Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea...

36
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo, Section Manager, POSCO E&C, Korea In-Won Lee, Professor, KAIST, Korea Active Control for Seismic Response Reduction Using Modal- Fuzzy Approach The 18 th KKCNN Symposium (2005) Kaohsiung, Taiwan Dec. 20-21, 2005

Transcript of Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea...

Structural Dynamics & Vibration Control Lab. 1

Kang-Min Choi, Ph.D. Candidate, KAIST, Korea

Jung-Hyun Hong, Graduate Student, KAIST, Korea

Ji-Seong Jo, Section Manager, POSCO E&C, Korea

In-Won Lee, Professor, KAIST, Korea

Active Control for Seismic Response

Reduction Using Modal-Fuzzy Approach

The 18th KKCNN Symposium (2005) Kaohsiung, TaiwanDec. 20-21, 2005

Structural Dynamics & Vibration Control Lab., KAIST, Korea 2

CONTENTS

Introduction

Proposed Method

Numerical Example

Conclusions

Structural Dynamics & Vibration Control Lab., KAIST, Korea 3

Introduction

Death : 14,491 Magnitude : 7.4

• Sumatra, Indonesia (2004)• Sumatra, Indonesia (2004)

Recent Earthquakes

Death : 5,400 Magnitude : 7.2• Kobe, Japan (1995)• Kobe, Japan (1995)

Death : 283,106 Magnitude : 9.0

• Gebze, Turkey (1999)• Gebze, Turkey (1999)

• Kashmir, Pakistan (2005)• Kashmir, Pakistan (2005) Death : 30,000 Magnitude : 7.6

To increase the safety and reliability, structural control is required.

Structural Dynamics & Vibration Control Lab., KAIST, Korea

4 4

• Passive control system

-Vibration control without external power

-Energy dissipation of structure

-No adaptability to various external load

-Large deformation of devices

-Examples: Lead rubber bearing, Viscous damper

• Active control system -Vibration control with external power

-Adaptability to various loading conditions

-Large external power

-Examples: Active mass damper, Hydraulic actuator

Structural Dynamics & Vibration Control Lab., KAIST, Korea

5 5

Control Algorithms

• Active control algorithms

- Linear optimal control algorithm

- Sliding mode control algorithm

- Adaptive control algorithm

- Fuzzy control algorithm

- Modal control algorithm

Structural Dynamics & Vibration Control Lab., KAIST, Korea 6

• Fuzzy control algorithm has been recently proposed for the active structural control of civil engineering systems.

• The uncertainties of input data from the external loads and structural responses are treated in a much easier way by the fuzzy controller than by classical control theory.

• It offers a simple and robust structure for the specification of nonlinear control laws.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 7

• Modal control algorithm represents one control class in which the vibration is reshaped by merely controlling some selected vibration modes.

• Civil structures has hundred or even thousand DOFs. its vibration is usually dominated by first few modes, modal control algorithm is especially desirable for reducing vibration of civil structure.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 8

Conventional fuzzy controller

One should determine state variables which are used as inputs of the fuzzy controller.

- It is very complicated and difficult for the designer to select state variables used as inputs among a lot of state variables.

One should construct the proper fuzzy rule.

- Control performance can be varied according to many kinds of fuzzy rules.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 9

Objective

Development of active fuzzy control algorithm on modal coordinates

Structural Dynamics & Vibration Control Lab., KAIST, Korea 10

Proposed Method

Modal Algorithm- Equation of motion for MDOF system

(2)

- Using modal transformation

(3)

- Modal equation

(4)

Structural Dynamics & Vibration Control Lab., KAIST, Korea 11

(5)

(6)

- Displacement

- State space equation

Controlled displacement

Residual displacement

Structural Dynamics & Vibration Control Lab., KAIST, Korea 12

Modal algorithm is desirable for civil structure.

- Civil structure involves tens or hundreds of thousands DOFs.

