STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH...

261
i STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN CIVIL ENGINEERING APROVED: _____________________________________ Dr. Carin Roberts-Wollmann, Chairperson ____________________________ __________________________ Dr. W. Samuel Easterling Dr. Richard Weyers October 2001 Blacksburg, Virginia Keywords: Composite slabs, composite beams and joists, shear connectors, fiber- reinforced concrete, push-out tests.

Transcript of STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH...

Page 1: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

i

STRENGTH AND PERFORMANCE OF FIBER-REINFORCED

CONCRETE COMPOSITE SLABS

By:

Marcela Guirola

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

IN

CIVIL ENGINEERING

APROVED:

_____________________________________

Dr. Carin Roberts-Wollmann, Chairperson

____________________________ __________________________

Dr. W. Samuel Easterling Dr. Richard Weyers

October 2001 Blacksburg, Virginia

Keywords: Composite slabs, composite beams and joists, shear connectors, fiber-

reinforced concrete, push-out tests.

Page 2: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

ii

STRENGTH AND PERFORMANCE OF FIBER-REINFORCED

CONCRETE COMPOSITE SLABS

By:

Marcela Guirola

(ABSTRACT)

The purpose of this research is to evaluate and compare the influence of four types

of secondary reinforcement on various component strengths related to composite slabs.

These components include the composite slab strength under uniform load, the strength of

two types of shear connectors used with composite beams and joists, composite slab

strength due to a concentrated load, and the flexural toughness and first-crack strength of

fiber-reinforced concrete using ASTM C1018 (1998) standard test. The performance of

the specimens reinforced with fibers are compared with that of the specimens reinforced

with welded-wire fabric (WWF), with the purpose of determining if fiber-reinforced

concrete can be used as an alternative to WWF.

Page 3: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

iii

ACKNOWLEDGEMENTS

I want to express my gratitude to all the people who in one way or another

contributed to the development of this research. I would like to specially thank the

members of my committee: Dr. Carin Roberts-Wollmann, Dr. W. Samuel Easterling and

Dr. Richard Weyers; thank you for your patience and valuable help in instructing, guiding

and supporting me throughout the duration of this project and during my years of study at

this institution.

I would also like to thank Synthetic Industries for sponsoring this research at

Virginia Tech and Mr. Greg Moody for his valuable help.

The experimental testing of this research was not possible without the help of

many. Special thanks go to Brett Farmer, Dennis Huffman and Ricky Woods for their

technical assistance and labor, and for making my lab days more enjoyable. To my

classmates and good friends to whom I owe so much: Grace Shen, Ben Mason, Thad

Chapman, Tom Traver, Jason Piotter, James Warmoth and Onur Avci: thank you for your

generous and valuable help and for giving me so many happy memories worth to

remember. The efforts of Denson Graham in fabricating coupon specimens and the

valuable help of Bob Simonds in the ESM lab are very much appreciated. I extend my

thanks to my fellow classmates and faculty members from whom I’ve learned so much.

Finally and most importantly, I am very grateful to my Mom and Daddy for always

giving me their love and support. To other family and friends; particularly Carlos and

Silvana, for giving me hope and cheering me up in the bad times. Thanks for always being

there for me.

Page 4: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

iv

TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................ iii LIST OF FIGURES AND TABLES .................................................................................. vii LIST OF SYMBOLS........................................................................................................... xi Chapter 1 .............................................................................................................................. 1 INTRODUCTION................................................................................................................ 1

1.0 GENERAL ................................................................................................................. 1 1.1 OBJECTIVE:.............................................................................................................. 2 1.2 SCOPE: ...................................................................................................................... 2 1.3 THESIS ORGANIZATION ....................................................................................... 3

Chapter 2 .............................................................................................................................. 5 LITERARURE REVIEW..................................................................................................... 5

2.1 COMPOSITE SLABS................................................................................................ 5 2.2 PUSH-OUT TESTS ................................................................................................... 8

2.2.1 STANDOFF SCREWS IN PUSH-OUT TESTS................................................. 8 2.2.2 WELDED SHEAR STUDS IN PUSH-OUT TESTS........................................ 11

Chapter 3 ............................................................................................................................ 14 COMPOSITE SLABS UNDER DISTRIBUTED LOAD.................................................. 14 EXPERIMENTAL PROGRAM......................................................................................... 14

3.1 TEST PARAMETERS............................................................................................. 14 3.2 INSTRUMENTATION............................................................................................ 15 3.3 TEST SETUP ........................................................................................................... 15 3.4 TEST PROCEDURE................................................................................................ 17 3.5 COMPONENT TESTS ............................................................................................ 17 3.6 RESULTS................................................................................................................. 17

3.6.1 WWF-1.............................................................................................................. 19 3.6.2 WWF-2.............................................................................................................. 20 3.6.3 XOREX25-1...................................................................................................... 21 3.6.4 XOREX25-2...................................................................................................... 22 3.6.5 XOREX50-1...................................................................................................... 23 3.6.6 XOREX50-2...................................................................................................... 24 3.6.7 MICROFIBER MD-1........................................................................................ 25 3.6.8 MICROFIBER MD-2........................................................................................ 26

3.7 EVALUATON OF RESULTS................................................................................. 28 3.7.1 First Yield Method and ASCE Standard for the Structural Design of Composite Slabs –Appendix D Method ....................................................................................... 28 3.7.2 Comparison of Experimental and Theoretical Results...................................... 32

3.8 CONCLUSIONS ...................................................................................................... 34 Chapter 4 ............................................................................................................................ 35 ASTM C1018- Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete ................................................................................................. 35

4.0 GENERAL ............................................................................................................... 35 4.1 TEST PARAMETERS............................................................................................. 37 4.2 INSTRUMENTATION............................................................................................ 37 4.3 TEST SETUP ........................................................................................................... 37

Page 5: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

v

4.4 TEST PROCEDURE................................................................................................ 39 4.5 COMPONENT TESTS ............................................................................................ 39 4.6 RESULTS................................................................................................................. 40

4.6.1 Calculations Method.......................................................................................... 40 4.6.2 Summary of Results .......................................................................................... 41

Chapter 5 ............................................................................................................................ 44 COMPOSITE SLABS UNDER CONCENTRATED LOADS.......................................... 44

5.1 TEST PARAMETERS............................................................................................. 44 5.2 INSTRUMENTATION............................................................................................ 45 5.3 TEST SETUP ........................................................................................................... 45 5.4 TEST PROCEDURE................................................................................................ 47 5.5 COMPONENT TESTS ............................................................................................ 49 5.6 RESULTS................................................................................................................. 49

5.6.1 WWF ................................................................................................................. 50 5.6.2 XOREX-25........................................................................................................ 52 5.6.3 XOREX-50........................................................................................................ 54 5.6.4 Microfiber-MD.................................................................................................. 56

5.7 EVALUATION OF RESULTS................................................................................ 58 5.8 CONCLUSIONS ...................................................................................................... 68

Chapter 6 ............................................................................................................................ 69 PUSH-OUT TESTS ........................................................................................................... 69

6.1 TEST PARAMETERS............................................................................................. 69 6.2 INSTRUMENTATION............................................................................................ 70 6.3 TEST SETUP ........................................................................................................... 70 6.4 TEST PROCEDURE................................................................................................ 72 6.5 COMPONENT TESTS ............................................................................................ 72 6.6 RESULTS................................................................................................................. 72 6.7 EVALUATION OF RESULTS................................................................................ 73

6.7.1 ELCO Grade-8 Standoff Screws Shear Capacity Method (Mujagic et al. 2000).................................................................................................................................... 73 6.7.2 Theoretical Shear Strength Capacity for Headed Studs; AISC Method and Rambo-Roddenberry et al. (2001).............................................................................. 75

6.8 CONCLUSIONS ...................................................................................................... 77 Chapter 7 ............................................................................................................................ 78 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS ...................................... 78

7.1 SUMMARY ............................................................................................................. 78 7.2 CONCLUSIONS ...................................................................................................... 79 7.3 RECOMMENDATIONS FOR FUTURE RESEARCH .......................................... 81

REFERENCES................................................................................................................... 82 APPENDIX A: WWF-COMPOSITE SLABS UNDER DISTRIBUTED LOAD TEST PLOTS 86 APPENDIX B: XOREX-25-COMPOSITE SLABS UNDER DISTRIBUTED LOAD TEST PLOTS ..................................................................................................................... 96 APPENDIX C: XOREX-50-COMPOSITE SLABS UNDER DISTRIBUTED LOAD TEST PLOTS ................................................................................................................... 104

Page 6: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

vi

APPENDIX D: Microfiber-MD-COMPOSITE SLABS UNDER DISTRIBUTED LOAD TEST PLOTS ................................................................................................................... 114 APPENDIX E:.................................................................................................................. 123 ASTM C1018 STANDARD TEST SUMMARY OF RESULTS.................................... 123

SUMMARY OF RESULTS FOR XOREX-25 ............................................................ 124 SUMMARY OF RESULTS FOR XOREX-50 ............................................................ 125 SUMMARY OF RESULTS FOR MICROFIBER-MD............................................... 127

APPENDIX F ................................................................................................................... 129 COMPOSITE SLABS UNDER NON-DISTRIBUTED LOADS TEST DATA............. 129

Slab: WWF ................................................................................................................... 131 Slab: XOREX-25.......................................................................................................... 148 Slab: XOREX-50.......................................................................................................... 165 Slab: Microfiber-MD.................................................................................................... 183

APPENDIX G .................................................................................................................. 194 PUSH-OUT TESTS SUMMARY OF RESULTS ........................................................... 194 TEST WWF-Screw-1 DATA........................................................................................... 196 APPENDIX H .................................................................................................................. 243 FIBER PROPERTIES ...................................................................................................... 243

XOREX-STEEL FIBER ........................................................................................... 244 FIBERMESH ............................................................................................................ 245

APPENDIX I .................................................................................................................... 246 SAMPLE CALCULATIONS........................................................................................... 246 VITA ................................................................................................................................ 249

Page 7: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

vii

LIST OF FIGURES AND TABLES Figure 2.1 Transverse Centerline Strain Distribution In Composite Slabs During

Concentrated Loading (Luttrell, 1995)......................................................................... 7 Figure 2.2 Weak and Strong Stud Positions....................................................................... 12 Figure 3.1 Test Setup for Composite Slabs under Distributed Load.................................. 16 Table 3.1 Experimental Results.......................................................................................... 18 Figure 3.2 WWF-1 Applied Load vs. Mid-span Deflection and End Slip ........................ 19 Figure 3.3 WWF-2 Applied Load vs. Mid-span Deflection and End Slip ......................... 20 Figure 3.4 XOREX25-1 Applied Load vs. Mid-Span Deflection and End Slip ................ 21 Figure 3.5 XOREX25-2 Applied Load vs. Mid-Span Deflection and End Slip ................ 22 Figure 3.6 XOREX50-1 Applied Load vs. Mid-Span Deflection and End Slip ................ 23 Figure 3.7 XOREX50-2 Applied Load vs. Mid-Span Deflection and End Slip ................ 24 Figure 3.8 MICROFIBER MD-1 Applied Load vs. Mid-Span Deflection and End Slip .. 25 Figure 3.9 MICROFIBER MD-2 Applied Load vs. Mid-Span Deflection and End Slip .. 26 Figure 3.10 Applied Load vs. Mid-Span Deflection for Distributed Load Test on First

Span of Slabs .............................................................................................................. 27 Figure 3.11 Applied Load vs. Mid-Span Deflection for Distributed Load Test on Second

Span of Slabs .............................................................................................................. 27 Figure 3.12. Deck Cross Section and Force Locations ...................................................... 30 Table 3.2 Comparison of Experimental and Theoretical Results....................................... 32 Figure 3.13 Applied Load vs. Crack Width Over Interior Support.................................... 34 Figure 4.1- Characteristics of a Load-Deflection Curve .................................................... 35 Figure 4.2 Test Setup for ASTM C1018 Test .................................................................... 38 Table 4.1 Summary of Results- ASTM C1018 .................................................................. 41 Figure 4.3 – XOREX25- Load-Deflection Curves for ASTM C1018 ............................... 42 Figure 5.1 Strain Gage and Displacement Transducers Locations .................................... 45 Figure 5.2 A- Test Setup for Concentrated Load Tests...................................................... 46 Figure 5.2 B- Setup Detail for Concentrated Load Test (side view).................................. 46 Figure 5.2 C- Setup Detail for Line Load Tests (side view) .............................................. 46 Figure 5.3 (A)-(K) Concentrated and Line Load Locations............................................... 48 Figure 5.4- Cracks formed on both sides of the slab with WWF....................................... 50 Figure 5.5- WWF Slab Deflection with 10-kip Concentrated Load at Mid-Span ............. 51 Figure 5.6- WWF Strain Along Span with 10-kip Concentrated Load at Mid-Span......... 51 Figure 5.7- XOREX25-Slab Deflection with 10-kip Concentrated Load at Mid-Span ..... 52 Figure 5.8 XOREX25- Strain Along Span with 10k Concentrated Load at Mid-Span ..... 53 Figure 5.9- XOREX50 Slab Deflection with 10-kip Concentrated Load at Mid-Span ..... 54 Figure 5.10 XOREX50 Strain Along Span with 10k Concentrated Load at Mid-Span..... 55 Figure 5.11-Cracks formed on both sides of the slab with Microfiber-MD....................... 56 Fig. 5.12 Microfiber-MD Slab Deflection with 10k Concentrated Load at Mid-Span ...... 57 Figure 5.13- Microfiber-MD Strain Along Span with 10k Concentrated Load at Mid-Span

