StronglyCoupledPlasmasandGauge/StringDuality · 2007. 10. 12. · STAR hydro p p T (GeV) 1/2 p...

30
Strongly Coupled Plasmas and Gauge/String Duality Laurence Yaffe University of Washington UVa/UKy Colloquia, April 2007 – p. 1/28

Transcript of StronglyCoupledPlasmasandGauge/StringDuality · 2007. 10. 12. · STAR hydro p p T (GeV) 1/2 p...

  • Strongly Coupled Plasmas and Gauge/String Duality

    Laurence Yaffe

    University of Washington

    UVa/UKy Colloquia, April 2007 – p. 1/28

  • Outline

    1. Heavy ion collisions and quark gluon plasma (QGP)2. Strongly coupled versus weakly coupled systems3. Theoretical techniques4. Gauge/string duality5. Applications to strongly coupled non-Abelian plasmas6. Outlook

    UVa/UKy Colloquia, April 2007 – p. 2/28

  • Relativistic heavy ion collisions

    RHIC: Au+Au, 200 GeV/nucleonrunning since 2000

    LHC: Pb+Pb, 5.5 TeV/nucleonstarting 2008

    −v

    v

    UVa/UKy Colloquia, April 2007 – p. 3/28

  • Relativistic heavy ion collisions: timeline

    time

    ?

    0 “splat” parton liberation (small x gluons)very high density gluon “soup”

    1 fm/c “thermalization” isotropization of phase space distribution

    quark-gluon plasma

    expansion, cooling

    hadronization10 fm/c expanding hadron gas

    ˜̃detection

    UVa/UKy Colloquia, April 2007 – p. 4/28

  • Relativistic heavy ion collisions: spacetime view

    beam direction

    time

    freeze−out

    hadronization

    "thermalization"

    π pγµµ+ −

    partons

    QGP

    hadrons

    UVa/UKy Colloquia, April 2007 – p. 5/28

  • Relativistic heavy ion collisions: ideal hydrodynamics?

    Single particle spectraAu+Au, 130 GeV/nucleon

    0 1 2 3

    10−2

    100

    102

    pT (GeV)

    1/ 2

    π dN

    /dyp

    Tdp T

    (GeV

    −2) π

    + PHENIXp PHENIXp STARπ+ hydrop hydro

    most central0 0.5 1 1.5 2 2.5

    10−6

    10−4

    10−2

    100

    102

    pT (GeV)1/

    2π d

    N/dy

    p Tdp

    T (G

    eV−2

    ) PHENIXSTARhydro

    π−

    0 − 5 %

    5 − 15 %

    15 − 30 %

    30 − 60 %

    60 − 92 %

    centrality

    0 1 2 3 410−8

    10−6

    10−4

    10−2

    100 PHENIXSTARhydro

    p

    pT (GeV)

    1/2π

    dN/

    dyp T

    dpT

    (GeV

    −2)

    0 − 5 %

    5 − 15 %

    15 − 30 %

    30 − 60 %60 − 92 %

    centrality

    0 0.5 1 1.5 2

    10−6

    10−4

    10−2

    100

    pT (GeV)

    1/2π

    dN/

    dyp T

    dpT

    (GeV

    −2)

    PHENIXhydro

    K+

    0 − 5 %

    5 − 15 %

    15 − 30 %

    30 − 60 %

    60 − 92 %centrality

    U. Heinz & P. Kolb, hep-ph/0204061

    Elliptic flow: momentum &centrality dependence

    0 1 2 3 40

    5

    10

    15

    20

    25

    pT (GeV)

    v 2 (%

    ) STARPHENIXEOS QEOS H

    h+/−

    0 0.25 0.5 0.75 10

    2

    4

    6

    8

    10

    nch/nmax

    v 2 (%

    )

    eWNsWNeBCsBCSTAR

    h+/−

    U. Heinz, nucl-th/0512051

    QGP at RHIC: nearly ideal fluid

    UVa/UKy Colloquia, April 2007 – p. 6/28

  • QGP at RHIC:

    Nearly ideal fluid =⇒ low viscosity, short mean free path=⇒ strongly coupled plasma

    Theoretical challenge: predict dynamic properties ofstrongly coupled QGP

    viscosity

    energy loss (dE/dx)

    emission spectra...

