Stresses Inflexible Pavements

download Stresses Inflexible Pavements

of 27

Transcript of Stresses Inflexible Pavements

  • 8/2/2019 Stresses Inflexible Pavements

    1/27

    Stresses in FlexiblePavement Systems

  • 8/2/2019 Stresses Inflexible Pavements

    2/27

    Multi-layered Elastic Theory

    Pavement behavior under wheelloads is characterized by consideringit to be a homogeneous half-space

    subjected to a circular load of radiusa and uniform pressure p

  • 8/2/2019 Stresses Inflexible Pavements

    3/27

    Multi-layered Elastic System

  • 8/2/2019 Stresses Inflexible Pavements

    4/27

    Assumptions

    Homogeneous Material Properties Finite Layer Thickness

    Layers Infinite in Lateral Directions Isotropic Layers

    Full Friction Between Layers No Surface Shearing Forces

    Solutions Characterized by E,

  • 8/2/2019 Stresses Inflexible Pavements

    5/27

    Assumptions

    Most Not Valid Reasonable for Small Strains

  • 8/2/2019 Stresses Inflexible Pavements

    6/27

    Stresses

    Normal Stresses (Perpendicular)z, t, r

    Shear Stresses (Parallel)rt = trzt = tzrz = zr

  • 8/2/2019 Stresses Inflexible Pavements

    7/27

    Strains

  • 8/2/2019 Stresses Inflexible Pavements

    8/27

    One Layer System

    Boussinesq EquationsStress, Strains, Deflections

    AssumesHomogeneous

    IsotropicElastic Media

    Point Load at Surface

  • 8/2/2019 Stresses Inflexible Pavements

    9/27

    Vertical Stress Distribution

    c

    r

    z

  • 8/2/2019 Stresses Inflexible Pavements

    10/27

    Boussinesqs Formula

    Note: z is not a functionof E (materials stiffness)

  • 8/2/2019 Stresses Inflexible Pavements

    11/27

    One Layer Theory

    Need Theory for Circular LoadFoster & Ahlvin

    Charts, pp. 49-51 = 0.5

    Waterway Experiment Station Equations & Tables

  • 8/2/2019 Stresses Inflexible Pavements

    12/27

    One Layer Elastic Equations

  • 8/2/2019 Stresses Inflexible Pavements

    13/27

    Example

    Givena = 5 inches

    z = 10 inchesr = 20 inches

    FindRadii for Functions A and B

  • 8/2/2019 Stresses Inflexible Pavements

    14/27

    Example

    z/a = 10/5 = 2 r/a = 20/5 = 4

  • 8/2/2019 Stresses Inflexible Pavements

    15/27

    Example

    A = 0.01160 B = -0.00401

  • 8/2/2019 Stresses Inflexible Pavements

    16/27

    Example

    GivenLoad = 9000 lbs.

    Tire Inflation = 80 psiE = 10,000 psi

    = 0.4 Find

    z1

    , z2

    ,

    z1,z2

    1

    2

    r1 = 0

    r2 = 6 in.

    z2 = 6 in.

    z1 = 0

  • 8/2/2019 Stresses Inflexible Pavements

    17/27

    Burmister Influence Curves

  • 8/2/2019 Stresses Inflexible Pavements

    18/27

    Available Solutions

    Vertical DeflectionsRutting

    Interface DeflectionsRutting in Layers

    Tensile Strain at Bottom of HMA

    Fatigue Analysis

  • 8/2/2019 Stresses Inflexible Pavements

    19/27

    Influence Values

  • 8/2/2019 Stresses Inflexible Pavements

    20/27

    Example 1

    1 Given (Flexible)p = 80 psi

    E1 = 500,000 psiE2 = 10,000 psi

    a = 6 inches

    Find

    max

    6

  • 8/2/2019 Stresses Inflexible Pavements

    21/27

    Example 2

    1 Given (Flexible)p = 80 psi

    E1 = 50,000 psiE2 = 10,000 psi

    a = 6 inches

    Find

    max

    6

  • 8/2/2019 Stresses Inflexible Pavements

    22/27

    Interface Deflections

    Deflections at Layer Intersections

    s = paE2

    F

  • 8/2/2019 Stresses Inflexible Pavements

    23/27

    Interface Deflections

  • 8/2/2019 Stresses Inflexible Pavements

    24/27

    Example 3

    Givenp = 80 psi

    E1 = 500,000 psi

    E2 = 10,000 psi

    a = 6 inches

    max = 0.022 Find HMA Contribution to

    max

    max 6s

  • 8/2/2019 Stresses Inflexible Pavements

    25/27

    Tensile Strains

    t at Bottom of HMA Controls FatigueCracking For a Single Tire

    t

    =

    p

    E1F

    e

  • 8/2/2019 Stresses Inflexible Pavements

    26/27

    Strain Factors

  • 8/2/2019 Stresses Inflexible Pavements

    27/27

    Example 4

    GivenP = 9000 lbs.

    p = 67.7 psi

    E1 = 150,000 psi

    E2

    = 15,000 psi

    Find

    t

    t8