.................................................................................................................................... 57 Table 5.2 Theoretical Moments Versus Observed Moments for Slabs under Concentrated

Loads .......................................................................................................................... 58 Figure 5.14- Strain along Span’s Center Strip with 10 kip Concentrated Load at Mid-Span

(Fig. 5.3-B) ................................................................................................................. 60

Page 8: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

viii

Figure 5.15- Strain across Mid-Span with 10 kip Concentrated Load at Mid-Span (Fig. 5.3-B).......................................................................................................................... 60

Figure 5.16- Deflection along Span’s Center Strip with 10 kip Concentrated Load at Mid-Span (Fig. 5.3-B) ........................................................................................................ 61

Figure 5.17- Deflection across Mid-Span with 10 kip Concentrated Load at Mid-Span (Fig. 5.3-B) ................................................................................................................. 61

Figure 5.18- Strain along Span’s Middle Strip with 15 kip Concentrated Load at Quarter Point (Fig. 5.3-A) ....................................................................................................... 62

Figure 5.19- Strain across Quarter Point with 15 kip Concentrated Load at Quarter Point (Fig. 5.3-A)................................................................................................................. 62

Figure 5.20- Deflection along Span’s Middle Strip with 15 kip Concentrated Load at Quarter Point (Fig. 5.3-A) .......................................................................................... 63

Figure 5.21- Deflection across Quarter Point with 15 kip Concentrated Load at Quarter Point (Fig. 5.3-A) ....................................................................................................... 63

Figure 5.22- Strain along Span’s Middle Strip with 10 kip Linear Load along Middle Strip (Fig. 5.3-F) ................................................................................................................. 64

Figure 5.23- Strain across Mid-Span with 10 kip Linear Load along Middle Strip (Fig. 5.3-F) ................................................................................................................................ 64

Figure 5.24- Deflection along Span’s Middle Strip with 10 kip Linear Load along Middle Strip (Fig. 5.3-F)......................................................................................................... 65

Figure 5.25- Deflection across Mid-Span with 10 kip Linear Load along Middle Strip (Fig. 5.3-F) .......................................................................................................................... 65

Figure 5.26- Strain along Span’s Middle Strip with 10 kip Linear Load along Mid-Span (Fig. 5.3-I) .................................................................................................................. 66

Figure 5.27- Strain across Mid-Span with 10 kip Linear Load along Mid-Span (Fig. 5.3-I).................................................................................................................................... 66

Figure 5.28- Deflection along Span’s Middle Strip with Linear Load along Mid-Span (Fig. 5.3-I) ........................................................................................................................... 67

Figure 5.29- Deflection across Mid-Span with 10 kip Linear Load along Mid-Span (Fig. 5.3-I) ........................................................................................................................... 67

Table 6.1 Push-Out Test Specimens – Test Matrix............................................................ 69 Figure 6.1-A Typical Top Chord Section (Alander et al. 1998) ........................................ 70 Figure 6.1-B Typical Test Setup (Alander et al. 1998) ...................................................... 71 Figure 6.1-C Test Setup Detail (Alander et al. 1998) ........................................................ 71 Table 6.2-A Push-out Tests Results for ELCO Grade 8 Standoff Screws ......................... 72 Table 6.2-B Push-out Test Results for 4- 3/8” Headed Studs ............................................ 73 Figure 6.2 Deck Dimensions .............................................................................................. 74 Table 6.2- Theoretical and Test Results for Shear Strength Capacity per Screw .............. 74 Table 6.3- Theoretical and Test Results for Shear Strength Capacity per Stud................. 77 Figure A.1 WWF-1 Applied Load vs. Mid-Span Deflection and End Slip ....................... 89 Figure A.2 WWF-1 Applied Load vs. Quarter Point Deflection ....................................... 89 Figure A.3 WWF-1 Applied Load vs. Strain in Deck Top Flange along Span.................. 90 Figure A.4 WWF-1 Applied Load vs. Strain in Deck Bottom Flange along Span ............ 90 Figure A.5 WWF-1 Applied Load vs. Crack Width at Interior Support............................ 91 Figure A.6 WWF-2 Applied Load vs. Mid-Span Deflection and End Slip ....................... 93 Figure A.7 WWF-2 Applied Load vs. Quarter Point Deflection ....................................... 93

Page 9: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

ix

Figure A.8 WWF-2 Applied Load vs. Strain in Deck Top Flange along Span.................. 94 Figure A.9 WWF-2 Applied Load vs. Strain in Deck Bottom Flange along Span ............ 94 Figure A.11 WWF-2 Crack Over Interior Support ............................................................ 95 Figure B.1 XOREX25-1 Applied Load vs. Mid-Span Deflection and End Slip................ 98 Figure B.2 XOREX25-1 Applied Load vs. Quarter Point Deflection................................ 98 Figure B.3 XOREX25-1 Applied Load vs. Strain in Deck Top Flange along Span.......... 99 Figure B.4 XOREX25-1 Applied Load vs. Strain in Deck Bottom Flange along Span .... 99 Figure B.5 XOREX25-1 Applied Load vs. Crack Width at Interior Support .................. 100 Figure B.6 XOREX25-2 Applied Load vs. Mid-Span Deflection and End Slip.............. 102 Figure B.7 XOREX25-2 Applied Load vs. Quarter Point Deflection.............................. 102 Figure B.8 XOREX25-2 Applied Load vs. Strain in Deck Top Flange along Span........ 103 Figure B.9 XOREX25-2 Applied Load vs. Strain in Deck Bottom Flange along Span .. 103 Figure C.1 XOREX50-1 Applied Load vs. Mid-Span Deflection and End Slip.............. 107 Figure C.2 XOREX50-1 Applied Load vs. Quarter Point Deflection.............................. 107 Figure C.3 XOREX50-1 Applied Load vs. Strain in Deck Top Flange along Span........ 108 Figure C.4 XOREX50-1 Applied Load vs. Strain in Deck Bottom Flange along Span .. 108 Figure C.5 XOREX50-1 Applied Load vs. Crack Width at Interior Support .................. 109 Figure C.6 XOREX50-1 Crack Over Interior SupportTest Designation: XOREX50-2109 Test Designation: XOREX50-2..................................................................................... 110 Figure C.6 XOREX50-2 Applied Load vs. Mid-Span Deflection and End Slip.............. 111 Figure C.7 XOREX50-2 Applied Load vs. Quarter Point Deflection.............................. 111 Figure C.8 XOREX50-2 Applied Load vs. Strain in Deck Top Flange along Span........ 112 Figure C.9 XOREX50-2 Applied Load vs. Strain in Deck Bottom Flange along Span .. 112 Figure C.10 XOREX50-2 Applied Load vs. Crack Width at Interior Support ................ 113 Figure C.12 XOREX 50-2 Crack Over Interior Support.................................................. 113 Figure D.1 MicrofiberMD-1 Applied Load vs. Mid-Span Deflection and End Slip ....... 117 Figure D.2 MicrofiberMD-1 Applied Load vs. Quarter Point Deflection ....................... 117 Figure D.3 MicrofiberMD-1 Applied Load vs. Strain in Deck Top Flange along Span.. 118 Figure D.4 MicrofiberMD-1 Applied Load vs. Strain in Deck Bottom Flange along Span

.................................................................................................................................. 118 Figure D.5 MicrofiberMD-1 Applied Load vs. Crack Width at Interior Support............ 119 Figure D.6 MicrofiberMD-2 Crack Over Interior Support .............................................. 119 Figure D.6 MicrofiberMD-2 Applied Load vs. Mid-Span Deflection and End Slip ....... 121 Figure D.7 MicrofiberMD -2 Applied Load vs. Quarter Point Deflection ...................... 121 Figure D.8 MicrofiberMD -2 Applied Load vs. Strain in Deck Top Flange along Span. 122 Figure D.9 MicrofiberMD -2 Applied Load vs. Strain in Deck Bottom Flange along Span

.................................................................................................................................. 122 Table E.1 Summary of Results- XOREX 25.................................................................... 124 Figure E.1- XOREX25-Load vs. Deflection at 14 days................................................... 124 Table E.2 Summary of Results- XOREX-50 at 14 days .................................................. 125 Figure E.2- XOREX50- Load vs. Deflection at 14 days.................................................. 125 Table E.3 Summary of Results XOREX-50 at 45 days ................................................... 126 Figure E.3-XOREX-50-Load vs. Deflection at 45 days .................................................. 126 Table E.4 Summary of Results Microfiber-MD at 14 days ............................................. 127 Figure E.4- Microfiber-MD-Load vs. Deflection at 14 days ........................................... 127 Table E.5 Summary of Results Microfiber-MD at 45 days ............................................. 128

Page 10: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

x

Figure E.5-Microfiber-MD- Load vs. Deflection at 45 days ........................................... 128 Figure F1-Strain Gage and Wire-Pot Locations across Mid-Span and Quarter-Points ... 129 Table F-1: Non-Distributed Load Tests Data for WWF Slab .......................................... 131 Table F-2 Non-Distributed Load Tests Data for XOREX-25 Slab .................................. 148 Table F-3 Non-Distributed Load Tests Data on XOREX-50 Slab................................... 165 Table F-4 Non-Distributed Load Tests Data on Microfiber-MD Slab............................. 183 Table G-1 WWF-Screw-1 Test Data................................................................................ 196 Figure G-1 WWF-Screw-1 Applied Shear Load vs. Slip................................................. 197 Table G-2 WWF-Screw-2 Test Data................................................................................ 198 Table G-2 WWF-Screw-2 Test Data................................................................................ 199 Figure G-2 WWF-Screw-2 Applied Shear Load vs. SlipTable G-3 XOREX25-Screw-1

Test Data................................................................................................................... 200 Table G-3 XOREX25-Screw-1 Test Data........................................................................ 201 Figure G-3 XOREX25-Screw-1 Applied Shear Load vs. Slip......................................... 203 Table G-4 XOREX25-Screw-2 Test Data........................................................................ 204 Table G-4 XOREX25-Screw-2 Test Data........................................................................ 205 Figure G-4 XOREX25-Screw-2 Applied Shear Load vs. Slip......................................... 206 Table G-5 XOREX25-Weak Stud-1 Test Data ................................................................ 208 Figure G-5: XOREX25-Weak Stud-1 Applied Shear Load vs. Slip................................ 209 Table G-6: XOREX25-Weak Stud-2 Test Data ............................................................... 211 Figure G-6: XOREX25-Weak Stud-2 Applied Shear Load vs. Slip................................ 212 Table G-7: XOREX50-Screw-1 Test Data....................................................................... 214 Figure G-7: XOREX50-Screw-1 Applied Shear Load vs. Slip........................................ 215 Table G-8: XOREX50-Screw-2 Test Data....................................................................... 217 Figure G-8: XOREX50-Screw-2 Applied Shear Load vs. Slip........................................ 218 Table G-9: XOREX50-Weak Stud-1 Test Data ............................................................... 219 Table G-9: XOREX50-Weak Stud-1 Test Data ............................................................... 220 Figure G-9: XOREX50-Weak Stud-1 Applied Shear Load vs. Slip................................ 221 Table G-10: XOREX50-Weak Stud-2 Test Data ............................................................. 223 Figure G-10: XOREX50-Weak Stud-2 Applied Shear Load vs. Slip .............................. 224 Table G-11: XOREX50-Strong Stud-1 Test Data............................................................ 226 Figure G-11: XOREX50- Strong Stud-1 Applied Shear Load vs. Slip............................ 227 Table G-12: XOREX50-Strong Stud-2 Test Data............................................................ 229 Figure G-12: XOREX50-Strong Stud-2 Applied Shear Load vs. Slip............................. 230 Table G-13:Microfiber-MD-Screw-1 Test Data .............................................................. 232 Figure G-13: Microfiber-MD Screw-1 Applied Shear Load vs. Slip............................... 233 Table G-14: Microfiber-MD Screw-2 Test Data.............................................................. 235 Figure G-14 Microfiber-MD Screw-2 Applied Shear Load vs. Slip................................ 236 Table G-15: Microfiber-MD Weak Stud-1 Test Data ...................................................... 238 Figure G-15: Microfiber-MD Weak Stud-1 Applied Shear Load vs. Slip ....................... 239 Table G-16: Microfiber-MD Weak Stud-2 Test Data ...................................................... 241 Figure G-16: Microfiber-MD Weak Stud-2 Applied Shear Load vs. Slip ....................... 242

Page 11: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

xi

LIST OF SYMBOLS ∆ = mid-span deflection ρ = reinforcement ratio, As / (bd) φ = strength reduction factor =0.85 a = depth of compressive strength block, As Fy / 0.85f’cb a0 = unit steel strain in the deck steel for the center unit strip Abf = area of deck bottom flange per foot of width ai = relative magnitude of the strain in the center of each unit width As = area of deck per unit width As = cross-sectional area of steel shape Asc = cross-sectional area of the stud or screw

