Suma Resta Polinomios Terminos Semejantes

download Suma Resta Polinomios Terminos Semejantes

of 74

  • date post

    21-Jul-2015
  • Category

    Documents

  • view

    261
  • download

    0

Embed Size (px)

Transcript of Suma Resta Polinomios Terminos Semejantes

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE GUAYAMA PROF. FEDERICO A. MEJIA PARDO RAZONAMIENTO CUANTITATIVO: GEMA 1000 PROYECTO TITULO V COOPERATIVO MODULO:SUMA Y RESTA DE POLINOMIOS

BOTONES DE ACCIONPgina anterior. Prxima pgina. Pgina de contenido. Importante: para completar una pgina, haz click en el lado izquierdo del mouse.

OBJETIVOS 1. Simplificar trminos semejantes 2. Sumar dos o mas polinomios 3.Restar un polinomio de otro polinomio 4. Efectuar combinaciones de suma y resta de polinomios 5. Simplificar el mltiplo de un polinomio 6. Efectuar combinaciones de mltiplos de polinomios

PRE-PRUEBA 1. Simplifique 2. Simplifique 3. Simplifique

6 x 2 x 4 x + 5x4x 2 + 6x 2 7x 2 9x 25x 2 y 8x 2 y + x 2 y 6 x 2 y

4. Simplifique 5 x + 8 y 7 x 9 y + x + 3 y 5. Simplifique 6 x 2 y 10 xy 2 20 x 2 y + xy 2RESPUESTAS

PRE-PRUEBA:RESPUESTAS

6 x 2 x 4 x + 5x 1. Simplifique 5X RESPUESTA: 4x 2 + 6x 2 7x 2 9x 2 2. Simplifique RESPUESTA: 6X 2 3. Simplifique 5x 2 y 8x 2 y + x 2 y 6 x 2 y RESPUESTA: 8 X 2Y 5x + 8 y 7 x 9 y + x + 3 y 4. Simplifique X + 2Y RESPUESTA: 2 2 2 2 5. Simplifique 6 x y 10 xy 20 x y + xy RESPUESTA: 14 X 2Y 9 XY 2

PRE-PRUEBA 6. Sume 7. Sume 8. Sume 9. Reste 10. Reste(6 x 10 y + 4) + (7 x + 11 y 8)

(9 x 2 + 7 x 10) + (4 x 2 12 x + 3)(5 x 2 9 xy 3 y 2 ) + (6 x 2 8 y 2 ) + (9 xy + 3 y 2 )

(6 x 7 y 3) (10 x + 4 y 1)(14 x 2 5 x + 3) (21x 2 4 x + 6)RESPUESTAS

PRE-PRUEBA: RESPUESTAS

(6 x 10 y + 4) + (7 x + 11 y 8) 6. Sume RESPUESTA: 13 X + Y 4 7. Sume (9 x 2 + 7 x 10) + (4 x 2 12 x + 3) 13 X 2 5 X 7 RESPUESTA: 8. Sume (5 x 2 9 xy 3 y 2 ) + (6 x 2 8 y 2 ) + (9 xy + 3 y 2 ) 11X 2 8Y 2 RESPUESTA:9. Reste (6 x 7 y 3) (10 x + 4 y 1) RESPUESTA: 4 X 11Y 2 (14 x 2 5 x + 3) (21x 2 4 x + 6) 10. Reste 2 RESPUESTA: 7 X X 3

PRE-PRUEBA 11. Reste De

(6 x 7 y + 9) (12 x 9 y 3)

12. Reste (5 x 2 4 x) De (9 x 2 + 5 x 12) 13. Simplifique (3x 4 y + 7) + (6 x + 3 y 1) (5 x 8 y 9) 14. Simplifique (4 x 2 2 x + 7) (5 x 2 3x + 8) (10 x 2 + 6 x 5)RESPUESTAS

PRE-PRUEBA: RESPUESTAS 11. Reste (6 x 7 y + 9) De (12 x 9 y 3) RESPUESTA: 6 X 2Y 12 12. Reste (5 x 2 4 x) (9 x 2 + 5 x 12) De 2 RESPUESTA: 4 X + 9 X 12 13. Simplifique (3 x 4 y + 7) + (6 x + 3 y 1) (5 x 8 y 9) RESPUESTA: 4 X + 7Y + 15 14. Simplifique (4 x 2 2 x + 7) (5 x 2 3x + 8) (10 x 2 + 6 x 5) RESPUESTA: 11X 2 5 X + 4

PRE-PRUEBA 15. Simplifique 16. Simplifique 17. Simplifique 18. Simplifique6(4 x 7) + 3(6 x + 1)4(2 y 5) 3(6 y 1)

5(2 x 3 y + 4) + 7(6 x + 8 y 5)3( x 2 5 x + 4) 5(3 x 2 + 6 x 2)

