2 replaces hexane

    2. Faster separation/analysis time (3 to 5 times faster than HPLC)

    3. Easy removal of mobile phase (typically alcohol)

    4. Using up to 95% less solvent – Cost Savings

    5. Higher selectivity especially in chiral separation with wider array of columns and co-solvents

    6. Longer column lifetime

    7. Similar methodology to HPLC

    SFC Advantages

  • Method Principles

    Sample : CaffeineColumn : SCFpak SIL (4.6 mm I.D. x 250 mmL)Pressure : 20.0 MPaTemperature : 60 deg.C

    0.0

    6.0E+04

    1.2E+05uV

    0.0

    1.0E+05

    2.0E+05

    4.0 8.0 12.0 16.0 [min]0.0

    1.5E+05

    3.0E+05

    10%

    15%

    20%

    Same methodology used in HPLC applies to SFC Gradient Isocratic Column Solvent (with additives)

  • Structurally similar compounds

    Chiral compounds

    Degradants

    Metabolites

    Increased efficiency makes SFC a superior technique for separating these types of compounds.

    All compounds typically used on Normal Phase HPLC

    Polar Compounds

    Those that are difficult to retain in HPLC

    Orthogonality

    When other separation techniques don’t work.

    When To Try SFC?

  • Overview

    Section I Introduction to Supercritical Fluids Advantages of SFC

    Section II SFC System Preparative Unique Capabilities

    Section III Applications

  • SFC1

    23

    MS

    1. Cooled CO2 Pump2. High Pressure Flow Cell3. Back Pressure Regulator

    SFC System

    HPLCMS

  • SFC Hardware Requirement 1

    Pump

    Liquid CO2 is required for SFC Typically from a cylinder for analytical SFC Bulk CO2 for Prep SFC

    To maintain the liquid CO2, the pump head must be cooled Peltier cooled for analytical pumps Circulated chiller for Prep pumps

    Otherwise it is a HPLC pump

  • 1. CO2 Pump

    Pump heads (-10 °C)

    Peltier cooling

    Recirculating Chiller Head (-10 °C)

    Insulating Cooling Block

    Automatic

    Shut-Off Valves

  • CO2 Physical Properties

  • SFC Hardware Requirement 2

    Detector Flow Cell

    HPLC pressure is between the pumps and column Flow cell is low pressure

    SFC pressure is between the pumps and back pressure regulator Flow cell must be high pressure

    Detector is identical, just a different flow cell

  • 2. High Pressure Flow Cell

    HPLC Detector + High Pressure Flow Cell

  • 25.0

    15.4

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Retention Time [min]

    -1000

    0

    1000

    2000

    Inte

    nsity

    [µV]

    Performance and Sensitivity

    # Peak Name tR Area Height S/N NTP Resolution Symmetry Factor1 Peak-001 1.662 2688 858 25.0 7250 7.341 1.3672 Peak-002 2.472 2751 530 15.4 4767 N/A 1.076

    10uL Injection

    0.05% flurbiprofen test

  • SFC Detectors

    Circular DichroismVariable Wavelength UV Photodiode Array Fluorescence

    Flame Ionization(FID)

    Evaporative Light Scattering(ELSD)

    Mass Spectrometry

  • SFC Hardware Requirement 3

    Back Pressure Regulator

    SFC requires a back pressure regulator This maintains the critical pressure for CO2 to stay in a supercritical fluid state The performance of this is critical to the separation efficiency and reproducibility

    If this restrictor is open or bypassed, then you would have HPLC

  • • Pressure control without changing flow rate of SCF.