B = affected transverse width of the slab b = average width of the specimen, in., at the fracture (for ASTM C1018) b = unit width of slab Bb = width of deck bottom flange bb = test slab width Be = effective width Bt = width of deck top flange C = compressive force in the concrete Cn = bending coefficient for positive moment, n number of spans Cs = cell spacing d = distance from top of slab to centroid of steel deck d = average depth of the specimen, in., at the fracture (for ASTM C1018) dd = depth of deck Dw = width of deck web Ec = modulus of elasticity of concrete Es = modulus of elasticity of the steel f’c = concrete compressive strength; psi. fc = casting stress in the deck due to fresh concrete Fu = minimum specified tensile stress of the stud Fu = steel tensile strength Fut = screw tensile strength Fy = steel yield stress fyc = corrected steel yield stress h = depth of composite slab from top of concrete to bottom of deck hc = depth of concrete cover (depth of concrete above deck) hr = nominal rib height Hs = length of shear stud after welding Hs = screw height, in. I10 = toughness Index up to 5.5times the first-crack deflection I20 = toughness Index up to 10 times the first-crack deflection I5 = toughness Index up to 3.0 times the first-crack deflection Iavg = average of the cracked and un-cracked moments of inertia K = K3/(K1 + K2) = bond force transfer property K1 = [dd/7.8]0.5

Page 12: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

xii

K2 = mechanical bond factor K3 = slab width factor L = clear span between supports ℓ’ = length of shear span ℓe = length of embossment ℓnf = clear span length ℓs = vertical distance between screws in a rib; in. Lsp = length of shear plane Mconc = moment due to concrete weight per unit width of slab Met = first yield moment per unit width Mn = predicted nominal moment capacity Mt = theoretical bending moment Mtest = observed test moment n = modular ratio N = number of cells in test slab width= 12bd/Cs N = number of screws in one rib not to exceed 12 Nb = length of embossment along its base Nh = number of horizontal elements in embossment pattern lengths Nr = number of stud connectors on a beam in one rib Nt = length of embossment along its top Nv = number of vertical elements in embossment pattern lengths P = maximum applied load indicated by the testing machine, lbf. (for ASTM C1018) ph = embossment depth ph = height of embossment, in. ps = embossment intensity factor = 12(Nvℓe + Nhw)/s (for Type III) R = modulus or rupture, psi. Rd = strength coefficient or deck thickness influence on weakposition studs Rn = shear strength per screw, kips Rp = strength coefficient based on stud position s = length of repeating embossment pattern, in. Sc = positive composite section modulus Sp = positive deck section modulus transformed section SRF = stud reduction factor t = steel deck thickness T = tensile force in the deck ttc = top chord thickness; in. w = embossment width, in. WD = weight of concrete and deck wr = average width of concrete rib wr1 = bottom rib width; in. wr2 = top chord width; in. X = transverse distance from the center of the load point ycc = distance from neutral axis of composite section to top of slab

Page 13: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

1

Chapter 1

INTRODUCTION

1.0 GENERAL Today, the use of composite floor slab systems in steel framed buildings is

common practice. Among the numerous advantages over reinforced concrete slabs, are the

lightweight and the ease with which the steel deck is handled and erected. The deck also

takes the place of temporary formwork for the fresh concrete, which saves time and

reduces construction costs. Once the concrete has cured and the components become a

composite system, the cold-formed steel deck serves as positive slab reinforcement.

Even though the concept of composite slabs began in the 1920’s, the first

application to take advantage of this concept did not take place until the middle 1950’s. To

develop bond between the concrete and the steel deck, the first system utilized shear wires

welded directly onto the ribs of the steel section (Luttrell, 1995). The main problems

associated with this method were the expensive and time consuming welding process, and

that the decks couldn’t be “nested” for shipping purposes.

Embossments were added to the steel deck profiles in the 1960’s. In 1967, the

American Iron and Steel Institute (AISI) initiated a research project at Iowa State

University with the purpose of obtaining design criteria for composite slab systems.

Design criteria and specifications for composite slab systems were incorporated for the

first time in the ASCE “Specifications for the Design and Construction of Composite

Slabs” (ASCE 1992). The Steel Deck Institute (SDI) funded several research projects

thereafter. As a result of the new research, a new method was developed for determining

the strength of composite slabs, and was presented in the SDI “Composite Deck Design

Handbook” (CDDH) (Heagler et al. 1993).

Page 14: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

2

In common practice, welded wire fabric (WWF) is used as secondary

reinforcement for temperature and shrinkage in concrete slabs. One of the problems

associated with WWF, is the time involved in positioning the wire mesh correctly. An

alternative to WWF is the use of fiber reinforced concrete where a specific amount of

fibers is mixed with the fresh concrete. This method reduces shipping costs and eliminates

the time consuming and costly labor of placing the wire mesh. The objective of this

research is to compare the structural performance of slabs with fiber reinforced concrete to

slabs with WWF as secondary reinforcement.

1.1 OBJECTIVE: The objective of this project is to evaluate and compare the influence of four types

of secondary reinforcement on various component strengths related to composite slabs.

These components include the composite slab strength under uniform load, the strength of

two types of shear connectors used with composite beams and joists, composite slab

strength due to a concentrated load, and the “Flexural Toughness and First Crack Strength

of fiber reinforced concrete” (ASTM C1018, Standards 1998). The relative serviceability

performance with respect to the control of shrinkage and temperature cracks is not

addressed in this work. The effect of the fibers in adhesion properties of the finished slab

or mechanical bonding between the concrete and the steel deck were not considered.

1.2 SCOPE: In the first set of tests four three-span composite floor slabs were constructed and

tested under uniform load. All specimens were constructed with 20 ga, 2 in. rib height steel

deck, 4.5 in. slab thickness and consisted of two deck panels for a width of approximately

6 ft. Concrete was all normal weight, with a nominal compressive strength of 3000 psi.

The only variable in each specimen was the type of temperature and shrinkage

reinforcement. The types of temperature and shrinkage reinforcement used were 6x6

W2.9xW2.9 WWF, 1.5 in. XOREX steel fibers in the amounts of 25 lb/yd3 and 50 lb/yd3

and synthetic fibers (Microfiber-MD) in the amount of 1.5 lb/yd3. Fiber properties are

presented in Appendix H.

Page 15: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

3

In the second set of tests, four 10 ft single-span composite floor slabs were

constructed and tested under concentrated loads. All specimens were constructed with 20

ga, 2 in. rib height, 5.5 in. slab thickness and consisted of three deck panels for a width of

approximately 9 ft. Concrete was all normal weight, with a nominal compressive strength

of 3000 psi. Again, the only variable was the type of temperature and shrinkage

reinforcement.

In the push-out tests, two sets of 3 ft x 3 ft specimens were constructed. The first

set was built with 22 ga steel deck with a 1.5 in. rib height and 3.5 in. total slab depth.

Shear connectors were ELCO Shear Flex standoff screws. The only variable in the

specimens was the type of temperature and shrinkage reinforcement. All four types of

temperature and shrinkage reinforcement were used. The second set of specimens was

built with 20 ga steel deck with 2 in. rib height and 6 in. total slab depth. Welded studs

were placed in the weak position of the rib in three of the four groups of specimens (Figure

2.2, Table 6.1). The type of fiber was the only variable in these specimens. No WWF was

used. An additional group of specimens was constructed with the 50-lb/yd3 XOREX steel

fiber mixture in which the studs were placed in the strong position of the rib (Figure 2.2).

Concrete beams were cast with each of the three fiber mixtures for the ASTM

C1018 “Standard Test for Flexural Toughness and First-Crack Strength of Fiber-

Reinforced Concrete” (ASTM Standards, 1998). The beams were 4”x4”x14”.

1.3 THESIS ORGANIZATION Previous related research is presented in the Literature Review in Chapter 2. The

experimental research related to the composite slabs tested under uniform load conditions

is described in Chapter 3. This chapter also includes the analysis of the experimental

results for this set of tests and a description of the First Yield Method and the ASCE

Appendix D Alternate Method. The results and comparisons for the ASTM-C1018

“Standard Tests Method for Flexural Toughness and First-Crack Strength of Fiber-

Reinforced Concrete” are presented in Chapter 4. The experimental research and results

analysis of the composite slab specimens tested under concentrated and linear load

Page 16: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

4

conditions are presented in Chapter 5. Push-out tests experimental research, results and

analysis are presented in Chapter 6. Chapter 7 summarizes the results from all four sets of

tests. Conclusions and recommendations are also given in this chapter. The details of each

test specimen are provided in the appendices.

Page 17: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

5

Chapter 2

LITERARURE REVIEW

2.1 COMPOSITE SLABS The behavior of composite slabs has been thoroughly studied in past years. Based

on results of this research both the SDI and ASCE have published design methods (“The

Steel Deck Institute Method for Composite Slab Design” and the ASCE “Standard for the

Design of Composite Slabs”). The majority of previous research has dealt with line loaded

or uniformly loaded specimens using welded wire fabric (WWF) as the secondary

reinforcement. In composite slab construction, the deck provides the primary tension

reinforcement. In the negative moment region, it is assumed to have a zero nominal

moment unless negative reinforcement is added, allowing the assumption of simple span

behavior. The WWF is used for temperature and shrinkage reinforcement only and not for

strength.

An early series of tests investigating the behavior of composite slabs was initiated

at Iowa State University in 1967. The specimens tested were simply supported and single

span, which was not fully representative of as built conditions (Luttrell, 1995).

In the early 1980’s the Steel Deck Institute (SDI) sponsored research at West

Virginia University, which represented more realistic conditions. This set of tests included

effects of end restraints and welded wire mesh reinforcement. Multi-panel slabs were also

studied (Heagler et al, 1993). Tests concerned with non-uniform loads were conducted at

Iowa State University and University of Washington, Seattle. These tests revealed the

inadequacy of existing theories at the time related to non-uniform loads on composite

slabs (Roeder, 1981; Porter, 1985).

A series of projects were conducted for the SDI at Virginia Tech (Young and

Easterling, 1990, 1992; Terry and Easterling, 1994). Three span specimens were used and

Page 18: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

6

each end span was uniformly loaded. This research focused on end restraint conditions

(Terry and Easterling, 1994).

In 1994, a series of tests were conducted at McGill University in Canada

investigating the effectiveness of steel fiber reinforcement in composite slabs; focusing

primarily on the serviceability parameter of crack width (Ibrahim and Jannoulakis, 1994).

The tests consisted of different specimens reinforced with varying quantities of steel fibers

and a set of equivalent specimens reinforced with conventional wire mesh. The variable

parameter in each set was the secondary reinforcement; either wire mesh or percentage of

steel fibers. For each type of reinforcement, a total of six specimens were created with

changes in slab depth, deck gauge and flute depth. Specimens reinforced with steel fibers

were compared to equivalent specimens reinforced with WWF. From this set of

experiments, it was concluded that as the proportion of steel fibers increased, the crack

widths decreased. It was also found that crack widths were smaller in specimens

reinforced with fibers than in those reinforced with WWF (Ibrahim et al, 1994). The

specimens in this series of tests were uniformly loaded.

In 1995, a set of full-scale tests was performed at West Virginia University

studying the transverse distribution of non-uniform loads in composite slabs (Luttrell,

1995). In this study, six different slabs were built. Four were loaded with concentrated

loads at quarter points or at the center; the other two were loaded with a line load along

the longitudinal centerline. Different slab depths were also considered. From these tests,

Luttrell studied the load distribution effect in composite slabs. In the first step of his

approach, a relationship was developed that described the observed strain for any unit

width of slab relative to the unit steel strain for the center strip, as illustrated in Fig. 2.1.

Equation 2-1 describes the developed relationship.

ai = a0[cosπ(x/B)]*[1 – 2(x/B)] (2-1)

Where,

a0 = unit steel strain in the deck steel for the center unit strip

ai = relative magnitude of the strain in the center of each unit width

Page 19: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

7

B = affected transverse width of the slab

x = transverse distance from the center of the load point

Figure 2.1 Transverse Centerline Strain Distribution In Composite Slabs During Concentrated Loading (Luttrell, 1995)

Values for the theoretical width of the slab, B that was affected by the load were

found by iteration for each individual slab tested. A second equation was then developed

that would approximate the B values (in feet) that had previously been determined:

hh

B cth 22= (2-2)

where,

hc = depth of concrete cover (depth of concrete above deck)

h = total slab depth

Using the theoretical and specific bending moments, Mt (ASCE, 1992), the

maximum steel strain, a0, was established. Relative strain values, ai, were established for

the unit width strips parallel to the one containing a0. The maximum theoretical moments

due to concentrated loads for the full slab width, Mth, were developed through the

summation of ai’s; such that:

Be = Σ ai

Mth = BeMt (2-3)

Strain Curve (after load) Unit Width

Concentrated Load Strain Curve (before load)

a0 a1 a1 a2 a2

a3 a3

a4

a4

Page 20: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

8

Where:

Mt = theoretical bending moment per unit width

Be = effective width

The results obtained in Luttrell’s tests were such that the ratio of the actual applied

maximum moment and the theoretical maximum moment obtained from his equations,

was approximately equal to one. The equations were also applied to the specimens loaded

with line loads; the experimental results were also very similar to the theoretical ones. His

work once again showed the inadequacy of the current ASCE design standard, which

underestimates the ability of composite slabs to distribute concentrated and longitudinal

linear loads (Luttrell, 1995).

Prior to Luttrell’s investigation; there was another study in 1993 at West Virginia

University, which dealt with concentrated loads. The results from this investigation were

very similar to those obtained at Iowa State University in the 1980’s (Mullenex, 1993).

Luttrell’s work has been perhaps the most important research related to non-

uniform loading conditions and his equations will be used in the work presented in this

report. In relation to fiber-reinforcement in composite slabs, an important predecessor to

the work presented in this report is the study performed at McGill University in 1994 by

Ibrahim and Jannoulakis.

