Stress Strain Elasticity

download Stress Strain Elasticity

of 31

Transcript of Stress Strain Elasticity

  • 7/31/2019 Stress Strain Elasticity

    1/31

    1

    II. Stress, Strain and Elasticity

    Revision

    Arcady Dyskin

    A.V. Dyskin. Geomechanics Group, UWA

    Plan

    Elasticity

    Boundary conditions

    Wave propagation

    A.V. Dyskin. Geomechanics Group, UWA Slide 2

  • 7/31/2019 Stress Strain Elasticity

    2/31

    2

    Learning objectivesUnderstanding stress and strain matrices, meaning

    of components, equilibrium and compatibility

    Change of components with coordinatetransformation, principal stress /strain, principalaxes, spherical and deviatoric parts

    Assumptions of elasticity, generalised Hookes law

    Isotropic and anisotropic rocks

    Plane stress and lane strain

    A.V. Dyskin. Geomechanics Group, UWA Slide 3

    Elastic energy

    Boundary conditions, the use of symmetry

    Plane and Rayleigh waves

    Stress and strain Stress: Definition and equations of equilibrium

    tra n: e n t on an equat ons o compat ty

    Co-ordinate rotations

    Principal stress/strain and principal directions Spherical/deviatoric decomposition

    Plane stress and lane strain

    A.V. Dyskin. Geomechanics Group, UWA Slide 4

    Mohrs circle

    Cylindrical and spherical co-ordinates

  • 7/31/2019 Stress Strain Elasticity

    3/31

    3

    Stress: Definition and equations ofequilibrium

    .

    Surface forces. Stress

    Stress matrix

    Force equilibrium

    A.V. Dyskin. Geomechanics Group, UWA Slide 5

    omen equ r um

    Body forces. Intensity of body forces Force is an abstract notion representing the action of other

    bodies on the given one. Body forces

    Surface forces

    Body forces act on all points of the given bodyrepresenting the remote action of other bodies

    Intensity

    A.V. Dyskin. Geomechanics Group, UWA Slide 6

  • 7/31/2019 Stress Strain Elasticity

    4/31

    4

    Surface forces. Stress Surface forces represent the action of other bodies on the surface of

    the given one by means of direct contact. Intensity of surface forcesis called stress .

    A.V. Dyskin. Geomechanics Group, UWA Slide 7

    Stress components are labelled by 2 indexes: the first refers to thedirection of the surface element; the second to the component offorce.

    Internal stress state

    Stress

    A.V. Dyskin. Geomechanics Group, UWA Slide 8

    matrix

    zzyzx

    yzyyx

    xzxyx

    zzzyzx

    yzyyyx

    xzxyxx

  • 7/31/2019 Stress Strain Elasticity

    5/31

    5

    Convenient index notations33

    x3

    22

    11

    31

    21

    2312

    13

    x2

    333231

    232221

    131211

    A.V. Dyskin. Geomechanics Group, UWA

    x1

    9

    Sign conventions

    A.V. Dyskin. Geomechanics Group, UWA Slide 10

    Rock Mechanics convention

  • 7/31/2019 Stress Strain Elasticity

    6/31

    6

    Stress on a surface element

    z

    y

    x

    F=(Fx, Fy, Fz)

    n=(nx, ny, nz)

    A

    SF

    An n n

    SF

    An n n

    SF

    An n n

    xx

    x x y yx z zx

    yy

    x xy y y z zy

    zz

    x xz y yz z z

    A.V. Dyskin. Geomechanics Group, UWA Slide 11

    Stress on a surface element in new notations

    3232221212

    2

    3132121111

    1

    nnnF

    S

    nnnA

    FS

    F=(F1, F2, F3)