    • Pressure programming vs. time

    • Self cleaning of precipitated substances

    • Low dead-volume

    • Patented

    Valve seatValve needle

    Needle-drive solenoid

    Needle seal Return spring

    Heater

    FLOW

    Gap adjustment screw

    Electrical-Feedback Regulator

    3. Back-Pressure Regulator

  • Back-Pressure Regulator Performance

    Caffeine ConditionsFlowrate 3mLs/minCO2/MeOH 85/15Back pressure 150 barColumn Silica 4.6x150, 5um5uL Injection

    0.169% Retention Time RSD

  • Preparative SFC Fraction Collection

    (Prep Column ID)2

    (Analytical Column ID)2Prep Flow Rate

    Analytical Flow Rate=Scale-Up

    CO2

    Sample(and solvent)

    Sample solutiondissolved in CO2+Modifier

    Open-Bed Fraction Collection

    Recovery 95%+

  • Unique Capabilities

    Back Pressure Regulation

    Parallel SFC

    Stacked Injections

  • Back Pressure Regulation

    0.0

    1.5E+04

    3.0E+04uV

    0.0

    5.0E+04

    1.0E+05

    1.5E+05

    5.0 10.0 15.0 [min]0.0

    1.0E+05

    2.0E+05

    10.0 MPa

    15.0 MPa

    20.0 MPa

    Sample : CaffeineColumn : SCFpak SIL (4.6mm I.D. x 250mmL)CO2 : 3.0 mL/minSolvent (EtOH) : 0.5 mL/min Temperature : 60 deg.C

    Back Pressure Regulation is unique to SFC and can provide additional separation optimization as the pressure changes the density.

  • Parallel SFC

    4X or 5X Throughput

  • -1000

    100200300400500600700800900

    0 1 2 3 4 5

    mAU

    -1000

    100200300400500600700800900

    0 1 2 3 4 5

    mAU

    1 2 3 4 5

    1 2 3 4 5

    Stacked Injections

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

    -100

    1 2 3 4 5

    1 2 3 4 5

    Stacked injections eliminate the time between injection and start of the first peak for all injections except the first significantly reducing the total purification time.

  • Overview

    Section I Introduction to Supercritical Fluids Advantages of SFC

    Section II SFC System Preparative Unique Capabilities

    Section III Applications

  • Applications

    Pharmaceuticals Natural products Foods Pesticides and herbicides Surfactants Lipids Cosmetics Polymers Petroleum Explosives Propellants Gasoline, diesel and bio-diesel fuels

  • Pharmaceuticals

    Achiral and Chiral Molecules

    LC/MS vs SFC/MS Pinkston et. al. screened 2153 compounds. Eluted and Detected. 87% by SFC/MS 90% by LC/MS Ammonium Acetate aid in retention of very

    polar and ionic analytes

    SFC method time of 4 minutes

    LC method time of 6 minutes

    *LC screen required nearly 3 additional days.

  • 0.0 2.0 4.0 6.0 8.0 10.0 Retention Time [min]

    -5000

    0

    5000

    Inte

    nsity

    [µV]

    Fraction1Fraction2 Fraction3

    Pharmaceutical – Chiral Purification

    0.0 2.0 4.0 6.0 8.0 10.0 12.0 Retention Time [min]

    0

    100000

    200000

    300000

    Inte

    nsity

    [µV]

    Fraction1 Fraction2

    0.0 2.0 4.0 6.0 8.0 10.0 Retention Time [min]

    -10000

    0

    10000

    20000

    Intensit

    y [µV]

    UV

    CD

    ∆CD/ ∆UV

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Retention Time [min]

    0

    50000

    100000

    Intensi

    ty [µV

    ]

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Retention Time [min]

    0

    50000

    100000

    Intensi

    ty [µV

    ]

    Enantiopurity 99.8 ± 0.5% Enantiopurity 99.6 ± 0.5%

    Fraction 1 Fraction 3

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Retention Time [min]

    0

    50000

    100000

    150000

    Inte

    nsity

    [µV

    ]

    Fraction 1 Fraction 2

    Purity 98 ± 0.5% Purity 93 ± 0.5%

  • Pharmaceutical – Chiral

    Enantiomer 1Isomer B

    Enantiomer 2 isomer B

    16391

    14342

    Time (min)15 20 25 30 35 40

    mAU

    Time (min)15 20 25 30 4035

    0

    45

    Isomer A (25 min)