2.2 PUSH-OUT TESTS

2.2.1 STANDOFF SCREWS IN PUSH-OUT TESTS

The performance of standoff screws (ELCO Shear-Flex) has been studied for the

past eleven years, with most of the research conducted at Virginia Tech. The use of

standoff screws as shear connectors for composite slabs and joists is a relatively new

application of component members that is just beginning (2001) to be used in practice.

Different methods have been used to calculate the strength of the screw shear

connector. Lauer et al. (1994) back calculated the strength of the screws using equilibrium

equations for composite flexural members. Hankins et al. (1994) used existing models for

Page 21: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

9

shear studs as well as the method previously developed by Oehler in 1989, which proved

to be acceptable as long as the indirect tensile strength of concrete is taken as cf '6 . The

model developed by Lloyd and Wright in 1990 was also used but it failed to predict the

shear connector strength accurately. The basis for this model is another model previously

developed by Hawkins and Mitchell in 1984. Hawkins et al. consequently developed a

modified version of the model proposed by Lloyd and Wright. This model showed to

predict the strength of the standoff screw with acceptable accuracy. Alander et al. used the

model developed by Hankins et al. and studied it’s applicability to other configurations. A

new equation was obtained that accurately predicted the strength of the shear connection

using ELCO Grade 8 standoff screws. However, his model had too many limitations and

therefore needed to be modified. In 2000 Webler et al. developed new equations, which

included additional variables such as number of screws per rib. He developed an equation

that predicts the screw strength at a slab to joist slip value of 0.200 in. regardless of the

failure mode at ultimate load. Equations for different failure modes were also developed in

this model. Mujagic (2000) developed a new model, which considered three different

types of failure: screw pullout failure, concrete rib failure and screw shear failure. Mujagic

(2000) reported a series of push-out tests and developed a model that predicts the shear

strength per screw. In his study, he also included the results of other tests performed in

previous years, which allowed him to use a larger series of test results for developing his

model. Some of the tests included in his analysis were those conducted by Hankins et al.

(1994) who performed a total of 74 push-out tests; Lauer et al. (1994) who performed full-

scale tests containing standoff screws, Alander et al. (1998) with a total of 106 tests and

Webler (2000) who performed 59 tests. The final model that was developed for deck ribs

perpendicular to the girder is as follows:

For 0.109≤ ttc ≤0.138, Rn is equal to the minimum of equations 2-4 and 2-5:

)98.015.01()(71.36 121

75.061.1rr

r

stcn ww

hH

tR +−= (2-4)

61.074.0

13.01

' 15.0)(18.0

tc

utscrspcn t

FAN

wLInfR ≤= (2-5)

Page 22: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

10

Equation 2-4 represents a screw pullout failure, which applies to very thin top chord

sections only. The left part of equation 2-5 applies to the condition of concrete rib failure;

and finally the right side of equation 2-5 addresses the condition of screw shear failure.

For 0.138< ttc ≤0.250, Rn is equal to:

61.074.0

13.01

' 15.0)(18.0

tc

utscrspc

tFA

NwLInf

≤ (2-5a)

where:

Lsp= length of shear plane=

( ) srssr

sp hHw

L ll

+−+

= 22

2

22 (2-6)

Rn= shear strength per screw, kips

ttc = top chord thickness; in.

Hs= screw height, in.

hr = rib height; in.

wr1= bottom rib width; in.

f’c= concrete compressive strength; psi.

wr2= top chord width; in.

N= number of screws in one rib not to exceed 12

Asc= nominal cross-sectional area of screw, in2.

Fut= screw tensile strength, ksi.

ℓs= vertical distance between screws in a rib; in.

The results from 163 tests were used by Mujagic (2000) to develop his model. The

average of the experimental to theoretical strength ratio was 1.009 with a coefficient of

variation of 0.107. The range of experimental to theoretical screw strength ratio was from

0.774 to 1.383. This model will be used in this report.

All of the previous research related to push-out tests using standoff screws has

used conventional WWF as secondary reinforcement. The research presented in this

Page 23: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

11

report, used specimens reinforced with fibers in addition to specimens reinforced with

WWF.

2.2.2 WELDED SHEAR STUDS IN PUSH-OUT TESTS

For the past 30 years, welded shear studs have been the most commonly used type

of shear connector in the design of composite members (Rambo-Roddenberry et al. 2001).

Since the 1960’s, the design of shear studs has been a part of the American Institute of

Steel Construction (AISC) specifications. The current AISC specification provisions have

been questioned, for which the behavior and strength of welded shear studs are still being

studied to provide a thorough understanding of their performance.

In the 1970’s, the strength of shear studs in solid slabs was reasonably understood,

but the use of cold-formed steel deck in composite construction required additional

studies. In 1967, Robinson tested composite beams with steel decking. Further studies

were conducted by Fisher (1970) and Grant et al (1977). From these studies, an expression

was developed for stud strength that accounted for the presence of steel deck. The nominal

stud strength expression incorporated in the current AISC specification is given by:

nQ = uscccsc FAEfA ≤'5.0 (2-7)

Where:

Asc = cross-sectional area of the stud

f’c = compressive strength of concrete

Ec = modulus of elasticity of concrete

Fu = minimum specified tensile stress of the stud

When the deck rib is perpendicular to the steel member, the nominal strength of the stud

shear connector is multiplied by the following reduction factor:

SRF = 0.1]0.1)/)[(/(85.0≤−rsrr

r

hHhwN

(2-8)

Where,

Nr = number of stud connectors on a beam in one rib

Page 24: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

12

wr = average width of concrete rib

hr = nominal rib height

Hs = length of shear stud after welding

This equation was developed from full-scale beam tests by a back-calculating

procedure previously developed by Slutter and Driscoll (1965). Previous research has

shown Equation 2-8 to be unconservative for certain configurations (Easterling et al. 1993;

Hawkins et al. 1995; Robinson, 1967; Lloyd and Wright, 1990; and Mottram and Johnson,

1990). The stud location within the deck rib has also shown to have an effect in the

behavior of the stud. Today most of the steel deck used has a stiffener in the middle of

each deck flange, therefore studs cannot be centered. The stud position is described as

being “weak” or “strong” and is illustrated in Figure 2.2. The AISC specification, does not

account for this, although it does recommend that the studs should be placed in the strong

position.

Figure 2.2 Weak and Strong Stud Positions

The position of the stud as well as other parameters that affect the performance of

studs were later studied by Rambo-Roddenberry et al. (2001) A new strength prediction

model was developed and the results from 202 push-out tests conducted at Virginia Tech

and 84 conducted elsewhere were compared to this model. The new strength prediction

model developed by Rambo-Roddenberry et al is as follows:

For studs in 1 in. (25 mm), 1 ½ in. (38 mm), 2 in. (51 mm) or 3 in. (76 mm) deck

Qn = RpRdAsFu (2-9)

V

Weak Strong

Page 25: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

13

Where,

Rp = 0.68 for emid-ht. ≥ 2.2’ (strong position studs)

= 0.48 for emid-ht. < 2.2’ (weak position studs)

= 0.52 for staggered position studs

Rd = 1.0 for all strong position studs

= 0.88 for 22 ga (0.75 mm) deck (weak studs)

= 1.0 for 20 ga (1.0 mm) deck (weak studs)

= 1.05 for 18 ga (1.25 mm) deck (weak studs)

= 1.11 for 16 ga (1.5 mm) deck (weak studs)

emid-ht = distance from the center of a stud to mid-height of the web of the sheeting on the

loaded side.

Both the AISC-LRFD and Rambo-Roddenberry’s equations will be used in this report.

Page 26: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

14

Chapter 3

COMPOSITE SLABS UNDER DISTRIBUTED LOAD

EXPERIMENTAL PROGRAM

3.1 TEST PARAMETERS Four three-span composite floor slabs were constructed each consisting of two 10

ft end spans and one 4 ft intermediate span. Tests were performed on both end spans

individually for a total of eight tests. All specimens were constructed with 20 ga, a 2

in.deep steel deck with 4.5 in. slab thickness. The slabs consisted of two deck panels for a

width of approximately 6 ft. The variable in each casting was the temperature and

shrinkage reinforcement, which consisted of 6x6-W2.9xW2.9 WWF for the first slab, 1.5

in. ribbed XOREX steel fibers in quantities of 25 lb/yd3 and 50 lb/yd3 for the second and

third slabs respectively and 1.5 lb/yd3 of Microfiber-MD in the fourth slab.

All specimens were constructed similarly. The deck was cut to a total length of 24

ft. Strain gages were attached in accordance with Strain Gage Manual (Measurement

Group, 1992). For gage locations see Appendix A-D. The deck sheets were then placed

on the beam supports, seams were aligned and the panels were fastened together by button

punching. The deck was welded to the supports with ¾ in. nominal spot welds. Pour stops

were screwed to the deck.

For the first casting, the WWF was placed inside the form resting on the top flange

of the deck. Concrete was then placed. For the remaining three castings, the specific

amounts of fiber were weighed and then added to the concrete truck and mixed for a

minimum of five minutes.

The concrete in all castings was normal weight, with a nominal compressive

strength of 3,000-psi. Concrete was consolidated with a vibrator. Strains in the steel deck

and deflections due to casting were recorded. Concrete cylinders and beams were cast for

each mix. Slabs and cylinders were covered with plastic and kept moist for seven days.

The pour stop and the plastic cylinder molds were removed on the seventh day. Each

composite slab was air cured for a minimum of 28 days.

Page 27: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

15

3.2 INSTRUMENTATION For the composite slabs tested under distributed load, strain gages were attached to

the bottom of the steel deck. Each 10 ft end span had strain gages at six equally spaced

locations along the span. Two gages were placed at each of the six locations: one on the

top flange and one on the bottom flange for a total of 12 gages per span (see Appendix A-

D).

Displacement transducers were placed at both interior and exterior quarter points,

at mid-span and under the supporting beams top flange. For casting, two transducers were

placed at mid-span and one at each quarter point. For testing, three transducers were

placed at each location along the width (see Appendix A-D)

Displacement transducers were used for slip measurements between the steel deck

and the concrete. A total of three displacement transducers were placed at each end of the

slab.

Uniform load was applied using a restrained airbag. The pressure in the bag was

measured with a pressure transducer connected to a pc-based data acquisition system.

Four 9 in. gage lengths were marked on surface of the concrete above the internal

supports for measuring crack openings during testing. A Whittemore Gage was used to

measure the width of the surface crack at different loads.

3.3 TEST SETUP The test setup consisted of two W21x68 column frames bolted to the reaction

floor. Two W12x26 beams were bolted from one column to the other horizontally. Seven

W8x24 beams were attached to the bottom of the W12x26 beams, perpendicular to the

composite slab. A rubber press bag was placed on the slab 9 in. away from the interior

support of the span being tested, allowing the slab to be loaded along a total of 8.5 ft

centered along the total span length. However, all results were converted as if the bag

loaded the whole 10 ft span. A 6 ft x 8.5 ft plywood sheet was placed between the airbag

and the W8x24 beams (Fig. 3.1). The 9 in. gage lengths for the Whittemore gage were

marked on the concrete at four different locations along the interior support (see Appendix

A-D). A regulated air source and a pressure transducer were attached to the valves in the

Page 28: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

16

air bag. A hydraulic pressure transducer was also used for verification. All instrumentation

was connected to a data acquisition system except for the Whittemore Gage, which was

used manually.

Figure 3.1 Test Setup for Composite Slabs under Distributed Load

Air Bag

Test specimen

Exterior Support Exterior Support Interior support

Page 29: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

17

3.4 TEST PROCEDURE The procedure was the same for all tests. The span being tested was first pre-

loaded to approximately 30 psf. This allowed the structure to settle, and all of the

instrumentation was checked to ensure it was working properly. The slab was then un-

loaded and all gages were zeroed.

The span was loaded in increments of approximately 30 psf until the first visual

crack appeared. The airflow was stopped between increments, data was recorded and

crack widths were measured.

After first crack appeared, the load increment was reduced to 10 psf. New cracks

were noted and marked.

The slabs were loaded to failure. The bag was then emptied and removed. Cracks

on the surface were noted.

3.5 COMPONENT TESTS Tensile coupons were tested to obtain the actual yield strength of the deck.

Cylinder tests were performed in accordance to ASTM C39-96 (Standards, 1998) to obtain

the compressive strength of the concrete at different ages. The actual material strengths

obtained from these tests were used in calculations. Results are presented in Appendix A-

D.

3.6 RESULTS All slabs exhibited similar behavior during each test under distributed load. The

first visible effect of the applied load in most cases was a crack in the concrete surface

along the interior support. Subsequently, smaller flexural cracks appeared in the positive

moment region. Once the bottom flange of the steel deck yielded, mid-span deflection

increased significantly and the steel deck began to debond from the concrete as the load

and the steel deck strain increased. The test was terminated after yielding of the steel deck

as indicated by a significant decrease in load.

Test results are summarized in Table 3.1. It can be noted that the strengths are

higher for the slabs reinforced with 50-lb/yd3 XOREX steel fibers. The strengths of the

other two fiber mixes are approximately equal to that of the slab reinforced with WWF.

Page 30: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

18

Table 3.1 Experimental Results

Specimen

Number

Test

Number

Test

Designation

f’c

(psi)

Fy

(ksi)

Maximum

Load

(psf)

Deflection at

Max. Load

(in.)

End Slip at

Max. Load

(in.)