    UVa/UKy Colloquia, April 2007 – p. 7/28

  • Weak coupling versus strong coupling

    interactions “small”

    mean free path,screening length

    � particle separation,deBroglie wavelength

    high mobility & viscosity

    Ex: dilute gasesdilute, hot astrophysical plasmasQGP at T ≫ 1 GeV

    | {z }

    experimentallyinaccessible

    interactions dominant

    mean free path,screening length

    .particle separation,deBroglie wavelength

    low mobility & viscosity

    Ex: liquidscool, dense plasmasQGP at T ≈ few × 100 MeV

    | {z }

    RHIC/LHC

    UVa/UKy Colloquia, April 2007 – p. 8/28

  • Theoretical physics

    Fantasy

    L = · · ·

    masses = · · ·dσ

    dΩ= · · ·

    P (T ), ν, ζ = · · ·

    ACME

    SolverUniversal

    UVa/UKy Colloquia, April 2007 – p. 9/28

  • Theoretical physics

    Fantasy

    L = · · ·

    masses = · · ·dσ

    dΩ= · · ·

    P (T ), ν, ζ = · · ·

    ACME

    SolverUniversal

    Reality

    Perturbation Numerical

    Smoke &

    Theory toolbox

    Exactlytheory simulations

    mirrors

    modelssoluble

    UVa/UKy Colloquia, April 2007 – p. 9/28

  • Perturbation theory

    QEDα =

    e2

    4π~c=

    1

    137. · · · ,ge−2

    2=

    α

    2π− 0.328

    “ α

    π

    ”2+ 1.181

    “ α

    π

    ”3− 1.510

    “ α

    π

    ”4+ · · ·

    high energy QCD

    αs(E) =g2(E)

    4π∝ 1

    ln(E/ΛQCD)

    very high temperature QGPλdeBroglie

    λmfp∼ g4(T )

    sometimes works great...

    UVa/UKy Colloquia, April 2007 – p. 10/28

  • Numerical simulations

    Very useful in: Classical dynamical systemsdeterministic dynamics, no quantum fluctuations

    Equilibrium classical statistical systemsstochastic dynamics ⇒ averaging over probability distribution

    Equilibrium quantum theoriesground state properties, particle energies, ...(QCD lattice gauge theory)

    Not so good for: Real-time dynamics of quantum field theoriesnasty interference in Feynman path integral,

    〈φ̂(x1)φ̂(x2) · · · 〉 =R

    Dφ(x) eiS[φ]/~ φ(x1) φ(x2)···

    R

    Dφ(x) eiS[φ]/~

    many degrees of freedom: no good algorithm

    UVa/UKy Colloquia, April 2007 – p. 11/28

  • String theory

    1968 Introduced as phenomenological model of strong interactions Veneziano, ...But: unphysical tachyon, massless spin-2 particle, ...

    1974 Reinterpreted as possible theory of quantum gravity Scherk, SchwarzBut: needs 26 dimensions, no apparent connection to real world

    1984 Realization that 10-d superstrings are anomaly free Green, Schwarz, ...‘Anomaly free’ ⇒ quantum-mechanically consistent

    1995 Realization that theory describes “D-branes” too Polchinski, ...Dynamical surfaces of dimension > 1 on which strings can end

    1997 Realization that string theory on AdS5 × S5 spacetime Maldacena, ...is equivalent to a 4-dimensional quantum field theory

    UVa/UKy Colloquia, April 2007 – p. 12/28

  • String theory controversy:

    The “Theory of Everything,” or ?

    Which view is right?

    UVa/UKy Colloquia, April 2007 – p. 13/28

  • Progress in physics:

    Often comes from asking the right question.

    Also comes from learning what are bad questions:

    What is simultaneous position and momentum of an electron?

    What is the bare mass of an electron?

    UVa/UKy Colloquia, April 2007 – p. 14/28

  • Progress in physics:

    Often comes from asking the right question.

    Also comes from learning what are bad questions:

    What is simultaneous position and momentum of an electron?

    What is the bare mass of an electron?

    What is the fundamental gauge group?

    Are there extra spacetime dimensions?

    Is string theory “right”?

