Substructure of a MAP-Streamer

18
Substructure of a MAP-Streamer Mark A. Liniger (MeteoSwiss) Huw C. Davies (IACETH) QJRMS, 129, 633-651 (MAP special issue) 12 UTC 6 Nov 1999 (MAP IOP-15)

description

Substructure of a MAP-Streamer. Mark A. Liniger (MeteoSwiss) Huw C. Davies (IACETH) QJRMS, 129 , 633-651 (MAP special issue) 12 UTC 6 Nov 1999 (MAP IOP-15). Evolution of PV @ 320 K. 18 UTC 5 Nov. 12 UTC 6 Nov. 06 UTC 7 Nov. Aim. - PowerPoint PPT Presentation

Transcript of Substructure of a MAP-Streamer

Page 1: Substructure of a MAP-Streamer

Substructure of a MAP-Streamer

Mark A. Liniger (MeteoSwiss)

Huw C. Davies (IACETH)

QJRMS, 129, 633-651

(MAP special issue)

12 UTC 6 Nov 1999 (MAP IOP-15)

Page 2: Substructure of a MAP-Streamer

Evolution of PV @ 320 K

18 UTC 5 Nov. 12 UTC 6 Nov. 06 UTC 7 Nov.

Page 3: Substructure of a MAP-Streamer

Aim

• Are measured meso-scale features detectable in GCM analyzed fields?

• How far are observed structures linked to synoptic scale transport processes?

data sources:• ECMWF analysis fields (T319L60)• Meteosat water vapour (WV)• WV DIAL (DIfferential Absorption Lidar) flown on the

Falcon aircraft of DLR (Deutsches Zentrum für Luft- und Raumfahrt)

Page 4: Substructure of a MAP-Streamer

Lagrangian Forward Projection

t =

t =

• bases on RDF technique (Sutton et al. 1994)

• 3D – Trajectories backwardsfrom a prespecified domain

• Projection of a geographical marker or conserved (or non-conserved) tracer from an earlier position to the prespecified domain.

Page 5: Substructure of a MAP-Streamer

horizontal WV reconstruction

Meteosat WV vertically integrated WV of analysis

vertically integrated WV of LFP for 24 hours

white = dry

Page 6: Substructure of a MAP-Streamer

Interpretation

LFP for 24 hours to the 450 hPa surface

increase in pressure increase in pot. temperature

Page 7: Substructure of a MAP-Streamer

WV DIAL & analysis

Longitude

water vapour observed by DIAL (DLR)

Hei

ght (

km)

10

6

8

Hei

ght (

km)

0 E 4 E 8 E

0.01 0.02 0.04 0.08 0.12 g/kg

8

6

10

water vapour from ECMWF analysis, interpolated to observation time.

dry humid

Page 8: Substructure of a MAP-Streamer

WV DIAL & LFP

10

6

8

0 E 4 E 8 E

8

6

10

Longitude

water vapour observed by DIAL (DLR)

Hei

ght (

km)

H

eigh

t (km

)

0.01 0.02 0.04 0.08 0.12 g/kg

water vapour,LFP for 15h, based on ECMWF analyses

dry humid

Page 9: Substructure of a MAP-Streamer

WV DIAL & long LFP

10

6

8

8

6

10

0 E 4 E 8 E

water vapour,LFP for 39h, based on ECMWF analyses

Longitude

water vapour observed by DIAL (DLR)

Hei

ght (

km)

H

eigh

t (km

)

0.01 0.02 0.04 0.08 0.12 g/kg

dry humid

Page 10: Substructure of a MAP-Streamer

10

6

8

0 E 4 E 8 E

8

6

10

Longitude

backscatter ratio (aerosols) observed by DIAL (DLR)H

eigh

t (km

)

H

eigh

t (km

)

0.01 0.02 0.04 0.08 0.12 g/kg

water vapour,LFP for 39h, based on ECMWF analyses

backscatter ratio & long LFP

(from Hoinka et al., 2003)

dry humid

Page 11: Substructure of a MAP-Streamer

Striation: Interpretation

Page 12: Substructure of a MAP-Streamer

Streamers breakup, 18 hours composite

contours: LFP for 24 hours to the 310 K surface

increase in pressure increase in pot. temperature

composite 12 UTC 06 to 06 UTC 07

PV @ 310 K

Page 13: Substructure of a MAP-Streamer

Conclusions

Pronounced dry intrusion of stratospheric origin Spiral structure: arms of distinct origins Striation across western flank: sandwiched boundary layer

air mixing by diffusion Breakup over Alps:

persistent diabatic processes north of Alpsand corresponding upper level negative PV anomaly

Large scale advection explains significant portion of mesoscale structures

LFP relates Lagrangian evolution to Eulerian fields

Page 14: Substructure of a MAP-Streamer
Page 15: Substructure of a MAP-Streamer

21. May 2003

Page 16: Substructure of a MAP-Streamer

21. May 2003

Page 17: Substructure of a MAP-Streamer

21. May 2003

Page 18: Substructure of a MAP-Streamer

21. May 2003