    x3

    1232221

    3332321313

    3

    nnn

    nnnA

    FS

    1, 2, 3A

    x1

    x2

    Take advantage of new notations

    A.V. Dyskin. Geomechanics Group, UWA

    13

    1

    2

    3

    1

    i

    i

    i

    iji

    j

    j

    n

    nA

    FS

    Einstein convention

    1

    ii

    iji

    j

    j

    nn

    nA

    FS

    Summation over

    repeated indices

    Slide 12

  • 7/31/2019 Stress Strain Elasticity

    7/31

    7

    Force equilibrium

    A.V. Dyskin. Geomechanics Group, UWA Slide 13

    Force equilibrium in index notations

    01312111

    f

    0

    0

    3

    3

    33

    2

    23

    1

    13

    2

    3

    32

    2

    22

    1

    12

    321

    fxxx

    fxxx

    xxx

    321

    A.V. Dyskin. Geomechanics Group, UWA

    321

    jxxxOr, in index notations

    or 0

    j

    i

    ijf

    x

    or 0, jiij f

    Slide 14

  • 7/31/2019 Stress Strain Elasticity

    8/31

    8

    Moment equilibrium

    332313

    232212

    131211

    A.V. Dyskin. Geomechanics Group, UWA Slide 15

    jiij

    Example

    Uniform stress field

    A.V. Dyskin. Geomechanics Group, UWA Slide 16

  • 7/31/2019 Stress Strain Elasticity

    9/31

    9

    Strain: Definition and equations ofcompatibility

    Displacement and strain

    Meaning of strain components

    Compatibility

    A.V. Dyskin. Geomechanics Group, UWA Slide 17

    Types of movement

    Rigid body

    displacement

    A.V. Dyskin. Geomechanics Group, UWA Slide 18

    Rigid body

    rotationDeformation

  • 7/31/2019 Stress Strain Elasticity

    10/31

    10

    Displacement and strain

    Small strains, ||

  • 7/31/2019 Stress Strain Elasticity

    11/31

    11

    CompatibilityEquations of compatibilityMeaning: the absence of

    discontinuitiesCompatible

    A.V. Dyskin. Geomechanics Group, UWA Slide 21

    Incompatible

    Co-ordinate rotations

    A.V. Dyskin. Geomechanics Group, UWA Slide 22

  • 7/31/2019 Stress Strain Elasticity

    12/31

    12

    Principal directionsp pThree special orientations

    of the volume element

    p

    axes which ensure the

    absence of shear stresses

    (strains)

    I I0 0 0 0

    A.V. Dyskin. Geomechanics Group, UWA Slide 23

    p

    II

    III

    II

    III

    0 00 0

    0 00 0

    ,

    Principal stress/strain and principal

    directionsPrincipal stress

    (no shear stresses)

    Principal strain

    (no distortion)

    3

    A.V. Dyskin. Geomechanics Group, UWA Slide 24

    1

  • 7/31/2019 Stress Strain Elasticity

    13/31

    13

    Determination of principal stress andstrain

    Stress

    A.V. Dyskin. Geomechanics Group, UWA Slide 25

    Eigenvalues and eigenvectors

    Principal directions for stress and strain do not necessarilycoincide

    Spherical/deviatoric decomposition

    Stress

    A.V. Dyskin. Geomechanics Group, UWA Slide 26

    Strain

  • 7/31/2019 Stress Strain Elasticity

    14/31

    14

    Plane stress and plane strainPlane stress Plane strain

    A.V. Dyskin. Geomechanics Group, UWA Slide 27

    Mohrs circle

    2D

    A.V. Dyskin. Geomechanics Group, UWA Slide 28

    3D

  • 7/31/2019 Stress Strain Elasticity

    15/31

    15

    Cylindrical co-ordinates

    A.V. Dyskin. Geomechanics Group, UWA Slide 29

    Cylindrical co-ordinates (cont.)