    UVa/UKy Colloquia, April 2007 – p. 14/28

  • Strings on AdS5 × S5

    AdS5︸ ︷︷ ︸const. negative

    curvature

    × S5︸︷︷︸const. positive

    curvature

    : 10-dimensional solution of General Relativityds2 = R2

    du2

    u2+ u2(−dt2 + d~x 2) + d~Σ25

    ff

    ���

    curvatureradius

    AAK

    AdS radialcoordinate

    ���

    S5 metric

    u → ∞ = AdS boundary = 4-d Minkowski space

    IIB string theory on AdS5 × S5 : two adjustable (dimensionless) parametersR = curvature radius of AdS5 = radius of S5

    `s = fundamental string length = 1/√

    string tensionR/`s = curvature radius in string units

    gs = string coupling = amplitude for string splitting/joining

    “Easy” limit: gs � 1 and R/`s � 1 =⇒ classical (super)-gravity

    UVa/UKy Colloquia, April 2007 – p. 15/28

  • Maldacena conjecture:

    IIB string theory on AdS5 × S5 is exactly equivalent tomaximally supersymmetric 4-d Yang-Mills theory (“N = 4 SYM”)N =4 SYM : Non-Abelian gauge theory w. massless fermions & scalars

    Two adjustable parameters:λ = interaction strength (’t Hooft coupling)

    Nc = # “colors” = rank of SU(Nc) gauge group

    Scale invariant (conformal) field theory (“CFT”)

    AdS/CFT duality : Not (yet) rigorously proven, but supported by much evidenceMatching symmetries, operator dimensions, · · ·

    AdS radius ∼ energy scale

    Dictionary: (R/`s)4 = λ, gs = λ/(4πNc)

    Weakly coupled string theory ⇐⇒strongly coupled, large Nc gauge theory

    Many generalizations

    UVa/UKy Colloquia, April 2007 – p. 16/28

  • N = 4 SYM vs. QCD: zero temperature

    QCD N = 4 SYM

    particles:mesons (π, K , ρ, · · · )baryons (n, p, ∆, · · · )

    noneno S-matrix

    RG flow:asymptotic freedomg2(E) ↘ as E ↗

    nonefixed coupling λ

    fundamental scale: ΛQCDnone

    scale invariant CFT

    Completely different properties!

    UVa/UKy Colloquia, April 2007 – p. 17/28

  • N = 4 SYM vs. QCD: high temperature

    QCD N = 4 SYMdeconfined non-Abelian plasma X X

    Debye screening X X

    finite spatial correlation length X X

    neutral fluid hydrodynamics X X

    Complete qualitative agreement

    Try using N = 4 SYM as model for QGPWorks well at weak coupling

    UVa/UKy Colloquia, April 2007 – p. 18/28

  • Gauge/string duality for hot plasma

    N = 4 SYM at non-zero temperature dualto strings in AdS black hole geometry

    uhhorizon

    ∞AdS boundary

    u

    x

    black hole

    ds2AdS−BH = R2

    du2

    f(u)+ f(u)(−dt2 + d~x 2)

    ff

    , f(u) = u2»

    1 −“ uh

    u

    ”4–

    Hawking temperature = plasma temperature, T = π uh

    Classical dynamics in 5-d AdS black hole geometry ⇒exact results in strongly coupled (λ → ∞, Nc → ∞) SYM plasma

    UVa/UKy Colloquia, April 2007 – p. 19/28

  • Strongly coupled SYM plasma: selected results

    Shear viscosity η = π8 N2c T 3From black hole absorption cross-section.Policastro, Son, Starinets

    Viscosity/entropy density ηs

    =~

    4πkBUniversal lower bound?Kovtun, Son, Starinets

    Heavy quark energy loss dEdx

    =dp

    dt= −π

    √λT 2

    2mp

    From classical string dynamicsHerzog, Karch, Kovtun, Kozcaz, L.Y.

    Photo-emission spectrum

    2 4 6 8 10kT

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    kd

    Gdk

    SYM, Λ=0.75

    SYM, Λ®¥

    From Maxwell’s equationsHuot, Kovtun, Moore, Starinets, L.Y.

    UVa/UKy Colloquia, April 2007 – p. 20/28

  • Heavy quark energy loss

    Adding heavy quarks to N =4 SYM ⇔adding D7 brane to gravity dual

    Quark moving through N =4 plasma ⇔open string moving in AdS-BH geometry

    uh

    u

    horizon

    AdS boundary

    heavy mesonfree quark

    m

    u

    x

    black hole

    D7−brane

    String dynamics:

    world sheet coordinates: Xµ(σ, τ) ⇒ x(u, t) for planar world sheet, σ=u, τ=taction: −S = T0(world sheet area) = T0

    Rdσdτ

    √−g

    induced metric: −g =“

    ∂X∂τ

    · ∂X∂σ

    ”2−

    “∂X∂τ

    ”2 “∂X∂σ

    ”2

    = L4h

    1 − u2f(u)

    ẋ2 + u2f(u) x′2i

    stationary solution: ẋ(u) = v =⇒ easy variational problem

    first integral: x′(u) = ±v u2h

    u2f(u)