    Impurity (37 min)

    Enantiomer 2 of isomer B(45.4 min)

    Enantiomer 1 of isomer B(41.1 min)

    10

    20

    15

    5

    100 200 300 400 500 600 700 800 m/z

    %

    %

    %

    0

    100

    %

    100

    100

    100

    0

    0

    0

    393452

    785

    393

    785

    393

    785

    389

    778448

    N

    F

    X

    N

    F

    * X

    Isomer BMz = 392

    Isomer AMz = 392

    MS

    UV

    CD

  • Pharmaceutical – In Vitro Metabolism

    VerapamilVerapamil is an L-type calcium channel blocker ofthe phenylalkylamine class. It has been used as avasodilator during cryopreservation of blood vessels,and is a class 4 antiarrhythmic, more effective thandigoxin in controlling ventricular rate. Verapamil hasalso been used in the treatment of hypertension,angina pectoris, cardiac arrhythmia, and mostrecently, cluster headaches.

    C27H38N2O4 MW = 454.2832

    Sample PrepA sample of in vitro verapamil 25uM and 10uM wasincubated for 30 minutes at 37°C with 2mg/mL protein and aNADPH regenerating system. The reaction was quenchedwith an equal volume of acetonitrile and the sample wascentrifuged. The sample supernatant was transferred to a200uL sample vial.

  • Metabolism

    TIC and Enhanced Product Ion Spectra TIC and Enhanced Product Ion Spectra

    Verapamil Norverapamil 1st and 2nd pair (active metabolite)

    SFC-MSMS

  • Pharmaceutical – Potency

    WarfarinWarfarin is a coumarin anti-coagulant and is marketed as the racemate. The entantiomers are differentially metabolized by human cytochromes P450(CYP). R-warfarin is metabolized primarily by CYP1A2 to 6- to 8-hydroxywarfarin and by CYP3A4 to 10-hydroxywarfarin. S-warfarin is metabolized primarily by CYP2C9 to 7-hydroxywarfarin. The S(-)-form is the more potent isomer.

    O O

    OH

    CH3

    O

    C19H16O4 MW = 308.1049

  • Continued

    The blood sample (approximately 4 mL) was collected from a patient that had taken 1.75 mg Q.D. Taro Pharmaceutical’s warfarin sodium USP. The whole blood was mixed with 10 mL of acetonitrile-isopropanol mix (1:1), vortexed for 20 minutes, and centrifuged for 20 min at 5,000 rpm at ambient temperature. The supernatant was filtered with 0.2-mm syringe filter and transferred to a 1.8-mL auto-sampler vial for SFC/MS/MS analysis.

    SFC MS TIC and EPI. TIC of Racemic Warafin 10ng/ul, 10uL injection (top) and enhanced product ion spectra of each enantiomer (bottom 2) . Conditions: AD-H 4.6 x 250nm. Gradient 10% to 50% Methanol with 0.3% TFA over 18minutes at 3mL/min at 30°C.

    warfarin MRM result.rdb (warfarin 1): "Linear" Regression ("1 / (x * x)" weighting): y = 33.2 x + 245 (r = 0.9894)

    1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 1.0e4Concentration, ng/mL

    0.0

    2.0e4

    4.0e4

    6.0e4

    8.0e4

    1.0e5

    1.2e5

    1.4e5

    1.6e5

    1.8e5

    2.0e5

    2.2e5

    2.4e5

    2.6e5

    2.8e5

    3.0e5

    3.2e5

    3.4e53.5e5

    Area, c

    ounts

    MRM Calibration Curve using Peak 1

    SFC MS MRM. 2 MRMs of Taro warfarin sodium USP 1 mg pill dissolved in10 mL methanol, 0.45mm-filtered, 10-uL injection (top). 2 MRMs of the patient’s blood that had taken 1.75mg of O.D. Taro Pharaceutical’swarfarin sodium USP pill (bottom)

