Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

18
Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009

description

Introduction  Molybdoenzymes. Generalities  Can be classified into 3 families represented by xanthine oxidase (XO), sulfite oxidase (SO) and DMSO reductase (DMSOR) P. Basu, J. F. Stolz, M. T. Smith, Current Science, (2003) XO : RCHO → RCOOH SO: SO 3 2- → SO 4 2 DMSOR: (H 3 C) 2 SO → (H 3 C) 2 S

Transcript of Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Page 1: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Studies on DMSOR. A Theoretical Approach

Elizabeth Hernandez-Marin

October 2, 2009

Page 2: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Introduction M

olybdoenzymes. Generalities

Molybdenum is the only 4d transition metal required for all forms of life. Generally found as mononuclear active centers.The metal ion is coordinated by a modified pyranopterin cofactor:

Functionally, they catalyze a net oxygen atom transfer:

X + H2O = XO + 2H+ + 2e-

N

H

N

N

H

N

H

O

N

H

2

O

S

H

S

H

R

P. Basu, J. F. Stolz, M. T. Smith, Current Science, (2003) 84 1412.

Page 3: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Introduction M

olybdoenzymes. Generalities

Can be classified into 3 families represented by xanthine oxidase (XO), sulfite oxidase (SO) and DMSO reductase (DMSOR)

P. Basu, J. F. Stolz, M. T. Smith, Current Science, (2003) 84 1412.

S

Mo

O

H

O

H

S

S

Mo

O

S

S

S

S

(

S

e

r

)

O

O

Mo

O

(

C

y

s

)

S

S

S

XO : RCHO → RCOOH

SO: SO32- → SO4

2

DMSOR: (H3C)2SO → (H3C)2S

Page 4: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Introduction Reaction catalyzed by DM

SOR

N. Cobb, et. al, J. Biol. Chem. (2007), 282, 35519

(CH3)2SO + 2H+ + 2e- → (CH3)2S + H2O

[MoIV] → [MoVI] + 2e-

Page 5: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Introduction

S. Bailey, A. McAlpine, E.M.H. Duke, N. Benson, A. McEwan, Acta Cryst. 1996, D52, 194 A. McAlpine, A. McEwan, S. Bailey J. Mol. Biol 1998, 275, 613

Page 6: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

-13.2MoVI

+DMS

-12.3

Results

Energy Profile. [Mo(OM

e)(S2C2H2)2]-

0

10

20

-10

Kcal

/mol

G298

H298

MoIV

+DMSO

26.4

9.0

3028.7

16.6

8.1

23.9

Page 7: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Results Com

parison with actual enzyme

Process ΔH≠

kcal/molΔG≠

Kcal/mol

Experimental1

[MoIV] + DMSO → M -5.0*

M → ES nd 13.0

ES → E’ + DMS 15.6 15.0

Calculated [MoIV] + DMSO → I 9.0 26.4

I → [MoIV] + DMS 8.5 4.8

Kinetics studies1: E + DMSO → M → ES → E’ + DMS

[Mo(OMe)(S2C2H2)2]- + DMSO → I → [Mo(OMe)(S2C2H2)2]- + DMSO

* Free energy of formation

1N. Cobb, T. Conrads, R. Hille J. Biol. Chem. (2005), 280, 3572

Page 8: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Results Com

parison with actual enzyme

Enzyme: E + DMSO → M → ES → E’ + DMS

Calculated: [MoIV] + DMSO → I → [MoVI] + DMSO

Yellow: enzyme. Green: optimized structure.

Page 9: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Results EPR Param

eters

Page 10: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Results EPR Param

eters

g= ge + Δg

Page 11: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Mo H

C O N

107.6°

S

2.80

Results

MCD spectra for DM

SOR and calculated

CJ = − 4i3G

M2

M∑ εαβγ A M α J

(1)γJ M β A

(0)

αβγ∑

1M. Seth, T. Ziegler and J. Autschbach J. Chem. Phys. (2008), 129, 104105

Page 12: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Contributions to C-terms

Page 13: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Final Remarks

Based on complexes taken from the active site of the molybdoenzyme DMSOR it was possible to:

• Outline a plausible energy profile for the oxidation of DMSO to DMS by the enzyme.

• Explain the physical origin of the EPR parameters of the enzymatic Mo[V] species, due to the good agreement between the calculated and experimental parameters. • Obtained a detailed account of the contributions that made up the MCD spectrum of the Mo[V]-DMSOR in terms of C-parameters.

Page 14: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

Computational Details and models

Calculations performed with ADF. Functional: BP86 Basis set: TZP. Small Core. Default convergence criteria Solvation model: COSMO (ε=5)

Mo

S

S

S

S

O

Mo

S

S

S

S

OCH3

Page 15: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

…..

Page 16: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.

A Mα J(1)γ

= K '(0) Mα J (0)K '(0) H SO

γ A(0)

EK ' − EA

+ A(0) Mα K (0)

K ≠J∑

J (0) H SOγ K (0)

EK − EJK '≠A∑€

CJ = − 4i3G

M2

M∑ εαβγ A Mα J

(1)γJ M β A

(0)

αβγ∑

E. Hernandez-Marin, M. Seth, T. Ziegler; Inorg. Chem. (2009) 48, 2880.

MCD. Calculation of the C-parameter M

agnetic Circular Dichroism

Page 17: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.
Page 18: Studies on DMSOR. A Theoretical Approach Elizabeth Hernandez-Marin October 2, 2009.