    Equations of equilibrium Definition of strain

    A.V. Dyskin. Geomechanics Group, UWA Slide 30

  • 7/31/2019 Stress Strain Elasticity

    16/31

    16

    Spherical co-ordinates

    A.V. Dyskin. Geomechanics Group, UWA Slide 31

    Spherical co-ordinates

    e n on o s ra n

    A.V. Dyskin. Geomechanics Group, UWA Slide 32

    Equations of equilibrium

  • 7/31/2019 Stress Strain Elasticity

    17/31

    17

    Summary: stress and strain Stress Combination (Cartesian product) of 2 vectors: surface element and force

    Represented by 3*3 matrix, symmetric due to moment equilibrium

    Strain Combination of 2 vectors: elementary length and relative displacements

    of its ends

    Represented by symmetric 3*3 matrix

    Equations of compatibility (represent continuity of rocks)

    Rock Mechanics sign convention Normal vectors directed inwards hence signs of all stress and strain

    A.V. Dyskin. Geomechanics Group, UWA Slide 33

    components are reversed. Component change with coordinate rotation (tensorial property)

    Principal stress (strain) and directions

    Splitting into spherical (hydrostatic pressure or volumetricstrain) and deviatoric parts

    Elasticity The need for constitutive equations

    Equations of equilibrium and compatibility equations areinsufficient to uniquely determine stress and strain

    Assumptions of elasticity

    Generalised Hookes law

    Isotropic rocks 3D Hookes law Plane stress and plane strain

    Anisotropic rocks

    A.V. Dyskin. Geomechanics Group, UWA Slide 34

    Orthotropic (orthorombic) rocks

    2D anisotropy

    Elastic energy

    Boundary conditions

  • 7/31/2019 Stress Strain Elasticity

    18/31

    18

    Assumptions of elasticity

    Residual strain

    -

    curve for rocks

    A.V. Dyskin. Geomechanics Group, UWA Slide 35

    E

    1. Reversibility (noresidual strains)

    2. Linearity (Hookes law)3. Time independence

    Generalised Hookes lawx3

    131211131211

    x1

    x2

    333231

    232221

    333231

    232221 , klij

    klijklijklijklij SC Summation over

    repeated indexes

    A.V. Dyskin. Geomechanics Group, UWA Slide 36

    Tensor of elastic

    moduli

    Tensor of

    compliances

    81 components 21 independent

  • 7/31/2019 Stress Strain Elasticity

    19/31

    19

    Isotropy and anisotropy Isotropic rocks

    Shear and normal stress and strain are not coupled

    Principal directions for stress and strain coincide

    Transversal isotropic and orthotropic rocks Moduli depend upon the direction of loading

    Exist directions where shear and normal stress andstrain are not cou led

    A.V. Dyskin. Geomechanics Group, UWA Slide 37

    General case Moduli depend upon the direction of loading

    Shear and normal stress and strain are coupled in alldirections

    Isotropic material

    Moduli are independent of the direction of loading

    Hookes law two independent parameters

    x x y z

    y x y z

    E E E

    E E E

    1

    1

    1

    5.01

    A.V. Dyskin. Geomechanics Group, UWA Slide 38

    z x y z

    xy xy yz yz zx zx

    E E E

    E E E

    1 1 1, , ,

  • 7/31/2019 Stress Strain Elasticity

    20/31

    20

    Other forms of isotropic Hookes law

    A.V. Dyskin. Geomechanics Group, UWA Slide 39

    =0.5 orK= - incompressible material

    Anisotropic rocks

    Different elastic properties in different directions

    Examples:

    Transversal isotropic material

    Foliated rock or layered rock mass

    Rock or concrete with reinforcement in one direction Rock at later stages of uniaxial compression