RESPUESTAS

PRE-PRUEBA: RESPUESTAS 15. Simplifique 6(4 x 7) + 3(6 x + 1) RESPUESTA: 42 X 39 16. Simplifique 4(2 y 5) 3(6 y 1) RESPUESTA: 10Y 17

17. Simplifique 5(2 x 3 y + 4) + 7(6 x + 8 y 5) RESPUESTA: 52 X + 41Y 15 3( x 2 5 x + 4) 5(3 x 2 + 6 x 2) 18. Simplifique 12 X 2 45 X + 22 RESPUESTA:

PRE-PRUEBA 19. Simplifique6( x 2 + 7 x 1) 2(3 x 2 5 x + 9) + 4(5 x 2 10 x + 12)

20. Simplifique3(2 x 7 y + 4) 8(3 x + 4 y 5) 6(5 x 2 y 1)

RESPUESTAS

PRE-PRUEBA: RESPUESTAS 19. Simplifique6( x 2 + 7 x 1) 2(3x 2 5 x + 9) + 4(5 x 2 10 x + 12)

RESPUESTA

20 X 2 + 12 X + 24

20. Simplifique 3(2 x 7 y + 4) 8(3 x + 4 y 5) 6(5 x 2 y 1) RESPUESTA 48 X 41Y + 58

CONTENIDO -TERMINOS SEMEJANTES -SUMA DE POLINOMIOS -RESTA DE POLINOMIOS -ACTIVIDAD I -SUMAS Y RESTAS DE POLINOMIOS -MULTIPLO DE UN POLINOMIO -SUMAS Y RESTAS DE MULTIPLOS -ACTIVIDAD II

TERMINOS SEMEJANTES Un trmino es un nmero real, una variable o el producto de un nmero real y una o ms variables que pueden estar elevadas a cualquier exponente. Ejemplos de trminos son:

x, a, x ,5 y ,6 x y z2 3 2

3 1

TERMINOS SEMEJANTES El coeficiente de un trmino corresponde a la parte numrica del mismo. Ej: El coeficiente de Ej: El coeficiente de Ej: El coeficiente de Ej: El coeficiente de

5x

es 5

7 x 2 y 3 es 7

xy

es 1 ya que es -1 ya que

x = 1x y = 1 y

TERMINOS SEMEJANTES Dos o ms trminos son semejantes cuando tienen las mismas variables y los correspondientes exponentes son iguales. Ejemplo: Son trminos semejantes:

4x x 8x

xy

4 xy 2 xy

TERMINOS SEMEJANTES Ejemplo:Son trminos semejantes:

1 2 x y 2 x2 y 5x 2 y No son trminos semejantes

a b 1 2 3 a b 3 a 2b 32

3

5x 2 y 6 xy 2

3x 2 9y2

TERMINOS SEMEJANTES Para simplificar dos o mas trminos semejantes aplicamos la propiedad distributiva, efectuamos las operaciones entre sus coeficientes numricos y a este resultado le aadimos las respectivas variables con sus correspondientes exponentes. Ejemplo: Simplifique

4 xy + 5 xy

4 xy + 5 xy = (4 + 5) xy = 9 xy

TERMINOS SEMEJANTES Ejemplo: Simplifique

3x 8 x + 2 x

3 x 8 x + 2 x = (3 8 + 2) x = 3 x Ejemplo: Simplifique

x+ x+ x

x + x + x = 1x + 1x + 1x = (1 + 1 + 1) x = 3x

TERMINOS SEMEJANTES Ejemplo: Simplifique2 2 2

4 x x 3x2 22

22

4 x x 3 x = (4 1 3) x = 0 x = 0 Ejemplo: Simplifique2 2 2

5 x 2 y 9 x 2 y x 2 y + 3x 2 y2

5 x y 9 x y x y + 3x y =

(5 9 1 + 3) x y =2

2x y2

TERMINOS SEMEJANTESSimplifique 3x 6 y 8 x + 9 y = 3x 8 x 6 y + 9 y = 5x + 3 y Agrupamos los trminos semejantes y luego simplificamos. Agrupamos los trminos semejantes y luego simplificamos. Observe que los dos ltimos trminos no son semejantes

Simplifiqu e 5 xy + y 2 12 xy z 2 = 5 xy 12 xy + y 2 z 2 = 7 xy + y z2 2

SUMA DE POLINOMIOS Para sumar dos polinomios procedemos de la siguiente manera: 1. Eliminamos los parntesis de los dos polinomios sin cambiar los signos de los trminos contenidos en los mismos. 2. Agrupamos los trminos semejantes. 3. Simplificamos los trminos semejantes.