- Vibration is dominated by the first few modes.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 13

Active Modal-fuzzy Control System

Structure

Fuzzy Controller

Modal Structure

Structural Dynamics & Vibration Control Lab., KAIST, Korea 14

Modal-fuzzy control system

Input variables

Output variables

Fuzzification

Defuzzification

Fuzzy inference

• Fuzzy inference : membership functions, fuzzy rule

• Input variables : mode coordinates ),(

)( df• Output variable : desired control force

Structural Dynamics & Vibration Control Lab., KAIST, Korea 15

- Development of fuzzy controller on modal coordinates

- Easy to select fuzzy input variables

- Use of information of all DOFs

- Serviceability of modal approach

- Easy to treat the uncertainties of input data

- Robustness of fuzzy controller

Characteristics

Structural Dynamics & Vibration Control Lab., KAIST, Korea 16

Six-Story Building (Jansen and Dyke 2000)

Numerical Example

ControlComputer

gx

6ax

5ax

4ax

3ax

2ax

1axHA

HA

fd

fd

- System data• Mass of each floor

: 0.277 N/(cm/sec2)

• Stiffness

: 297 N/cm

• Damping ratio

: 0.5% for each mode

Structural Dynamics & Vibration Control Lab., KAIST, Korea 17

Frequency Response Analysis

0

4000

8000

12000

0 2 4 6 8 10

- Under the scaled El Centro earthquake

1st F

loo

r6th

Flo

or

Frequency, Hz Frequency, Hz Frequency, Hz

103

104102

105 107

106

12

8

4

0

200000

400000

600000

800000

1000000

0 2 4 6 8 10

0

20000000

40000000

60000000

80000000

0 2 4 6 8 10

0

200

400

600

800

0 2 4 6 8 10

0

10000

20000

30000

40000

50000

0 2 4 6 8 10

0

1000000

2000000

3000000

4000000

5000000

0 2 4 6 8 10

10

8

6

4

2

8

6

4

2

5

4

3

2

1

5

4

3

2

1

8

6

4

2

PS

DP

SD

PS

DP

SD

PS

DP

SD

PSD of Displacement PSD of Velocity PSD of Acceleration

Structural Dynamics & Vibration Control Lab., KAIST, Korea 18

• In frequency analysis, the first mode is dominant.

- The responses can be reduced by modal-fuzzy control using the lowest one mode.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 19

Active Optimal Controller Design (LQR)• Cost function

0

1lim dtRffQyyEJ cc

(7)

22IRwhere

Q : placing a weighting 9000(cm-2) on the relative displacements of all floors

Structural Dynamics & Vibration Control Lab., KAIST, Korea 20

Active Modal-fuzzy Controller Design

• Input variables : first mode coordinates• Output variable : desired control force

),( 11

• Fuzzy inference

)( df

• Membership function

- A type : triangular shapes (inputs: 5MFs, output: 5MFs)

- B type : triangular shapes (inputs: 5MFs, output: 7MFs)

A type : for displacement reductionB type : for acceleration reduction

Structural Dynamics & Vibration Control Lab., KAIST, Korea 21

- Membership functions- Membership functions

NL NS ZE PS PL

-x x0

Input membership function

Output membership function

NL NS ZE PS PM

-y y0

NM PL

: Negative Large

: Negative Small

: Zero

: Positive Small

: Positive Large

NL

NS

ZE

PS

PL

: Negative Large

: Negative Medium

: Negative Small

: Zero

: Positive Small

: Positive Medium

: Positive Large

NL

NM

NS

ZE

PS

PM

PL

Structural Dynamics & Vibration Control Lab., KAIST, Korea 22

• Fuzzy rule

- A type

NL NS ZE PS PL

NL PL PL PM PS ZE

NS PL PM PS ZE NS

ZE PM PS ZE NS NM

PS PS ZE NS NM NL

PL ZE NS NM NL NL

- B type

1

1

NL NS ZE PS PL

NL PL PL PS PS ZE

NS PL PS PS ZE NS

ZE PS PS ZE NS NS

PS PS ZE NS NS NL

PL ZE NS NL NL NL

Structural Dynamics & Vibration Control Lab., KAIST, Korea 23

Acc

el.

(m

/sec

2)

El Centro(PGA: 0.348g)

0 4 8 12 16 20

-8

-4

0

4

8

- 8

- 4

0

4

8

Input Earthquakes

• Medium amplitude (100% El Centro earthquake)• Medium amplitude (100% El Centro earthquake)

• High amplitude (120% El Centro earthquake)• High amplitude (120% El Centro earthquake)

• Low amplitude (80% El Centro earthquake)• Low amplitude (80% El Centro earthquake)

Structural Dynamics & Vibration Control Lab., KAIST, Korea 24

max,1

)(max

x

txJ i

it

max,2

/)(max

n

ii

it d

htdJ

max,3

)(max

ai

ai

it x

txJ

W

tfJ i

it

)(max

,4

Normalized maximum floor displacement

Normalized maximum inter-story drift

Normalized peak floor acceleration

Maximum control force normalized by the weight of the structure

- Evaluation criteria are used in the second generation linear control problem for buildings (Spencer et al. 1997)