    1.63mg warfarin in blood

  • Polymers – SFC & SFEQualitative and Quantitative

    Chimassorb 81

    Tinuvin 327

    Irgafos 168 Phosphate

    Irgafos 168

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

    Retention Time [min]

    0

    500000

    1000000

    1500000

    Inte

    nsity

    [µV]

    SFCColumn : Luna C18 (4.6mm x 150mmL)CO2 : 2.7 mL/minSolvent (MeOH): 0.3 mL/min Pressure : 250 barTemperature : 75 deg.CINJ.VOL. : 20 µLWavelength : 220 nm

    Irgafos 168 Tinuvin 326

    Chimassorb 81

    0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

    Concentration[mg/mL]

    0

    10000000

    20000000

    Inte

    nsity

    Chimassorb 81 - CH9

    Calibration for Chimassorb 81

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

    Retention Time [min]

    0

    500000

    1000000

    1500000

    Inten

    sity [

    µV]

    Contour Plot

    Standard 2

    Standard 3

    Chimassorb 81

    Standard 2

    Standard 3

    Tinuvin 327

    Standard 2Standard 3

    Irgafos 168

  • Extraction Results

    Chimassorb 81

    Tinuvin 326

    Unknown

    Irganox 1010

    Irgafos 168

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

    Retention Time [min]

    0

    500000

    1000000

    Inte

    nsity

    [µV

    ]

    0.11% Irgafos 1680.45% Tinuvin 3260.30% Chimassorb 81

    Fraction collected from extraction

    SFE extraction. 500mgs of polymer film was cut into squares and packed in a 10mL extraction vessel.ConditionsPressure: 250 barStatic Extraction Time: 5 minutesDynamic Extraction Time: 5 minutes

  • Petrochemicals – Olefin Analysis

    8.0 8.5 9.0 9.5 10.0 Retention Time [min]

    10000

    20000

    Inte

    nsity

    1.0% Olefins-3 - CH13.5% Olefins-3 - CH16.0% Olefins-3 - CH18.5% Olefins-3 - CH112% Olefins-3 - CH117% Olefins-3 - CH125% Olefins-3 - CH1

    0.0 5.0 10.0 15.0 20.0 25.0 Concentration [%]

    0

    200000

    400000

    600000

    800000

    Inte

    nsity

    Olefins - CH1

    ASTM D6550

    Column : Silica 4.6 x 250mm, 5um: Silver 4.6 x 50mm, 5um

    CO2 : 3.0 mL/min Pressure : 100 barTemperature : 35 CINJ.VOL. : 0.5 µLDetection : Flame Ionization (FID) 1

    0.0 2.0 4.0 6.0 8.0 10.0 Retention Time [min]

    20000

    40000

    60000

    Commercial gasoline contained 1.0% olefins

  • Petrochemicals – Diesel

    ASTM D5186Column : Silica 4.6 x 250mm, 5umCO2 : 3.0 mL/min Pressure : 100 barTemperature : 35 CINJ.VOL. : 0.5 µLDetection : Flame Ionization (FID)

    1

    2

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 Retention Time [min]

    20000

    40000

    60000

    80000

    Commercial gasoline contained 59.3% non-aromatics and 40.7% aromatics.

    Peaks: 1. n-hexadecane, 2. toluene, 3. tetralin, 4. naphthalene.

  • Environmental – Pesticides

    CO2 : 5.0 mL/minCo-Solvent : MeOH w/ Amm. Ac. gradient to 50% over 7minPressure : 100 barTemperature : 40 CWavelength : 220nm

    CarbarylMW 201.22

    CarbofuranMW 221.25

    DiuronMW 233.09

    ChlorpyriphosMW 350.59

    MalathionMW 330.36

    CoumaphosMW 362.77

    1ppm

    10ppm

    100ppm

    Chlopyriphos

    Malathion

    Coumaphos

    Carbofuran

    Carbaryl

    Diuron

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

    Retention Time [min]