1 1 WWF-1 4000 50 367 0.80 0.06

2 WWF-2 4000 50 337 1.05 0.06

2 3 XOREX25-1 4300 50 305 1.05 0.10

4 XOREX25-2 4300 50 387 0.76 0.013

3 5 XOREX50-1 5800 50 417 0.48 0

6 XOREX50-2 5800 50 489 1.50 0.16

4 7 MICROFIBER-MD-1 4250 50 372 4.85 0.95

8 MICROFIBER-MD-2 4250 50 361 0.64 0.08

The applied load versus mid-span deflection and end slip plots for each specimen

are presented in the graphs in the following pages. The theoretical ultimate and first-yield

loads are also presented in these graphs. Iav represents the stiffness based on the average of

the cracked and un-cracked moment of inertia, which is used for determining the

theoretical mid-span deflection. The theoretical applied distributed loads that result in the

ultimate moment capacity Mn, and first-yield moment Met described in section 3.7.1 are

also presented in the graphs.

Applied load versus mid-span deflection for the first and second span tested in

each of the four slabs are presented in Figures 3.10 and 3.11. As shown by these graphs, at

a typical design load (approximately 70 psf for an office building) the performance of all

four slabs was almost the same. The “close-ups” also presented in Figures 3.10 and 3.11,

show that mid-span deflections for all four slabs at a typical design load of 70 psf are in

the range of 0.015 in. to 0.03 in. These deflections are very small compared to the

maximum allowed for serviceability, which is approximate 0.30 in.

Page 31: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

19

3.6.1 WWF-1

WWF-1 was the first end span test for the slab reinforced with WWF. The

maximum distributed load applied over a 10 ft span was 367 psf. The failure was sudden

at maximum load. Slip was initiated at a load of 336 psf. The slip at maximum load was

0.06 in. and there was a 0.7 in. slip at the termination of the test. The mid-span deflection

at maximum load was 0.8 in. and 2.08 in. at the termination of the test. The interior

support cracked at a load of 316 psf, followed by flexural cracks in the concrete in the

positive moment region at 344 psf. Applied load versus mid-span deflection and end slip

are presented in Figure 3.2.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5

Mid-Span Deflection, End Slip (in)

Appl

ied

Load

(psf

) Mid-Span DeflectionEnd SlipUltimateFirst YieldIav

Figure 3.2 WWF-1 Applied Load vs. Mid-span Deflection and End Slip

Page 32: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

20

3.6.2 WWF-2

WWF-2 was the second end span test for the slab reinforced with WWF. The

maximum distributed load applied over a 10 ft span was 337 psf. The failure was sudden

but less than WWF-1. Slip was initiated at a load of 246 psf. The slip at maximum load

was 0.06 in. and there was a 0.8 in. slip at the termination of the test. The mid-span

deflection at maximum load was 1.05 in. and 4.28 in. at the termination of the test. The

surface of the concrete over the interior support cracked at a load of 323 psf. The first

flexural crack in the concrete in the positive moment region appeared at 305 psf. Applied

load versus mid-span deflection and end slip are presented in Figure 3.3.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Mid-Span Deflection, End Slip (in)

Appl

ied

Load

(psf

) Mid-Span DeflectionEnd SlipUltimateFirst YieldIav

Figure 3.3 WWF-2 Applied Load vs. Mid-span Deflection and End Slip

Page 33: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

21

3.6.3 XOREX25-1

XOREX25-1 was the first end span test for the slab reinforced with 25-lb/yd3 -1½

in. XOREX-Steel fibers. The maximum distributed load applied over a 10 ft span was 305

psf. The failure was sudden at maximum load. Slip was initiated at a load of 297 psf. The

slip at maximum load was 0.10 in. and there was a 0.8 in. slip at the termination of the

test. The mid-span deflection at maximum load was 1.05 in. and 3.93 in. at the termination

of the test. The surface of the concrete over the interior support cracked at a load of 213

psf. The first flexural crack in the concrete in the positive moment region appeared at 244

psf. Applied load versus mid-span deflection and end slip are presented in Figure 3.4.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Mid-Span Deflection, End Slip (in)

Appl

ied

Load

(psf

)

Mid-Span Deflection

Slip

Ultimate

First Yield

Iav

Figure 3.4 XOREX25-1 Applied Load vs. Mid-Span Deflection and End Slip

Page 34: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

22

3.6.4 XOREX25-2

XOREX25-2 was the second end span test for the slab reinforced with 25-lb/yd3 -

1½ in. XOREX-Steel fibers. The maximum distributed load applied over a 10 ft span was

387 psf. Slip was initiated at a load of 384 psf. The slip at maximum load was 0.013 in.

and 0.25 in. at the termination of the test. The mid-span deflection at maximum load was

0.76 in. and 1.89 in. at the termination of the test. The first flexural crack in the concrete in

the positive moment region appeared at 247 psf. There was no crack on the surface of the

concrete over the interior support for this test; instead, the 4 ft. intermediate spans’

concrete deflected upward. Applied load versus mid-span deflection and end slip are

presented in Figure 3.5.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5

Mid-Span Deflection, End Slip (in)

Appl

ied

Load

(psf

) Mid-Span DeflectionEnd SlipUltimateFirst YieldIav

Figure 3.5 XOREX25-2 Applied Load vs. Mid-Span Deflection and End Slip

Page 35: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

23

3.6.5 XOREX50-1

XOREX50-1 was the first end span test for the slab reinforced with 50-lb/yd3 -1½

in. XOREX-Steel fibers. The maximum distributed load applied over a 10 ft span was 417

psf. There was a load drop after maximum load was reached and then the load dropped

slowly. Slip initiated after maximum load once the load dropped significantly. There was a

0.5 in. slip at the termination of the test. The mid-span deflection at maximum load was

0.48 in. and 2.31 in. at the termination of the test. The surface of the concrete over the

interior support cracked at a load of 314 psf. The first flexural crack in the concrete in the

positive moment region appeared at 397 psf. Applied load versus mid-span deflection and

end slip are presented in Figure 3.6.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3

Mid-Span Deflection, End Slip (in)

Appl

ied

Load

(psf

) Mid-Span Deflection End SlipUltimateFirst YieldIav

Figure 3.6 XOREX50-1 Applied Load vs. Mid-Span Deflection and End Slip

Page 36: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

24

3.6.6 XOREX50-2

XOREX50-2 was the second end span test for the slab reinforced with 50-lb/yd3 -

1½ in. XOREX-Steel fibers. The maximum distributed load applied over a 10 ft span was

489 psf. Load dropped slowly after maximum load was reached. Slip initiated at a load of

403 psf and was 0.16 in. at maximum load. There was a 0.55 in. slip at the termination of

the test. The mid-span deflection at maximum load was 1.5 in. and 3.15 in at the

termination of the test. The first flexural crack in the concrete in the positive moment

region appeared at 359 psf, followed by the crack on the surface of the concrete over the

interior support at 403 psf. Applied load versus mid-span deflection and end slip are

presented in Figure 3.7.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4

Mid-Span Deflection, End Slip (in)

Appl

ied

Load

(psf

) Mid-Span DeflectionEnd SlipUltimateFirst YieldIav

Figure 3.7 XOREX50-2 Applied Load vs. Mid-Span Deflection and End Slip

Page 37: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

25

3.6.7 MICROFIBER MD-1

MICROFIBER MD-1 was the first end span test for the slab reinforced with 1.5-

lb/yd3 synthetic micro fiber. The maximum distributed load applied over a 10 ft span was

372 psf. There was sudden load drop from 360 to 326 psf. Later there was a small gradual

load drop from 369 to 344 psf, the load was then increased until maximum load was

reached and finally the load dropped slowly. Slip initiated after the first load drop to 326

psf. At the maximum load, the slip was measured to be 0.95 in. There was a 1.07 in. slip at

the termination of the test. The mid-span deflection at maximum load was 4.85 in. 5.38 in.

at the termination of the test. The surface of the concrete over the interior support cracked

at a load of 181 psf. The first flexural crack in the concrete in the positive moment region

appeared later at 364 psf. Applied load versus mid-span deflection and end slip are

presented in Figure 3.8.

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7

Mid-Span Deflection, End Slip (in)

Appl

ied

Load

(psf

) Mid-Span DeflectionEnd SlipUltimateFirst YieldIav

Figure 3.8 MICROFIBER MD-1 Applied Load vs. Mid-Span Deflection and End Slip

Page 38: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

26

3.6.8 MICROFIBER MD-2

MICROFIBER MD-2 was the second end span test for the slab reinforced with

1.5-lb/yd3 synthetic micro fiber. The maximum distributed load applied over a 10 ft span

was 361 psf. After reaching peak the load decreased slowly from maximum load to 352

psf and then dropped lower. Slip initiated at 330 psf. At the maximum load, the slip was

measured to be 0.08 in. There was a 0.91 in. slip at the termination of the test. The mid-

span deflection at maximum load was 0.63 in. 3.36 in. at the termination of the test. The

surface of the concrete over the interior support cracked at maximum load once flexural

cracks in the concrete in the positive moment region had appeared at 331 psf. Applied

load versus mid-span deflection and end slip are presented in Figure 3.9.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Mid-Span Deflection, End Slip (in)

Appl

ied

Load

(psf

) Mid-Span DeflectionEnd SlipUltimateFirst YieldIav

Figure 3.9 MICROFIBER MD-2 Applied Load vs. Mid-Span Deflection and End Slip

Page 39: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

27

0

50

100

150

200

250

300

350

400

450

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Mid-Span Deflection (inches)

Appl

ied

Load

(psf

)wwf-1FM25-1FM50-1MICROFIBER MD-1

Close-Up

0

50

100

150

200

250

0 0.02 0.04 0.06 0.08

Figure 3.10 Applied Load vs. Mid-Span Deflection for Distributed Load Test on First

Span of Slabs

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Mid-Span Deflection (inches)

Appl

ied

Load

(psf

)

WWF-2XOREX25-2XOREX50-2MD-2

Close-up

020406080

100120140160180

0 0.02 0.04 0.06 0.08

Figure 3.11 Applied Load vs. Mid-Span Deflection for Distributed Load Test on

Second Span of Slabs

Page 40: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

28

3.7 EVALUATON OF RESULTS 3.7.1 First Yield Method and ASCE Standard for the Structural Design of Composite

Slabs –Appendix D Method

The First Yield Method (FYM) for predicting strength of composite slabs and the

Alternate Method presented in Appendix D of the “ASCE Standard for the Structural

Design of Composite Slabs” were used in this analysis. The equations are for a flexural-

yielding of composite slabs without shear studs.

The FYM considers the slab to be fully composite up to first yield of the bottom

flange of the deck. The slab is assumed to crack due to the differential strains, so only the

concrete above the neutral axis takes the compressive force. The tensile forces are

distributed into three components acting on the top flange, bottom flange and web of the

steel deck. The method does not consider the effectiveness of embossments.

The maximum live load deflection for a simple span configuration is given by the

equation:

360384

5 4 LIELw

avgc

L ≤=∆ (3-

1) where,

∆ = mid-span deflection

Ec = modulus of elasticity of the concrete

Iavg = average of the cracked and un-cracked moments of inertia of the transformed section

n = modular ratio

For composite slabs without shear studs, the limit state is the initiation of yielding

at the extreme fiber of the deck bottom flange. The dead load stress due to the fresh

concrete was computed using the equation:

p

Dnc S

LwCf

2

= (3-2)

Page 41: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

29

Where,

fc = casting stress in the deck due to fresh concrete

wD = weight of concrete and deck

L = clear span between supports

Sp = positive deck section modulus

Cn = bending coefficient for positive moment, n number of spans

= 0.087 at casting

= 0.125 at test (unshored simple span)

The calculation for the first-yield moment is based on a cracked section analysis

and is given by the equation:

Met= T1e1 +T2e2 +T3e3 (3-3)

e1= e3-dd

e2= e3- dd/2

e3= h- ycc/3

T1 = fyc (Bt t)[(h-ycc-dd )/( h-ycc )]

T2 = fyc (2Dw t) [(h-ycc-dd)/(h-0.5ycc)]

T3 = fyc (Bb t)

fyc =Fy -fc

ycc =d {[2ρn + (ρn)2 ] 0.5 -ρn}

where,

Met = first yield moment per unit width

fyc = corrected steel yield stress

fc = casting stress in deck due to fresh concrete

ρ = Reinforcement ratio, As / (bd)

n = modular ratio, Es/Ec

All other variables are illustrated in the following figure:

Page 42: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

30

Figure 3.12. Deck Cross Section and Force Locations

The ASCE Appendix D Alternate Method adds an additional factor to the first yield

moment, which takes into account other factors such as the number of cell widths in the

test slab, the depth of the steel section and the type of embossment. The equation given by

the ASCE for the calculated bending moment, Mt, is:

)/12( sett CKMM = (3-4)

where,

Met = First Yield Moment per unit width

K = K3/(K1 + K2)= bond force transfer property

K3 is the factor that considers slab width and number of cells in the test slab width (N):

K3 = 0.87 + 0.0688N – 0.00222N2 ≤ 1.4 (3-5)

Where,

N =number of cells in test slab width= 12bd/Cs , bb = test slab width, Cs = cell spacing

The factor K1 is a measure of the influence of the steel section depth on the bond

development along the shear span:

K1 = [dd/7.8]0.5 (3-6)

Where,

dd = depth of deck

The K2 factor indicates the mechanical bond performance along the shear span ℓ’i

and is dependant on the type of embossment. For Types I and III decks, as described in the

ASCE manual, the equation is given as:

h d

dd

N.A. c.g.s.