Evaluation Criteria

Structural Dynamics & Vibration Control Lab., KAIST, Korea 25

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5

Peak interstory drift (cm)

Flo

or

of

stru

ctur

e

Uncontrolled

LQR

Modal-fuzzy A

Modal-fuzzy B

Control Results

Fig. 1 Peak responses of each floor of structure to scaled El Centro earthquake

Peak interstory drift (cm)

Flo

or

of

stru

ctu

re

0

1

2

3

4

5

6

0 100 200 300Peak absolute acceleration (cm/sec 2̂)

Flo

or

of

stru

ctur

e

Uncontrolled

LQR

Modal-fuzzy A

Modal-fuzzy B

Peak absolute acceleration (cm/s2)

Flo

or

of

stru

ctu

re

Structural Dynamics & Vibration Control Lab., KAIST, Korea 26

- Though the proposed Type A performs significantly better than other systems restricted within the interstory drift, but the performance of peak acceleration is not good.

- A well designed proposed Type B balances the benefits of the different objectives within the requirements of the specific design scenario.

• Observations

Structural Dynamics & Vibration Control Lab., KAIST, Korea 27

Control strategy J1 J2 J3 J4

Optimal LQR

Active Modal-fuzzy control (A type)

Active Modal-fuzzy control (B type)

0.479

0.343

0.548

0.626

0.562

0.635

0.685

1.186

0.601

0.0178

0.0178

0.0134

• Medium amplitude• Medium amplitude

Structural Dynamics & Vibration Control Lab., KAIST, Korea

28 28

0

0.3

0.6

0.9

1.2

1.5

J1 J2 J3

LQRA typeB type

- Performance of proposed Type B is comparable to optimal control.

- Control force is relatively small compared to those of other controllers.

• Observations

J1 J2 J3

Evaluation criteria

Re

du

ctio

n f

ac

tor

J4×10

Structural Dynamics & Vibration Control Lab., KAIST, Korea 29

Control strategy J1 J2 J3 J4

Optimal LQR

Active Modal-fuzzy control (A type)

Active Modal-fuzzy control (B type)

0.479

0.374

0.607

0.610

0.594

0.623

0.912

1.545

0.701

0.0178

0.0178

0.0134

• High amplitude• High amplitude

0

0.4

0.8

1.2

1.6

2

J1 J2 J3

LQR

A typeB type

J1 J2 J3

Evaluation criteria

Re

du

ctio

n f

ac

tor

J4×10

Structural Dynamics & Vibration Control Lab., KAIST, Korea 30

• Low amplitude• Low amplitude

Control strategy J1 J2 J3 J4

Optimal LQR

Active Modal-fuzzy control (A type)

Active Modal-fuzzy control (B type)

0.474

0.289

0.504

0.657

0.573

0.624

0.586

1.386

0.773

0.0178

0.0178

0.0134

0

0.4

0.8

1.2

1.6

J1 J2 J3

LQR

A type

B type

J1 J2 J3

Evaluation criteria

Re

du

ctio

n f

ac

tor

J4×10

Structural Dynamics & Vibration Control Lab., KAIST, Korea

31 31

- Proposed method Type B gives comparable performance to optimal controller.

- Moreover, it is much easier to design control system than optimal controller.

• Observations

- Control force is relatively small compared to those of other controllers.

Structural Dynamics & Vibration Control Lab., KAIST, Korea

32 32

- Phase plane trajectory (Battaini et al. 1998)

Technique to reflect graphically the dynamic properties of control system in phase plane.

- Phase plane trajectory (Battaini et al. 1998)

Technique to reflect graphically the dynamic properties of control system in phase plane.

- Stability test for worst case of floor displacement

• Stability of proposed control system

Dis

pla

cem

ent

(cm

)

Time (sec)

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

0 20 40 60 80 100

Structural Dynamics & Vibration Control Lab., KAIST, Korea

33 33

- Stability test for worst case of floor acceleration

- Stability test for worst case of control force

Proposed control system is stable.

Acc

eler

atio

n (

g)

Time (sec)

Co

ntr

ol

forc

e (N

)

Time (sec)

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100

-40

-20

0

20

40

0 20 40 60 80 100

Structural Dynamics & Vibration Control Lab., KAIST, Korea 34

Conclusions

• A new active modal-fuzzy control strategy for seismic response reduction is proposed.

• Verification of the proposed method has been investigated according to various amplitude earthquakes.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 35

• The performance of proposed method is comparable to optimal controller.

• The proposed method is convenient, simple and easy to apply to real civil structures.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 36

Thank you

for your attention!