Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura...

34
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Transcript of Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura...

Page 1: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Structure of Be hyper-isotopes

Masahiro ISAKA (RIKEN)

Collaborators: H. Homma and M. Kimura (Hokkaido University)

Page 2: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Structure study of L hypernucleiKnowledge of LN effective interaction Through studies of s-p shell L hypernuclei

– Accurate solution of few-body problems [1]

– LN G-matrix effective interactions [2]

– Increases of experimental information [3]

Developments of theoretical modelsBy structure studies of unstable nuclei

Ex.: Antisymmetrized Molecular Dynamics (AMD)[4]

• AMD describes dynamical changes of various structure • No assumption on clustering and deformation

[1] E. Hiyama, NPA 805 (2008), 190c, [2] Y. Yamamoto, et al., PTP Suppl. 117 (1994), 361., [3] O. Hashimoto and H. Tamura, PPNP 57 (2006), 564., [4] Y. Kanada-En’yo et al., PTP 93 (1995), 115.

Systematic (theoretical) study of L hypernuclear structure“Structure changes by hyperon as an impurity”

Page 3: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Structure of Be isotopes

Be isotopes have a 2 a cluster structure– 2a cluster structure is changed depending on the neutron number

p2 config. s2 config.

ps config.

ps config.

p-orbit

s-orbit

“molecular-orbit”

Y. Kanada-En’yo, et al., PRC60, 064304(1999) N. Itagaki, et al., PRC62 034301, (2000).

Page 4: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Structure of 9Be 9Be has a 2a + n structureThe difference of the orbit of the last neutron leads to the difference of

deformation

8Be(0+) + n(s-orbit)

Large deformationNo barrier

1/2+

= b1.02

8Be(0+) + n(p-orbit)

Small deformation

Centrifugal barrier due to L=1

3/2-

= b0.73

(compact)

Page 5: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Exotic structure of 11Be Parity inversion of the 11Be7 ground stateThe ground state of 11Be is 1/2+

One of the reasons of the parity inversion is the molecular orbit structure of the 1/2+ and 1/2- states.

Vanishing of the magic number N=8

4

11Be 1/2-

Extra neutrons in p orbit[1]

(small deformation)

11Be 1/2+

Extra neutrons in s orbit[1]

(large deformation)

[1] Y. Kanada-En’yo and H. Horiuchi, PRC 66 (2002), 024305.

Difference of deformation

inversion

Page 6: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

L binding energy as a function of bL in s-orbit is deeply bound with smaller deformation

Example: 13LC Binding energy of L

12C(Pos)⊗L(p)

12C(Pos.)⊗L(s)12C(Neg)⊗L(s)

L bi

ndin

g en

ergy

[MeV

]

Bing-Nan Lu, et al., PRC 84, 014328 (2011)M. T. Win and K. Hagino, PRC78, 054311(2008)

M. Isaka, et. al., PRC 83 (2011), 044323.

12C Pos.

12C(Pos)⊗L(p)

12C(Pos)⊗L(s) + 8.0MeV

E en

ergy

(MeV

)

Energy curves of 13LC

Spherical2

1

Page 7: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Purpose of this study Purpose of this studyTo reveal how L hyperon affects and modifies the low-lying states of Be

isotopes with different deformation Examples

10LBe: ground and 1/2+ resonance states of 9Be

12LBe: abnormal parity ground state of 11Be

MethodHyperAMD (Antisymmetrized Molecular Dynamics for hypernuclei)

– No assumption on 2a cluster structure– AMD has succeeded in the structure studies of Be isotopes

YNG-interaction (NSC97f, NF)

(Produced by JLab experiments)

(It will be possible to produce 12LBe at J-PARC)

Page 8: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Theoretical framework: HyperAMDWe extended the AMD to hypernuclei

NNNN VTVTH ˆˆˆˆˆ

Wave function Nucleon part: Slater determinant

Spatial part of single particle w.f. is described as Gaussian packet

Single particle w.f. of L hyperon: Superposition of Gaussian packets

Total w.f.:

[1] Y. Yamamoto, T. Motoba, H. Himeno, K. Ikeda and S. Nagata, Prog. Theor. Phys. Suppl. 117 (1994), 361.[2] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Prog. Theor. Phys. 97 (1997), 881.

LN: YNG interaction (NSC97f, NF[ 1 ])

NN: Gogny D1S

HamiltonianHyperAMD (Antisymmetrized Molecular Dynamics for hypernuclei)

m

mm rcr

mzyx

mm zrr

,,

2exp mmm ba

iii ii

zyxii Zrr

,,

2exp

jiN rA

r det

!