Bt BbDw

hcycc

ycc/3

e1 e2 e3 T3 T2 T1

Cs

Page 43: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

31

K2 = [Dw0.8(K3/SS1)]/[1.0+60(ph

2ps1/3)] (3-7)

Where,

SS1 = (3ℓnf/70)( ℓnf – 14) +3.6

ℓnf = clear span length, ft.

ps = 12(Nvℓe + Nhw)/s (for Type III)

ℓe = length of embossment

Nv = number of vertical elements in embossment pattern lengths

Nh = number of horizontal elements in embossment pattern lengths

w = embossment width, in.

s = length of repeating embossment pattern, in.

ph = height of embossment, in.

The application of the above equations is limited to the following:

-galvanized steel decks of Types I, II and III embossment patterns

-0.035 in. ≤ ph ≤ 0.105 in.

-web angle, θ, between 55° and 90°

-webs with no re-entrant bends in their flat width

-dd ≤ 3 in.

-Cs ≤ 12 in.

-2500 psi ≤ f’c ≤ 6000 psi

The ultimate moment capacity per unit width of an under-reinforced slab is calculated by

the expression:

concysn MadFAM −

−=

2 (3-9)

where,

Mn = nominal moment capacity per unit width of slab

Page 44: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

32

As = area of deck per unit width

Fy = steel yield stress

d = distance from top of slab to centroid of steel deck

a = depth of compressive strength block, As Fy / 0.85f’cb

Mconc = moment due to concrete weight per unit width of slab

3.7.2 Comparison of Experimental and Theoretical Results

Table 3.2 presents the observed strengths and the predicted strengths calculated

with the FYM and the ASCE-Appendix D Alternate Method. The observed maximum

applied load is given by Wtest and refers to the maximum moment produced at mid-span

by the applied load assuming simple supports. It is assumed simply supported since there

is no reinforcement in the negative moment region even though the deck is still

continuous. Wet, Wt and Wn refer to the predicted first-yield, predicted flexural strength

using the ASCE Appendix D and the maximum capacity respectively. Wn is calculated

under the assumption that the slab is under-reinforced and that the entire cross section of

the steel deck at maximum moment has yielded. The difference in the theoretical moments

for each slab is due to the difference in the concrete compressive strengths.

All calculations are based on the measured material properties (e.g. Fy from

coupon tests), for comparisons with the test results.

Table 3.2 Comparison of Experimental and Theoretical Results

Test Number

Test Designation

Wtest (psf)

First Yield Wet (psf)

ASCE App.D

Wt (psf)

Ult. Wn (psf)

Wtest/Wet

Wtest/Wt

Wtest/Wn

1 WWF-1 367 405 405 521 0.91 0.91 0.70 2 WWF-2 337 405 405 521 0.83 0.83 0.65 3 XOREX25-1 305 408 408 527 0.75 0.75 0.58 4 XOREX25-2 387 408 408 527 0.95 0.95 0.73 5 XOREX50-1 417 411 411 537 1.01 1.01 0.78 6 XOREX50-2 489 411 411 537 1.19 1.19 0.91 7 Microfiber MD-1 372 405 405 521 0.92 0.92 0.71 8 Microfiber MD-2 361 405 405 521 0.89 0.89 0.69

mean 0.9313 0.9313 0.7188 σ 0.1303 0.1303 0.0969

Page 45: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

33

Test specimens reinforced with 50 lb/yd3 of XOREX steel fibers had the highest

observed test loads Wtest and were the only ones, which had a Wtest/ Wet ratio greater that

one. The higher concrete strength in the 50 lb/yd3 mixture may have contributed some to

its higher observed test load. XOREX25-2 had the next highest strength. However, this

specimen did not crack over the interior support so it will be excluded from comparisons.

The 50-lb/yd3 steel fiber volume showed an average 18.6% increase in strength

from the slabs reinforced with WWF (Welded Wire Fabric); the increase in the fiber

dosage also increased the strength by approximately 37% if compared to the 25- lb/yd3

steel fiber volume. Specimens reinforced with 1 ½ lb/yd3 of synthetic fibers

(MICROFIFER-MD), showed to be approximately equal to specimens with WWF. The

strength of the slab reinforced with 25- lb/yd3 XOREX steel fibers was lower than that of

the ones with WWF. However, the minimum applied load observed from all specimens

was 305 psf, which is considerably higher than a typical design load (about 70 psf for

office building).

Strain gages were placed along the span of the steel deck. Plots of applied load

versus strain are provided in Appendix A. Load versus deflection at both interior and

exterior quarter points are also presented in Appendix A.

The crack widths over the interior support were measured for different load

pressures and are presented in Figure 3.13. Again, the XOREX50 specimens showed the

smallest crack widths for equivalent applied loads compared to the other three types of

specimens. The interior support crack also appeared at higher load pressures for these

specimens. Specimens reinforced with WWF and Microfiber-MD showed to be

equivalent; while XOREX25 specimens showed slightly larger crack widths.

It is important to note that at a typical design load of 70 psf none of the specimens

showed considerable crack widths.

Page 46: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

34

0

100

200

300

400

500

600

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Crack Width over Interior Support (in)

Appl

ied

Load

(psf

) WWF-1WWF-2XOREX25-1XOREX50-1XOREX50-2MICROFIBER MD-1

Figure 3.13 Applied Load vs. Crack Width Over Interior Support

3.8 CONCLUSIONS All slabs failed in a similar manner. Cracks began to form in the concrete once the

bottom flange of the steel deck yielded and a crack formed in the concrete in the negative

moment region along the interior support.

The slabs reinforced with 50 lb/yd3 of XOREX steel fibers failed at loads

approximately 18% higher than slabs reinforced with WWF and showed smaller widening

of the support crack. The slabs reinforced with 25 lb/yd3 of XOREX steel fibers and

Microfiber-MD failed at similar load magnitudes as the slabs with WWF. Given that all

slabs failed in a similar manner and at similar loads, the use of Fiber Reinforced Concrete

is an attractive alternative to WWF for temperature and shrinkage reinforcement in

composite slabs under distributed load.

Page 47: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

35

Chapter 4

ASTM C1018- Standard Test Method for Flexural Toughness and First-

Crack Strength of Fiber-Reinforced Concrete

4.0 GENERAL This standard ASTM test evaluates the flexural performance of fiber-reinforced

concrete by testing a simply supported beam under third-point loading. From this test,

toughness parameters can be derived in terms of the area under a load-deflection curve.

The behavior of the fiber-reinforced concrete up to the load at which first crack

occurs can be characterized by the first-crack strength. The behavior thereafter, is

characterized by the toughness indices, which also reflect the post-crack behavior. The

type and quantity of fibers in the concrete matrix influence these parameters (ASTM

C1018-97 Standard, 1998).

Figure 4.1 illustrates important characteristics of a load deflection curve, which are

discussed below.

Figure 4.1- Characteristics of a Load-Deflection Curve

Deflection

First Crack

O’

A

δ

10.5δ 5.5δ

E

C

B F D H

G Load

Page 48: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

36

The modulus of rupture or first-crack strength is calculated using the equation

presented in the ASTM C78 “Standard Test for Flexural Strength of Concrete” as follows:

R = PL/bd2 (4-1)

Where:

R = modulus or rupture, psi.

P = maximum applied load indicated by the testing machine, lbf.

b = average width of the specimen, in., at the fracture

d = average depth of the specimen, in., at the fracture

L = span length, in.

The first-crack deflection, δ, is determined by measuring the distance O’B in Figure 4.1.

The toughness indices I5, I10 and I20 are calculated as follows:

I5 = Area O’ACD/ Area O’AB

I10 = Area O’AEF/ Area O’AB

I20 = Area O’AGH/ Area O’AB

Where:

I5 = Toughness Index up to 3.0 times the first-crack deflection

I10 = Toughness Index up to 5.5 times the first-crack deflection

I20 = Toughness Index up to 10.5 times the first-crack deflection

Areas O’XXX correspond to the areas under the curve in Figure 4.1. Area O’AB is the

triangular area under the curve up to first-crack deflection. Area O’ACD is the area under

the curve from zero to three times the first-crack deflection. Area O’AEF is the area under

the curve from zero to 5.5 times the first-crack deflection. Area O’AGH is the area under

the curve from zero to 10.5 times the first-crack deflection.

Page 49: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

37

EXPERIMENTAL PROGRAM

4.1 TEST PARAMETERS Beam specimens were cast for each of the fiber-reinforced concrete mixtures (25

lb/yd3 and 50 lb/yd3 XOREX steel fibers, 1.5 lb/yd3 Microfiber-MD synthetic fibers). A

total of five- 4x4x14 in. beams were tested for each different mixture at 14 days and at 45

days.

All concrete was normal weight and 3000-psi mix. Concrete cylinders were cast to

determine compressive strength. Beams were cast in accordance to ASTM-C192

“Standard Method for Making and Curing Concrete Test Specimens in the Laboratory”.

The molds were removed after one day and the specimens were placed in a 100%

humidity curing room. At least twenty hours prior to the test, the specimens were

submerged in water.

4.2 INSTRUMENTATION LVDT’s were used to measure the deflection at mid-span and on top of the

beam directly over the supports (see Figure 4.2). The load was applied by an INSTRON

Universal Testing Machine. Measurements were recorded by a data-acquisition system.

4.3 TEST SETUP As illustrated in Figure 4.2, the test setup consisted of a steel plate at the bottom,

two rollers supporting the beam being tested, two rollers at the third points of the beam

and a steel plate on top of these rollers. The load was applied at the top steel plate. A thin

sheet of metal longer than the width of the beam was attached to the top face of the beam

at mid-span. LVDT’s were placed on both sides to measure deflection at mid-span. Two

additional LVDT’s were placed at the top face of the beam at the location of the supports.

Page 50: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

38

Figure 4.2 Test Setup for ASTM C1018 Test

L/3 L/3 L/3

P

L

LVDT LVDT LVDT

1” 1”

Steel Plate

Specimen

Thin steel plate

Steel Plate Roller

Page 51: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

39

4.4 TEST PROCEDURE The test procedure was that specified by the ASTM C1018 Standards. The

specimens were measured to determine their actual dimensions. Third points and the

location of the supports were marked in order to assure proper placement of the

instrumentation. The beam was first placed on top of the support rollers. The thin steel

plate was screwed onto the sides of the beam at mid-span. The top rollers were placed at

third points and the top steel plate was placed. LVDT’s were set at the four measurement

locations; the head of the INSTRON machine was lowered so that it was touching but not

loading the top steel plate.

The load application was deflection controlled at a rate of 0.004 in./min until first

crack, and was increased to 0.008 in./min for the remainder of the test. Measurements

were recorded at least five times per second. After the termination of the test, the beam

was removed and height and width were again measured. The distance from the edge of

the beam to the location of the crack was also measured.

4.5 COMPONENT TESTS Cylinders were tested in compression in accordance to ASTM C39-96 (1998)

standards. The compressive strengths of the concrete mixtures at the test age are presented

in Appendix E with their corresponding summary table.

Page 52: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

40

4.6 RESULTS All beams exhibited similar behavior. The load increased linearly with the

deflection until first-crack where there was a large load decrease. In some cases the load

increased slightly after the first-crack load and then decreased slowly. In other cases, a

large load decrease occurred after first-crack and the load continued to decrease slowly for

the remainder of the test.

Most specimens cracked within the mid-third of the span; those that didn’t were

disregarded in order to comply with ASTM specifications.

4.6.1 Calculations Method

The data recorded by the data acquisition system consisted of deflection values at

the support and at mid-span as measured by the corresponding LVDT, and the applied

load. Graphs were created for applied load versus deflection for each individual LVDT

location. Due to the large number of data points collected and the sensitivity of the

LVDT’s, some of the original graphs were somewhat erratic and not consistent with each

other. For these cases, in order to create one single graph that would represent the

behavior, the following procedure was followed:

I) For the linear portion of the graph, a best-fit line was established by adding a

trend line in EXCEL. This was also checked by the least square method which

gives the same results.

II) Using the best-fit line equations, each graph was adjusted so that they would

all start at zero load and zero deflection.

III) The final graph was created by averaging the two mid-span deflection graphs

and subtracting the deflection due to local crushing of the concrete at the

supports or other support movements.

IV) Areas under the curve for each load increment were calculated.

V) Total areas from zero to ∆ (first-crack deflection), 3∆, 5.5∆ and 10∆ were

obtained by adding the individual areas corresponding to the specific range of

data points.

VI) The corresponding I5, I10 and I20 values were calculated.

Page 53: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

41

Results for these tests are summarized in Appendix E.

For the beams tested at 14 days, where there were no inconsistencies in the

recorded data, the average of the recorded support deflection was subtracted from the

average of the recorded mid-span deflection. Load-Deflection graphs were created and the

corresponding first-crack deflections and toughness indexes were determined.

4.6.2 Summary of Results

The following table summarizes the results for all fiber-mixes tested at 14 days.

Those marked with an asterisk (*) on the age column, correspond to results obtained by

Synthetic Industries. These results are used for comparison purposes only. Load-

Deflection graphs are presented for each mixture in Figures 4.3-4.5.

Table 4.1 Summary of Results- ASTM C1018 Fiber Mix Age

(days) Size (in)

(wxhxl)

Avg. Pult (k)

R (psi)

∆theor (in.)

Avg. ∆ (in.)