    Orthotropic material

    A.V. Dyskin. Geomechanics Group, UWA Slide 40

    Rock with two or three orthogonal sets of fractures

    Blocky rock mass

    Concrete with reinforcement in two or three directions

  • 7/31/2019 Stress Strain Elasticity

    21/31

    21

    Transversal isotropy z E2Hooks law

    zyxz

    zyxy

    zyxx

    EEE

    EEE

    22

    2

    2

    11

    1

    2

    2

    1

    1

    1

    1

    1

    1

    x

    y

    zE1

    A.V. Dyskin. Geomechanics Group, UWA Slide 41

    xyxyzxzxyzyz

    EGG

    1

    1

    22

    222

    1,

    2

    1,

    2

    1

    x

    y

    Orthotropy

    x x 1 21 31

    z E3

    Hooks law

    y x y z

    z x y z

    E E E

    E E E

    1

    1

    1 2 3

    12

    1 2

    32

    3

    13

    1

    23

    2 3

    x

    y

    zE2E1

    A.V. Dyskin. Geomechanics Group, UWA Slide 42

    yz yz zx zx xy xyG G G

    E E E E E E

    1

    2

    1

    2

    1

    223 13 12

    1 21 2 12 2 32 3 23 3 13 1 31

    , ,

    , ,

    x

    y

  • 7/31/2019 Stress Strain Elasticity

    22/31

    22

    ExamplePressurised borehole in a layered rock.Stress concentration at the contour

    90 90

    q

    2

    E1

    0

    30

    60120

    150

    180

    210 330

    0

    30

    60120

    150

    180

    210 330

    q q

    A.V. Dyskin. Geomechanics Group, UWA Slide 43

    E2/E1=0.2

    G E2

    2

    12 1

    Video Clip

    240

    270

    300240

    270

    300

    Isotropic Highly anisotropic

    2D isotropic Hookes lawPlane stress

    Plane strain

    A.V. Dyskin. Geomechanics Group, UWA Slide 44

  • 7/31/2019 Stress Strain Elasticity

    23/31

    23

    2D orthotropic Hookes lawPlane stress

    A.V. Dyskin. Geomechanics Group, UWA Slide 45

    replacement

    Elastic (strain) energy

    1D case

    A.V. Dyskin. Geomechanics Group, UWA Slide 46

    General case

  • 7/31/2019 Stress Strain Elasticity

    24/31

    24

    Expression of elastic energy viamoduli and compliances

    Isotro ic rock

    or

    A.V. Dyskin. Geomechanics Group, UWA Slide 47

    General anisotropic rock

    klijklijklijklij SCW 2121

    Boundary conditions

    At each point of the boundary 3 conditions (2 in

    Tractions (stresses acting on the elements of theboundary surface)

    Simulate the action of external bodies that are very soft ascompared to the rock

    Displacements Simulate the action of external bodies that are very stiff as

    compared to the rock

    A.V. Dyskin. Geomechanics Group, UWA Slide 48

    Combination

    Symmetry

    Saint Venant principle

  • 7/31/2019 Stress Strain Elasticity

    25/31

    25

    Example: Triaxial testing of a rock

    sampleu0 0

    ,0 uuuu zr

    p

    z

    y

    r

    0

    zr

    r p

    A.V. Dyskin. Geomechanics Group, UWA Slide 49

    Stiff loading frame

    Full contact with looing platens, or

    Full sliding

    x

    0,0 zr uuu

    0 zzr instead of

    Saint Venant Principle Complex load can be replaced with a statically equivalent

    simpler one Total force and moment are preserved

    This affects only a vicinity of the surface where the load isapplied

    F, M

    A.V. Dyskin. Geomechanics Group, UWA Slide 50

    Affected area

  • 7/31/2019 Stress Strain Elasticity

    26/31

    26

    Summary: elasticity Constitutive relationship (equations) to close the system of equations

    Linear elasticity Reversibility, Hookes law, time independence

    Two elastic constants

    Principal directions for stress and strain coincide

    Transverse isotropic rock Five elastic constants

    Plane of isotropy

    Layered rock, one set of fractures

    Orthotropic rock Nine elastic constants

    A.V. Dyskin. Geomechanics Group, UWA Slide 51

    Three planes of symmetry Blocky rock, two or three mutually orthogonal sets of fractures