1

jim

mm rA

rcr det

!

1

Page 9: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Theoretical Framework (AMD[1],[2]) Procedure of the calculation

Variational Calculation • Imaginary time development method• Variational parameters:

Angular Momentum Projection

Generator Coordinate Method(GCM)•Superposition of the w.f. with different configuration•Diagonalization of and

*i

i

X

H

dt

dX

0

sJMK

sK RDdJM *;

MJHMJH sK

sK

JKssK

;ˆ;,

MJMJN sK

sK

JKssK

;;,

sK

sKsK

MJ MJg ;

[1] Y. Kanada-En’yo, H. Horiuchi and A. Ono, Phys. Rev. C 52 (1995), 628.[2] H. Matsumiya, K. Tsubakihara, M. Kimura, A. Doté and A. Ohnishi, To be submitted

iiiiiiiii cbazZX ,,,,,,,

JKssKH ,

JKssKN ,

Page 10: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Application to 9LBe hypernucleus

[1] Bando et al., PTP 66 (1981) 2118.[2] M. May et al., PRL 51 (1983) 2085; H. Akikawa et al., PRL 88 (2002) 082501.

[3] O. Hashimoto et al., NPA 639 (1998) 93c

[1] [2] [3]

Page 11: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Level structure of 10LBe

Page 12: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Structure of 9Be 9Be has 2a + n structureThe difference of the orbit of the last neutron leads to the difference of

deformation

8Be(0+) + n(p-orbit)

Small deformation

Centrifugal barrier due to L=1

3/2-

= b0.73

8Be(0+) + n(s-orbit)

Large deformationNo barrier

1/2+

= b1.02

How does L hyperon modify the level structure with different deformation?

Page 13: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Excitation spectra of 10LBe

Four-body cluster model

Page 14: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Excitation spectra of 10LBe

Y. Zhang, E. Hiyama, Y. Yamamoto, NPA 881, 288 (2012).

Positive parity states in 10LBe are shifted up by L hyperon

Four-body cluster model

Page 15: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Shift up of the positive parity states

L hyperon coupled to the 3/2- state is more deeply bound due to the smaller deformation.

L hyperon in s-orbit is deeply bound with small nuclear deformation

Binding energy of L hyperon

Jp

Etot T VN Enucl

2- - 68.60 7.23 - 16.63 - 59.20

0+ - 65.87 6.45 - 15.04 - 57.28

BL= 8.9 MeV

= b0.70

BL= 8.2 MeV = b

0.922.0 MeV

2.7 MeV

0+ (1/2+⊗Ls)

1- (3/2-⊗Ls)3/2-

1/2+

= b0.73

= b1.02

9Be 10BeL

r = 2.55fm

r = 2.46fm

r = 2.94fm

r = 2.82fm

Page 16: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Ground state parity of 12LBe

Page 17: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Exotic structure of 11Be Parity inversion of the 11Be7 ground stateThe ground state of 11Be is 1/2+

One of the reasons of the parity inversion is the molecular orbit structure of the 1/2+ and 1/2- states.

Vanishing of the magic number N=8

411Be 1/2-

Extra neutrons in p orbit[1]

(small deformation)

11Be 1/2+

Extra neutrons in s orbit[1]

(large deformation)

[1] Y. Kanada-En’yo and H. Horiuchi, PRC 66 (2002), 024305.

Difference of deformation

inversion

How does the L hyperon affect the parity-inverted ground state?

Page 18: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Excitation spectra of 11Be

b=0.52

b=0.72

11Be 1/2-

11Be 1/2+

Parity reversion of the 12LBe ground state may occur by L in s orbit

Deformation of the 1/2- state is smaller than that of the 1/2+ state L hyperon in s orbit is deeply bound at smaller deformation

11Be(AMD)

11Be(Exp)

13C(Exp)

Page 19: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Excitation spectra of 11Be

b=0.52

b=0.72

11Be 1/2-

11Be 1/2+

Parity reversion of the 12LBe ground state may occur by L in s orbit

Deformation of the 1/2- state is smaller than that of the 1/2+ state L hyperon in s orbit is deeply bound with smaller deformation

BLBL

Reversion?12LB

e

11Be(AMD)

11Be(Exp)

13C(Exp)

Page 20: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Results: Parity reversion of 12LBe

Ground state of 12LBe

The parity reversion of the 12LBe g.s. occurs by the L hyperon

0.0

1.0

2.0

3.0

Exci

tatio

n En

ergy

(MeV

)

13C7(Exp.)