Avg. I5

Avg. I10

Avg. I20

XOREX 25 lb/yd3

14*

4x4x14

4.63

N/A

N/A

N/A

N/A

N/A

N/A

XOREX 25 lb/yd3

14

4x4x14

3.40

657

0.0020

0.0059 4.110

6.077

8.427

XOREX 50 lb/yd3

14*

4x4x14

5.08

985

0.0022

0.00095

4.9

7.9

12.8

XOREX 50 lb/yd3

14

4x4x14

3.23

625

0.0019

0.0049 3.878

6.485

10.870

MICROFIBER MD

1.5 lb/yd3 14*

4x4x14

3.95

769

0.0020

0.001

3.88

5.44

7.32

MICROFIBER MD 1.5 lb/yd3

14

4x4x14

3.40

671

0.002

0.004 4.303

6.348

7.568

Page 54: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

42

XOREX25- Load- Deflection

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Deflection (in)

Load

(kip

s)

XOREX25-1XOREX25-3XOREX25-4XOREX25-5

Figure 4.3 – XOREX25- Load-Deflection Curves for ASTM C1018

XOREX-50: Load-Deflection

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Deflection (in)

XOREX50-2XOREX50-3XOREX50-4XOREX50-5

Figure 4.4 – XOREX50- Load-Deflection Curves for ASTM C1018

Page 55: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

43

Microfiber-MD: Load-Deflection

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Deflection (in)

Load

(kip

s) Microfiber-1Microfiber-2Microfiber-4Microfiber-5

Figure 4.5 – Microfiber MD- Load-Deflection Curves for ASTM C1018

Page 56: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

44

Chapter 5

COMPOSITE SLABS UNDER CONCENTRATED LOADS

EXPERIMENTAL PROGRAM

5.1 TEST PARAMETERS Four 10 ft simple-span composite floor slabs were constructed. All specimens were

constructed with 20 ga steel deck with 2 in. rib height and 5.5 in. total slab thickness.

Three deck panels were used for a total of 9 ft width. The first slab was reinforced with

6x6-W2.9xW2.9 WWF. The second and third slabs were reinforced with 1.5 in. ribbed

XOREX steel fibers in the quantities of 25 lb/yd3 and 50 lb/yd3 respectively. The fourth

slab was reinforced with 1.5 lb/yd3 of Microfiber-MD.

All specimens were constructed similarly. The deck was cut to a total length of 10 ft

Strain gages were attached. For strain locations see Figure 5.1. The deck was welded to the

supports with ¾ in. spot weld, and pour stops were fastened with screws

For the first casting, the WWF was placed inside the form, resting on the top flange of

the deck. Concrete was then placed. For the remaining three castings, the specific amounts

of fiber were weighed and blended with the concrete for a minimum of five minutes.

The concrete in all castings was normal weight, with a nominal compressive

strength of 3,000-psi and screed vibrated. Strains in the steel deck and deflections due to

casting were recorded. Concrete cylinders were cast for each mix. Slabs and cylinders

were covered with plastic and moist cured for seven days. The pour stop and plastic

cylinder molds were removed after seven days. Each composite slab was cured for a

minimum of 28 days.

Page 57: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

45

5.2 INSTRUMENTATION A total of eighteen strain gages were attached to the bottom part of the steel deck of

each slab. Six were located at the bottom flanges along each quarter point and along mid-

span.

Transducers (Wire pots) were used to measure deflection. A total of six transducers

were placed equally spaced along each quarter point and at mid-span.

Displacement transducers were used for end slip measurements between the steel deck

and the concrete. Two were placed at each end of the slab.

Concentrated loads were applied using a hydraulic jack.

Figure 5.1 Strain Gage and Displacement Transducers Locations (Typical at quarter points and at mid-span)

5.3 TEST SETUP The test setup consisted of two W21x68 column frames bolted to the reaction floor.

Two W12x26 beams were bolted from one column to the other horizontally. One beam

was attached to the bottom of the W12x26 beams, perpendicular to the composite slab.

This beam was moved to different locations along the span (Fig. 5.2-A). A 1”x12”x12”

steel plate was placed at the different concentrated load locations. A 1”x12”x12” piece of

wood was placed between the slab and the steel plate. A hydraulic jack and load cell were

placed between the beam and the steel plate (Fig. 5.2-B). An 8 in. deep, 4 ft long beam

was used for the line loads. A rubber pad was placed between the slab and the beam (Fig.

5.2-C).

x Potentiometer Displacement Transducer (ends only)

Wire-pot Strain gage

x x

0 3 2 4 5 1 1 2 3 4 5 6

Page 58: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

46

Figure 5.2 A- Test Setup for Concentrated Load Tests

Figure 5.2 B- Setup Detail for Concentrated Load Test (side view)

Figure 5.2 C- Setup Detail for Line Load Tests (side view)

Movable Beam

Slab

1’x1’x1” Plywood

1’x1’x1” Steel Plate

Hydraulic Jack

Steel Plates Load cell

Beam

Slab

Hydraulic Jack Steel Plates

Load cell

Beam

Rubber Pad 8”deep, 4’ long Beam

Page 59: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

47

5.4 TEST PROCEDURE A total of eleven tests were performed on the first three slabs, eight were performed on

the slab reinforced with Microfiber-MD. The test procedure and order was the same for

all slabs. First, the slab was loaded to 5 kips and then unloaded. This was repeated for a

second time, allowing the slab to settle and to make sure that all of the instrumentation

was working properly. For the concentrated loads, the slab was loaded in increments of

500 lbs. For the line loads, the slabs were loaded in increments of 1000 lbs. Recordings

were taken at each load increment and cracks were marked. The slab was then unloaded

and the setup was moved to the next load point. The different load locations are presented

in Figures 5.3 A-K.

(A) (B)

(C) (D)

(E)

Top quarter-point

Bottom quarter-point

mid-span

9’

10’

Top quarter-point

Bottom quarter-point

mid-span

9’

10’

10’ Top quarter-point

Bottom quarter-point

mid-span

9’

Top third-point

Bottom third-point

9’

10’

Bottom third-point

9’

10’ Top third-point

Page 60: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

48

(F) (G)

(H) (I)

(J) (K)

Figure 5.3 (A)-(K) Concentrated and Line Load Locations

9’

10’

9’

10’

9’

10’

Top quarter-point

Bottom quarter-point

mid-span

9’

10 ft.

Top quarter-point

Bottom quarter-point

mid-span

9’

10 ft.

Top quarter-point

Bottom quarter-point

mid-span

9’

10 ft.

Page 61: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

49

5.5 COMPONENT TESTS Tensile coupons were tested to obtain the actual yield strength and tensile strength of

the deck. Cylinder tests were performed in accordance to ASTM C39 standard to obtain

the compressive strength of the concrete at different ages. Results are presented in

Appendix F.

5.6 RESULTS The complete set of results on all eleven tests performed on the slabs are presented

in Appendix F. The results presented in this chapter will focus on the test where a

concentrated load was applied at mid-span.

All slabs exhibited similar behavior. There were no visible cracks while the slab

was loaded up to 10-kips. Both slabs reinforced with XOREX steel fibers were loaded up

to 10 kips only, so that no major damage had occurred prior to the remaining tests. The

slabs reinforced with WWF and Microfiber-MD cracked at load magnitudes of 15 and 14-

kips respectively. The tests were stopped when these cracks occurred. Test results at a

load magnitude of 10-kips are summarized in Table 5.1; none of the slabs had slipped at

this load.

Table 5.1 Experimental Results at 10-kip Concentrated Load at Mid-Span

Deflection Along Center Strip (in) Bottom Flange Strain Along Center

Strip (ue)

Test Designation

f’c (psi)

Fy (ksi)

Mid-Span

Quarter Point-1

Quarter Point-2

Mid-Span

Quarter Point-1

Quarter Point-2

WWF 3400 50 0.068 0.045 0.046 266 70 108

XOREX-25 4000 50 0.058 0.037 0.041 129 71 115

XOREX-50 4200 50 0.053 0.032 0.043 127 79 62

Microfiber-MD 3800 50 0.063 0.051 0.046 251 77 110

Results show similar deflections in all slabs. Slabs reinforced with XOREX steel

fibers exhibited slightly smaller deflections than the slabs reinforced with WWF and

Microfiber-MD, which consequently results in smaller strains. The difference in quarter-

Page 62: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

50

point strains can be a consequence of having performed one quarter-point test (Fig. 5.3-A)

prior to the mid-span test (Fig. 5.3-B).

5.6.1 WWF

The slab reinforced with WWF was the first slab to be tested. All eleven load

locations presented in Figures 5.3 A-K were performed in that order. This slab was loaded

to a maximum of 15 kips at every load location. The first crack occurred at mid-span

during the second test (Fig. 5.3-B) at a load magnitude of 15 kips. New cracks were

formed with the remaining tests and are illustrated in Figure 5.4. The numbers correspond

to the test number or load location, for example Figure 5.3 A corresponds to test 1 and

Figure 5.3 K corresponds to test 11.

Figure 5.4- Cracks formed on both sides of the slab with WWF

The results from the second test (Concentrated Load at Mid-Span) are presented in

the following Figures. Figure 5.5 illustrates how the slab deflected when a 10-kip load was

applied. The maximum deflection occurred on the middle strip at mid-span (location of

the concentrated load), and had a magnitude of 0.068 in. The strains on the bottom

flange of the steel deck along the span are presented in Figure 5.6. The numbers 1 through

6 correspond to the strain gage locations illustrated in Figure 5.1.

10 5 8 6

11 6 2 9 11 9 11

B-4pt T-3pt B-3pt M-S T-4pt

Page 63: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

51

-0 .0 8

-0 .0 6

-0 .0 4

-0 .0 2

0 .0 0

0

2

4

6

8

02468

Def

lect

ion

Wid

th

S p a n

W W F -1 0 k C o n c e n tra te d L o a d a t M id -S p a n

-0 .0 8 -0 .0 6 -0 .0 4 -0 .0 2 0 .0 0

Figure 5.5- WWF Slab Deflection with 10-kip Concentrated Load at Mid-Span

WWF: Strip Strain Along Span at 10k Concentrated Load at Mid-Span

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Distance along Span (ft)

Mic

rost

rain

(ue)

123456

Figure 5.6- WWF Strain Along Span with 10-kip Concentrated Load at Mid-Span

Page 64: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

52

5.6.2 XOREX-25

All eleven tests presented in figures 5.3A-K were performed on this slab. At mid-

span locations (Fig. 5.3B,F) the slab was loaded to a maximum of 10 kips and was loaded

till failure with the transverse line load at mid-span (Fig. 5.3 I). The first visible crack

occurred during this test at mid-span at a load magnitude of 13.75 kips; this was also the

failure load. At all other locations, the maximum applied load was 13-kips.

Test results for concentrated load at mid-span (Fig. 5.3B) at a load magnitude of

10-kips are illustrated in the following figures. Figure 5.7 illustrates how the slab deflected

with the 10-kip load. The maximum deflection occurred on the middle strip at mid-span

(location of the concentrated load), and had a magnitude of 0.058 in. The strains on the

bottom flange of the steel deck along the span are presented in Figure 5.8. The numbers 1

through 6 correspond to the strain gage locations illustrated in Figure 5.1.

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0

2

4

6

8

02468

Def

lect

ion

(in)

Wid

th

Span (ft)

XO REX25- 10 k Concentrated Load at M id-Span

-0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00

Figure 5.7- XOREX25-Slab Deflection with 10-kip Concentrated Load at Mid-Span

Page 65: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

53

XOREX25- Strip Strain Along Span at 10 kip Concentrated Load

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10

Distance Along Span (ft)

Mic

rost

rain

(ue)

1

2

3

4

5

6

Figure 5.8 XOREX25- Strain Along Span with 10k Concentrated Load at Mid-Span

Page 66: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

54

5.6.3 XOREX-50

All eleven tests presented in figures 5.3A-K were performed on this slab. At mid-

span locations (Fig. 5.3B,F) the slab was loaded to a maximum of 10 kips and was loaded

till failure with the transverse line load at mid-span (Fig. 5.3-I). The first visible crack

occurred during this test at mid-span at a load magnitude of 13.4 kips; the failure load was

13.7 kips. At all other locations, the maximum applied load was 13-kips.

Test results for concentrated load at mid-span (Fig. 5.3B) at a load magnitude of

10-kips are illustrated in the following figures. Figure 5.9 illustrates how the slab deflected

with the 10-kip load. The maximum deflection occurred on the middle strip at mid-span

(location of the concentrated load), and had a magnitude of 0.053 in. The strains on the

bottom flange of the steel deck along the span are presented in Figure 5.10. The numbers 1

through 6 correspond to the strain gage locations illustrated in Figure 5.1.

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0

2

4

6

8

02

46

8

Def

lect

ion

(in)

Wid

th (f

t)

Span (ft)

XO REX50-10-kips Concentrated Load at M id-Span

Figure 5.9- XOREX50 Slab Deflection with 10-kip Concentrated Load at Mid-Span

Page 67: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

55

XOREX50-Strip Strain Along Span at 10k Concentrated Load

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

Distance along Span (ft)

Mic

rost

rain

(ue)

123456

Figure 5.10 XOREX50 Strain Along Span with 10k Concentrated Load at Mid-Span

Page 68: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

56

5.6.4 Microfiber-MD

The first nine of the eleven tests presented in figures 5.3A-K were performed on

this slab. At location B (Fig. 5.3B) the slab was loaded to a maximum of 14 kips where it

cracked. New cracks were formed during the other tests and are illustrated in Figure 5.11.