    2000

    3000

    4000

    5000

    Inten

    sity

    6 MIX 0.5PPM - CH1

    6 MIX 0.1PPM - CH1

    6 MIX 0.05PPM - CH1

    6 MIX 0.02PPM - CH1

    6 MIX 2PPB - CH1

    Carbaryl

    MS - SIM

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

    Retention Time [min]

    0

    2000

    4000

    6000

    8000

    229 - CH1241 - CH1257 - CH1281 - CH1284 - CH1288 - CH1297 - CH1302 - CH1303 - CH1304 - CH1313 - CH1317 - CH1328 - CH1330 - CH1331 - CH1335 - CH1345 - CH1372 - CH1394 - CH1407 - CH1503 - CH1

    26 pesticides

    US and EU Require

  • Environmental – PAHs

    Detection limit(S/N=3)

    UV 7040 fg

    FL 26 fg

    -100

    0

    100

    Inte

    nsity

    [µV]

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    Retention Time [min]

    -10000

    0

    10000

    Inte

    nsity

    [µV]

    AnthraceneApprox. 300 times

    more sensitive

    0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0Retention Time [min]

    0

    10000

    20000

    30000

    Inte

    nsity

    [µV]

    1

    23+4

    5

    67 8 9

    1011 12 13 14 15 16

    2500 pg each

    0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0Retention Time [min]

    0

    10000

    20000

    30000

    Inte

    nsity

    [µV]

    1

    2

    3+4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    25 pg each

    POLYAROMATIC HYDROCARBONS ANTHRACENE

  • Cannabis – Potency and Purification

    CO2 +EtOH : 6.0 mL/min (Gradient)Pressure : 100 barTemperature : 25 CINJ.VOL. : 10 µLDetection : 220nm

    Terpenes_C6 C18 x2 + IB N-5 40C 80bar - CH1

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0Retention Time [min]

    0

    1. CBDV2. CBN3. Delta-8-THC4. CBC enantiomer 15. CBD6. Delta-9-THC7. CBC enantiomer 28. THCV9. CBG10. CBDA11. CBDVA12. THCA13. CBGA

    MS < 3min

  • JASCO Educational Resources

    Upcoming Webinars FTIR Microscopy Chromatography Detectors

    E-books, Tips and Tricks Posters Raman Fluorescence FTIR CD

    Knowledge Base 1000s of publications and applications

    NEXT WEBINAR WILL BE ON

    FTIR Microscopy

    Dr. James Burgess

    Tuesday May 26th at 2:00 PM EST

  • Thanks for attending!

    Questions?

    Slide Number 1Founding Members�Products�Overview�Overview�Introduction to Supercritical Fluid�Critical Temperatures and Pressures�Advantages of SC-CO2�Phase Transition�Physical Properties�SFC Advantages �HPLC, SFC, and HT-SFC �HPLC vs SFC Systems�SFC Advantages �Tocopherol (Vitamin E)�Polymer Additives�SFC Advantages �Solvents and Columns�SFC Advantages �Method Principles�When To Try SFC?�Overview�SFC System�SFC Hardware Requirement 11. CO2 Pump�CO2 Physical Properties�SFC Hardware Requirement 22. High Pressure Flow Cell��Performance and Sensitivity��SFC Detectors�SFC Hardware Requirement 33. Back-Pressure Regulator�Back-Pressure Regulator PerformancePreparative SFC Fraction Collection��Unique Capabilities�Back Pressure Regulation�Parallel SFC�Stacked Injections�Overview��Applications�Pharmaceuticals�Pharmaceutical – Chiral Purification�Pharmaceutical – Chiral�Pharmaceutical – In Vitro Metabolism�Metabolism��Pharmaceutical – Potency �Continued�Polymers – SFC & SFE�Qualitative and Quantitative�Extraction Results�Petrochemicals – Olefin Analysis�Petrochemicals – Diesel�Environmental – Pesticides�Environmental – PAHs�Cannabis – Potency and Purification�JASCO Educational Resources�Thanks for attending!��Questions?