11Be7

(Exp.)11Be7

(AMD)12

LBe(HyperAMD)

Page 21: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Deformation and L binding energy

L hyperon coupled to the 1/2- state is more deeply bound than that coupled to the 1/2+ state

– Due to the difference of the deformation between the1/2- and 1/2+ states

BL = 10.24 MeV

BL = 9.67 MeV

0.32 MeV

0.25 MeV

1/2+

=0.72b

1/2-

=0.52b

=0.47b

=0.70b

0+ (1/2+⊗Ls)

0- (1/2-⊗Ls)

11Be(Calc.)

12Be(Calc.)L

Jp

Etot T VN Enucl0-(GS) - 74.69 6.71 -16.93 -64.47

0+ - 74.44 6.68 -16.42 -64.70

r = 2.53 fm

r = 2.69 fm

r = 2.67 fm

r = 2.51 fm

Page 22: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Glue-like role in 10LBe

Page 23: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Glue-like role of L hyperon in 10LBe

Y. Zhang, E. Hiyama, Y. Yamamoto, NPA 881, 288 (2012).

The resonance (virtual) state 1/2+ will bound by adding L hyperon

Page 24: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Glue-like role of L hyperon in 10LBe

Y. Zhang, E. Hiyama, Y. Yamamoto, NPA 881, 288 (2012).

The resonance (virtual) state 1/2+ will bound by adding L hyperon

Page 25: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Summary SummaryTo reveal how L hyperon affects and modifies the low-lying states of Be isotopes

with different deformation, we applied the HyperAMD to 10LBe and 12

LBe.

We focus on the positive and negative parity states in 10LBe and 12

LBe

L hyperon coupled to compact state is more deeply bound

– 10LBe: pos. parity states are shifted up by L hyperon

– 12LBe: the parity reversion of the ground state will occur.

In 10LBe, the resonance state 1/2+ in 9Be will be bound by L hyperon

Future plansTo reveal how L hyperon affects the 2a clustering and orbit of extra neutrons

To predict production cross section of 10LBe, 12

LBe etc.

Systematic structure study of Be hyper isotopes

Consistent with the prediction of 10LBe and 13

LC by Hiyama et al.

Page 26: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Page 27: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Backup: Density distribution of 12LBe

Page 28: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Excitation spectra

Improved YNG-NF[2] YNG-NF[1] YNG-ND[1]

[1] Y. Yamamoto, et al., PTPS 117 (1994), 361. [2] E. Hiyama, et al.,PTP 97 (1997), 881.

The 1/2-⊗Ls state always becomes the ground state of 12LBe

Parity reversion will occur with all of these 3 kinds of LN interactions

Page 29: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Excitation spectra

[1] E. Hiyama, et al., PTP 97, 881 (1997).[2] Y. Yamamoto, et al., PTPS 117 (1994), 361.

[3] E. Hiyama, et al., PTP 185, 106 (2010)

[1] [2] [2][3]

Page 30: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Backup: LS interaction between L and N

Page 31: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Backup: Transition density Transition densityTransition density is an input to perform DWIA calculationTransition density will be calculated based on the AMD wave function

Structure described by AMD wave function

Ex.) 9LBe production reaction

Ex.) 10LBe production reaction

Page 32: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Deformation change by L in s-orbit From changes of energy curves

9LBe

20LNe

21LNe

CL13

adding L in s-orbit

12C (Pos)

b = 0.27

quadrupole deformation b

b = 0.00

12C (Pos)⊗L(s)

Spherical 11.5

L in s-orbit reduces the nuclear deformation

12C(Pos)⊗L(s) + 8.0MeV

12C Pos.

Page 33: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

Deformation change by L in p-orbit From changes of energy curves

9LBe

20LNe

21LNe

CL13

12C (Pos)

b = 0.27

b = 0.30

12C(Pos)⊗L(p)

quadrupole deformation b

adding L in p orbit

Spherical 11.5

L in p-orbit enhances the nuclear deformationOpposite trend to L in s-orbit

12C Pos.

12C(Pos)⊗L(p)

Page 34: Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)

L binding energy Variation of the L binding EnergyL in s-orbit is deeply bound at smaller deformationL in p-orbit is deeply bound at larger deformation

13LC Binding energy of L 13

LC Energy curves

12C Pos.

12C(Pos)⊗L(p)

12C(Pos)⊗L(s) + 8.0MeVE en

ergy

(MeV

)

12C(Pos)⊗L(p)

12C(Pos.)⊗L(s)12C(Neg)⊗L(s)

L bi

ndin

g en

ergy

[MeV

]

Variation of the L binding energies causes the deformation change (reduction or enhancement)