    UVa/UKy Colloquia, April 2007 – p. 21/28

  • Heavy quark energy loss: trailing string solution

    x(u, t) = x0 + v(t + F (u))

    F (u) = 12uh

    hπ2− arctan u

    uh− arccoth u

    uh

    i

    Constant momentum flow down string= external force needed to maintain velocity= -(plasma drag force acting on moving quark)

    v

    quarku

    x

    D7−brane

    black hole

    A bit more work: −v vSeparating quark-antiquark pair (∼ cc̄ jets)HKKKY

    World sheet fluctuations =⇒ ddt〈p2⊥〉, ddt 〈p2‖〉

    Gubser; Casalderry-Solana, Teaney

    Linearized gravitational corrections =⇒ 〈Tµν(x)〉P. Chesler, L.Y.

    UVa/UKy Colloquia, April 2007 – p. 22/28

  • Heavy quark energy loss: wakes

    〈Tµν(x)〉 ⇐ asymptotic near-boundary behavior of gµν

    (x’(u’),u’)

    x

    δ〈Tµν(x)〉 ⇐ δgµν(x, u)˛˛˛u=∞

    moving string

    =R

    du′ Gµν,αβ| {z }

    (x,∞; x′(u′), u′) παβ(u′)| {z }

    stress-energydensity ofmoving string

    “bulk-to-boundary”graviton Green’s functionin AdS-BH background

    Energy density, v = 0.75 c

    (velocity of sound vs = c/√

    3 = 0.577 c)

    Supersonic shock in viscous plasma

    Results valid on all length scales

    P. Chesler

    UVa/UKy Colloquia, April 2007 – p. 23/28

  • Heavy quark wake: v = 0.75 c

    P. Chesler

    UVa/UKy Colloquia, April 2007 – p. 24/28

  • Heavy quark wake: v = vs = 0.577 c

    P. Chesler

    UVa/UKy Colloquia, April 2007 – p. 25/28

  • Heavy quark wake: v = 0.25 c

    P. Chesler

    UVa/UKy Colloquia, April 2007 – p. 26/28

  • Outlook

    Remarkable recent progress using gauge/string duality to map non-equilibrium, stronglycoupled plasma dynamics into “easy” classical dynamics (in curved space).

    Comparisons of RHIC data and N =4 SYM predictions currently underway.

    Much more to do: light quark dynamics,1/λ corrections,

    important!���9 ���1/Nc corrections,

    results for more QCD-like theories (with known gravity duals), ...

    Goal: controlled extrapolation from λ=∞, N =4 SYM to real QGP near T = Tc.

    interaction strength λ-.01 .1 1 10 100PSfrag replacements

    QCDT ≫ Tc

    QCDT & Tc

    N =4 SYMλ � 1

    N =4 SYMλ � 1

    UVa/UKy Colloquia, April 2007 – p. 27/28

  • Photon yield: comparison to RHIC data

    0.5 1.5 2.5 3.5 4.5pT (GeV)

    10−610−510−410−310−210−1

    100101

    dN/d

    2 pTd

    y (G

    eV−2

    )

    PHENIX Data (Preliminary) Thermal (Ti=236 MeV)Thermal + pQCD

    Preliminary results, Jan-e Alam

    N = 4 SYM spectrum plus perturbative QCD for high p⊥ tail=⇒ good fit with reasonable value of temperature T .

    UVa/UKy Colloquia, April 2007 – p. 28/28

    OutlineRelativistic heavy ion collisionsRelativistic heavy ion collisions: timelineRelativistic heavy ion collisions: spacetime viewRelativistic heavy ion collisions: ideal hydrodynamics?QGP at RHIC:Weak coupling kern 27pt versus kern 27pt strong couplingTheoretical physicsTheoretical physics

    Perturbation theoryNumerical simulationsString theoryString theory controversy:Progress in physics:Progress in physics:

    Strings on $AdS_5 imes S^5$Maldacena conjecture:$Nfour $ SYM vs. QCD:~~ darkred zero temperature$Nfour $ SYM vs. QCD:~~ darkred high temperatureGauge/string duality for hot plasmaStrongly coupled SYM plasma: selected resultsHeavy quark energy lossHeavy quark energy loss: trailing string solutionHeavy quark energy loss: wakesHeavy quark wake: $v = 0.75 , c$Heavy quark wake: $v = vs = 0.577, c$Heavy quark wake: $v = 0.25, c$OutlookPhoton yield: comparison to RHIC data