    Plane stress and plane strain the same equations ,adjusted moduli

    Boundary conditions 3 at each point

    Saint-Venant principle Complex load replaced with a statically equivalent one

    Wave propagation

    Plane waves

    Rayleigh waves

    Energy distribution

    A.V. Dyskin. Geomechanics Group, UWA Slide 52

  • 7/31/2019 Stress Strain Elasticity

    27/31

    27

    Equations of motion

    Adding inertial body forces

    Equations

    of motion

    A.V. Dyskin. Geomechanics Group, UWA Slide 53

    Plane waves. Isotropic infinite rock

    Assumptions

    Both and u are functions ofx only

    Infinite rock (no boundaries)

    Isotropic rock

    A.V. Dyskin. Geomechanics Group, UWA Slide 54

  • 7/31/2019 Stress Strain Elasticity

    28/31

    28

    Wave equations. Planar waveDirection of wave

    propagation01

    2

    2

    22

    2

    t

    u

    cx

    u xx

    x

    z

    y

    uxuz

    uy

    Wave front

    P-waveS-waves

    01

    01

    2

    2

    22

    2

    2

    2

    22

    2

    t

    u

    cx

    u

    t

    u

    cx

    u

    z

    S

    z

    y

    S

    y

    A.V. Dyskin. Geomechanics Group, UWA Slide 55

    Non-planar wave front

    Locally the front can be replaced with a

    tangent plane

    Plane waves

    x

    z

    uxuz

    Direction of wave

    propagation

    A.V. Dyskin. Geomechanics Group, UWA Slide 56

    yuy

    Wave front

  • 7/31/2019 Stress Strain Elasticity

    29/31

    29

    Rayleigh waves

    Waves near the boundary of a semi-space

    Direction of wave propagation

    Direction of particle motion

    s ntially

    Velocity

    A.V. Dyskin. Geomechanics Group, UWA Slide 57

    Deca

    y

    expon

    Energy distribution- Point source, energyE

    Energy is concentrated in a surface layer of with

    ct

    or wave

    h

    Rayleigh wave

    ct

    A.V. Dyskin. Geomechanics Group, UWA Slide 58

    2~

    ct

    EW hct

    EW~

    Rayleigh wave can carry energy farther than P and S waves

  • 7/31/2019 Stress Strain Elasticity

    30/31

    30

    Earthquakes

    lHWr

    11~

    2

    Rayleigh wave

    H

    l

    1~

    A.V. Dyskin. Geomechanics Group, UWA Slide 59

    Seismic source

    22 Hl

    Summary: waves In isotropic rock, far from the boundaries, two

    types of planar waves (the front is planar) exist-

    propagation

    S-wave: particles oscillate in the direction normal to

    wave propagation Velocities of wave propagation are determined bymoduli and density. P-wave is faster than S-wave

    Non-planar wave fronts locally treated as planar

    A.V. Dyskin. Geomechanics Group, UWA Slide 60

    Near boundary, the Rayleigh wave exists Backward circular particle motion

    Slower than S-wave

    Energy is distributed farther than by plane waves

  • 7/31/2019 Stress Strain Elasticity

    31/31

    Conclusion Stress and strain

    Basic notions of mechanics

    Continuum

    Three dimensional tensors

    Equations of equilibrium and compatibility

    Constitutive law Elasticity basic law

    Isotropy and anisotropy

    Boundary conditions

    A.V. Dyskin. Geomechanics Group, UWA Slide 61

    Dynamics Equations of motion

    Plane and Rayleigh waves

    Velocity of wave propagation

    Energy

    Literature

    Mase, G.H. Schaum's outline of theory and

    problems of continuum mechanics.

    Timoshenko, S.P. & J.N. Goodier Theory

    of Elasticity. New York : McGraw-Hill.

    Brady, B.H.G. & E.T. Brown. Rock

    A.V. Dyskin. Geomechanics Group, UWA Slide 62

    .

    George Allen & Unwin. London, Boston,

    Sydney, 1985.