SUMA DE POLINOMIOSSume (6 x 7 x + 3) + (3 x + 4 x 8) =2 2

6 x 2 7 x + 3 + 3x 2 + 4 x 8 = * 6 x 2 + 3x 2 7 x + 4 x + 3 8 = * * 9 x 2 3x 5 * * *

*eliminamos los parntesis **agrupamos los trminos semejantes ***simplificamos los trminos semejantes

SUMA DE POLINOMIOS *eliminamos los parntesis Sume (5 x 2 + 8 xy 4 y 2 ) + (6 x 2 3 xy + 2 y 2 ) = **agrupamos los trminos 5 x 2 + 8 xy 4 y 2 + 6 x 2 3 xy + 2 y 2 = * semejantes 2 2 2 2 5 x + 6 x + 8 xy 3 xy 4 y + 2 y = * * ***simplificamos 2 2 11x + 5 xy 2 y * * * los trminos semejantes

SUMA DE POLINOMIOSSum e (5 x 3 3x 2 y + 7 y 3 ) + ( 7 x 3 + 6 xy2 2 y 3 ) = 5 x 3 3x 2 y + 7 y 3 7 x 3 + 6 xy2 2 y 3 = * 5 x 7 x 3x y + 6 xy + 7 y 2 y = * *3 3 2 2 3 3

2 x 3x y + 6 x y + 5 y * * *3 2 2 3

*eliminamos los parntesis **agrupamos los trminos semejantes ***simplificamos los trminos semejantes

RESTA DE POLINOMIOS El inverso aditivo de un polinomio P(x) es el polinomio - P(x) el cual se obtiene cambiando los signos de todos sus trminos. Ejemplo: El inverso aditivo de P(x) = 8 es - P(x) = -8 Ejemplo: El inverso aditivo de P(x) = 5x 6 es - P(x) = -5x + 6

RESTA DE POLINOMIOS Ejemplo: El inverso aditivo de P ( x) = 5 x 2 6 x 2 es

P ( x) = 5 x + 6 x + 22

Ejemplo: El inverso aditivo deP( x) = 20a 3 45a 2 b + 9b 3

es

P ( x) = 20a 3 + 45a 2 b 9b 3

RESTA DE POLINOMIOS La resta entre dos polinomios es equivalente a la suma entre el primer polinomio y el inverso aditivo del segundo polinomio, es decir, si P(x) y Q(x) son dos polinomios cualesquiera, entonces, P(x) - Q(x) = P(x) + ( - Q(x) ) De acuerdo con la definicin anterior, podemos establecer las siguientes reglas:

RESTA DE POLINOMIOS Para restar dos polinomios procedemos de la siguiente manera: 1. Eliminamos los parntesis de los dos polinomios escribiendo el inverso aditivo del segundo polinomio. 2. Agrupamos los trminos semejantes. 3. Simplificamos los trminos semejantes

RESTA DE POLINOMIOSRe ste : (7 x + 4) (5 x 1) = 7 x + 4 5x + 1 = * 7 x 5x + 4 + 1 = ** 2 x + 5 *** *eliminamos los parntesis escribiendo el inverso aditivo del segundo polinomio **agrupamos los trminos semejantes ***simplificamos los trminos semejantes

RESTA DE POLINOMIOSRe ste (3x 2 5 x + 7) (8 x 2 + 9 x 2) = 3x 2 5 x + 7 8 x 2 9 x + 2 = * 3x 2 8 x 2 5 x 9 x + 7 + 2 = * * 5 x 2 14 x + 9 * * *

*eliminamos los parntesis escribiendo el inverso aditivo del segundo polinomio **agrupamos los trminos semejantes ***simplificamos los trminos semejantes

RESTA DE POLINOMIOS *eliminamos los parntesis escribiendo Re ste el inverso aditivo del (5 x 3 3x 2 y + 7 y 3 ) ( 4 x 3 + 4 x 2 y + 6) = segundo polinomio 5 x 3 3x 2 y + 7 y 3 + 4 x 3 4 x 2 y 6 = * **agrupamos los trminos semejantes 5 x 3 + 4 x 3 3x 2 y 4 x 2 y + 7 y 3 6 = * * ***simplificamos los 9x 3 7x 2 y + 7 y 3 6 *** trminos semejantes

RESTA DE POLINOMIOSRe ste (8 x 2 + 2 x 1) de (6 x 9 x + 3)2

(6 x 2 9 x + 3) (8 x 2 + 2 x 1) = 6x 2 9x + 3 8x 2 2x + 1 = * 6x 2 8x 2 9 x 2x + 3 + 1 = * * 2 x 2 11x + 4 * * *

*eliminamos los parntesis escribiendo el inverso aditivo del segundo polinomio **agrupamos los trminos semejantes ***simplificamos los trminos semejantes

RESTA DE POLINOMIOS *eliminamos los parntesis escribiendo el (6 x 9) inverso aditivo del de segundo polinomio ( x 2 + 3 x 2) **agrupamos los ( x 2 + 3 x 2) ( 6 x 9) = trminos semejantes 2 x + 3 x 2 6 x + 9 = * ***simplificamos los trminos semejantes 2Re ste

x + 3x 6 x 2 + 9 = * * x 2 3x + 7 * * *

ACTIVIDAD I 1. Simplifique 2. Simplifique

5 x + 9 x 12 x + 3 x 8 x3x y 4 x y 8 x y 7 x y2 2 2 2

3. Sim