The numbers 2,4 and 5 correspond to the test number, for example number 2 corresponds

to the test illustrated in Figure 5.3B. The crack formed at the quarter point extended to the

surface of the slab.

Figure 5.11-Cracks formed on both sides of the slab with Microfiber-MD

Test results for the concentrated load at mid-span (Fig. 5.3B) at a load magnitude

of 10-kips are illustrated in the following figures. Figure 5.12 illustrates how the slab

deflected with the 10-kip load. The maximum deflection occurred on the middle strip at

mid-span (location of the concentrated load), and had a magnitude of 0.063 in. The strains

on the bottom flange of the steel deck along the span are presented in Figure 5.13. The

numbers 1 through 6 correspond to the strain gage locations illustrated in Figure 5.1.

2 4

B-4pt T-3pt B-3pt M-S T-4pt

5

Extended to Surface

Page 69: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

57

-0 .0 7

-0 .0 6

-0 .0 5

-0 .0 4

-0 .0 3

-0 .0 2

-0 .0 1

0 .0 0

0

2

4

6

8

02468

Def

lect

ion

(in)

Wid

th (f

t)

S p a n ( ft)

M ic ro f ib e r -M D : 1 0 k C o n c e n tra te d L o a d a t M id -S p a n

-0 .0 7 -0 .0 6 -0 .0 5 -0 .0 4 -0 .0 3 -0 .0 2 -0 .0 1 0 .0 0

Fig. 5.12 Microfiber-MD Slab Deflection with 10k Concentrated Load at Mid-Span

MicrofiberMD- Strip Strain along Span with 10K Concentrated Load at Mid-Span

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Distance along Span (ft)

Mic

rost

rain

(ue)

123456

Figure 5.13- Microfiber-MD Strain Along Span with 10k Concentrated Load at Mid-

Span

Page 70: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

58

5.7 EVALUATION OF RESULTS Table 5.2 shows the observed maximum applied moments and the predicted

strengths calculated using the ASCE Method (Standard, 1992) and Luttrell’s method

(1995) described in chapter 2.

Table 5.2 Theoretical Moments Versus Observed Moments for Slabs under Concentrated Loads

Slab ASCE

Mth (ft.lbs)

Luttrell

(1995)

Mth (ft.lbs)

Mtest

(ft.lbs)

Mtest/Mth-ASCE Mtest/Mth-Luttrell

WWF 8,470 34,716 37,500 4.43 1.08

XOREX-25 8,530 34,962 34,375 4.03 0.98

XOREX-50 8,551 35,049 34,250 4.00 0.98

Microfiber-MD 8,511 34,886 35,000 4.11 1.00

The results presented in Table 5.2 show that the method proposed by Luttrell

(1995) for “Transverse Distribution of Non-Uniform Loads on Composite Slabs” is an

accurate prediction of the moment capacity not only for slabs reinforced with WWF but

with slabs reinforced with the fibers used in this study as well. This is shown by the ratio

Mtest/Mth, which for all cases is very close to 1.0. These results also show the inadequacy

of the ASCE Method in cases of non-distributed loads in composite slabs. Sample

Calculations for these methods are presented in Appendix I. The effective width of slab

according to the ASCE method is calculated using the equation:

Be = b2 + tc (5-1)

Where,

b2 = width of the load area in the transverse direction

tc = cover depth of concrete

Using Equation 5-1, the width of slab affected by the concentrated load is 1.3 ft, while

Luttrell’s method (1995) estimates an affected width of 5.3 ft (see Appendix I). The

results demonstrate that Equation 5-1 is inaccurate for predicting the width of slab that

will be affected when a concentrated load is applied.

Page 71: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

59

Figures 5.14-29 illustrate strains and deflections along and across the slabs for

different load patterns at a specific load magnitude. For the linear load applied across mid-

span (Figure 5.3-I), the results for the slab reinforced with Microfiber-MD are not shown

because this test was not performed on this slab.

Page 72: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

60

Center Strip Strain along Span

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Distance along Span

Mic

rost

rain

(uin

/in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.14- Strain along Span’s Center Strip with 10 kip Concentrated Load at

Mid-Span (Fig. 5.3-B)

Strain across Mid-Span

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

Distance Accross Mid-Span

Mic

rost

rain

(uin

/in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.15- Strain across Mid-Span with 10 kip Concentrated Load at Mid-Span

(Fig. 5.3-B)

Page 73: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

61

Deflection on Center Strip along Span

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

00 2 4 6 8 10 12

Distance along Span (ft)

Def

lect

ion

(in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.16- Deflection along Span’s Center Strip with 10 kip Concentrated Load at

Mid-Span (Fig. 5.3-B)

Deflection accross Mid-Span

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

00 1 2 3 4 5 6 7 8 9 10

Distance across Mid-Span (ft)

Def

lect

ion

(in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.17- Deflection across Mid-Span with 10 kip Concentrated Load at Mid-

Span (Fig. 5.3-B)

Page 74: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

62

Middle Strip Strain Along Span with 15k Concentrated Load at Quarter Point

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10

Distance along Span (ft)

Mic

rost

rain

(ue)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.18- Strain along Span’s Middle Strip with 15 kip Concentrated Load at

Quarter Point (Fig. 5.3-A)

Strain across Quarter Point with 15k Load

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9

Distance Across Mid-Span

Mic

rost

rain

(uin

/in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.19- Strain across Quarter Point with 15 kip Concentrated Load at Quarter

Point (Fig. 5.3-A)

Page 75: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

63

Deflection on Center Strip along Span with 15k Load at Quarter Point

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

00 1 2 3 4 5 6 7 8 9 10

Distance along Span (ft)

Def

lect

ion

(in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.20- Deflection along Span’s Middle Strip with 15 kip Concentrated Load at

Quarter Point (Fig. 5.3-A)

Deflection across Quarter Point with 15k Concentrated Load

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

00 1 2 3 4 5 6 7 8 9

Distance across Mid-Span (ft)

Def

lect

ion

(in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.21- Deflection across Quarter Point with 15 kip Concentrated Load at

Quarter Point (Fig. 5.3-A)

Page 76: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

64

Middle Strip Strain Along Span with 10k Linear Load along Mid-Width

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10

Distance along Span (ft)

Mic

rost

rain

(ue)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.22- Strain along Span’s Middle Strip with 10 kip Linear Load along Middle

Strip (Fig. 5.3-F)

Strain across Mid-Span with Longitudinal 10k Linear Load along Mid-Width

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9

Distance Across Mid-Span

Mic

rost

rain

(uin

/in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.23- Strain across Mid-Span with 10 kip Linear Load along Middle Strip

(Fig. 5.3-F)

Page 77: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

65

Deflection on Center Strip along Span with 10k Longitudinal Linear Load at Mid-Width

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

00 1 2 3 4 5 6 7 8 9 10

Distance along Span (ft)

Def

lect

ion

(in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.24- Deflection along Span’s Middle Strip with 10 kip Linear Load along

Middle Strip (Fig. 5.3-F)

Deflection across Mid-Span with 10k Longitudinal Linear Load along Mid-Width

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

00 1 2 3 4 5 6 7 8 9

Distance across Mid-Span (ft)

Def

lect

ion

(in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.25- Deflection across Mid-Span with 10 kip Linear Load along Middle Strip

(Fig. 5.3-F)

Page 78: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

66

Middle Strip Strain Along Span with 10k Linear Load along Mid-Span

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

Distance along Span (ft)

Mic

rost

rain

(ue)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.26- Strain along Span’s Middle Strip with 10 kip Linear Load along Mid-

Span (Fig. 5.3-I)

Strain across Mid-Span with 10k Linear Load along Mid-Span

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9

Distance Across Mid-Span

Mic

rost

rain

(uin

/in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.27- Strain across Mid-Span with 10 kip Linear Load along Mid-Span (Fig.

5.3-I)

Page 79: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

67

Deflection on Center Strip along Span with 10k Transverse Linear Load at Mid-Span

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

00 1 2 3 4 5 6 7 8 9 10

Distance along Span (ft)

Def

lect

ion

(in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.28- Deflection along Span’s Middle Strip with Linear Load along Mid-Span

(Fig. 5.3-I)

Deflection across Mid-Span with 10k Transverse Linear Load along Mid-Span

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

00 1 2 3 4 5 6 7 8 9

Distance across Mid-Span (ft)

Def

lect

ion

(in)

WWFXOREX-25XOREX-50Microfiber-MD

Figure 5.29- Deflection across Mid-Span with 10 kip Linear Load along Mid-Span

(Fig. 5.3-I)

The results illustrated in the figures above show that at the same load magnitude

and location, the slabs reinforced with XOREX steel fibers (both quantities) had smaller

Page 80: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

68

strains and deflections than the slab reinforced with WWF for all cases. The slab

reinforced with Microfiber-MD had smaller strains and deflections than the slab

reinforced with WWF when the concentrated load was at mid-span only; and had larger

strains and deflections in the other tests. This behavior can be a result of cracks that

occurred during previous tests, which affect the stiffness of the slab.

5.8 CONCLUSIONS A total of eleven tests were performed on the slabs reinforced with WWF and

XOREX steel fibers. Eight tests were performed on the slab reinforced with Microfiber-

MD given that it failed prior to the completion of the last three tests. Each test consisted of

applying a concentrated or linear load at a different location (Figures 5.3A-K).

Results showed that at the same load magnitude and location, the slabs reinforced

with XOREX steel fibers had smaller deflections and strains than the slabs reinforced with

WWF and Microfiber-MD. The failure strength of the slabs were very close to the

estimated strengths using the model proposed by Luttrell (1995), as opposed to the ASCE

method, which underestimates the load distribution capacity of composite slabs.

Page 81: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

69

Chapter 6

PUSH-OUT TESTS

EXPERIMENTAL PROGRAM

6.1 TEST PARAMETERS A total of 24 push-out specimens were constructed allowing three specimens for

each of the eight configurations described in Table 6.1.

Table 6.1 Push-Out Test Specimens – Test Matrix

No.

Deck Type

Shear Connector

Slab

Depth (in)

Shear Connection Position in

Rib

Shear

Connector per rib

Shear Connectors

per half Specimen

Secondary Reinforcement

Top Chord Angle

1 1.5 VL 22Ga 5/16” dia x 3” long ELCO Grade 8 standoff screw

3.5 Centered 1 5 WWF 2L-2x0.187

2 1.5 VL 22Ga 5/16” dia x 3” long ELCO Grade 8 standoff screw

3.5 Centered 1 5 25 lb/cy XOREX 2L-2x0.187

3 1.5 VL 22Ga 5/16” dia x 3” long ELCO Grade 8 standoff screw

3.5 Centered 1 5 50 lb/cy XOREX 2L-2x0.187

4 1.5 VL 22Ga 5/16” dia x 3” long ELCO Grade 8 standoff screw

3.5 Centered 1 5 1.5 lb/cy MD 2L-2x0.187

5 2 VL 20 Ga ¾” dia x 4 3/8” Long Stud

6 Weak 1 2 25 lb/cy XOREX 2L-4x0.500

6 2 VL 20 Ga ¾” dia x 4 3/8” Long Stud

6 Weak 1 2 50 lb/cy XOREX 2L-4x0.500

7 2 VL 20 Ga ¾” dia x 4 3/8” Long Stud

6 Weak 1 2 1.5 lb/cy MD 2L-4x0.500

8 2 VL 20 Ga ¾” dia x 4 3/8” Long Stud

6 Strong 1 2 50 lb/cy XOREX 2L-4x0.500

Deck sheets were cut to 3 ft x 3 ft for each specimen half. Pour stop was screwed to the

deck. The top chord sections and the deck sheets were connected to each other with either

the screws or the studs. 1 in. plates were used in the top chord sections. Double angles

were welded to the plate (Figure 6.1-A).

A total of four holes per half specimen were cut on the steel deck prior to casting,

allowing for displacement transducers to be nailed to the concrete after curing. Four No. 4

reinforcing bars were used in the specimens using 1.5VL-22 Ga. steel deck placed ¾ in.

above the deck. Three No. 4 bars were used in the specimens using 2VL-20 Ga. steel deck

placed 1 in. above the deck. Secondary reinforcement was that specified in Table 6.1.

Page 82: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

70

Each specimen consisted of two halves, which were cast separately and bolted together

prior to testing. Specimens and concrete cylinders were moist cured for 7 days and air

cured for at least 21 days more.

6.2 INSTRUMENTATION A total of eight potentiometer displacement transducers were used to measure the

slip between the slab and the top chord section. Four were attached at each half specimen.

Load cells and hydraulic rams were used to apply shear and normal loads. All of the

instrumentation was connected to a data acquisition system.

6.3 TEST SETUP The test setup was that used by Alander et al. (1998) and is presented in Figure

6.1-A -C. Lateral bracing was also added to this setup to prevent the slab from moving

sideways.

Figure 6.1-A Typical Top Chord Section (Alander et al. 1998)

Page 83: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

71

ReactionFloor

LoadingPlate

Normal LoadDistribution Frame

ElastomericBearing Pad

500 KipLoad CellCross-head located

between cross beams

Hydraulic Ram

50 Kip Load Cell

Figure 6.1-B Typical Test Setup (Alander et al. 1998)

Spreader Beam

Hydraulic Ram

Swivel Plate

Loading Plate

Normal LoadDistribution Frame

Hydraulic Ram50 Kip

Load Cell

Steel Plates

Figure 6.1-C Test Setup Detail (Alander et al. 1998)

Page 84: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

72

6.4 TEST PROCEDURE The procedure was the same for all tests. The specimen was pre-loaded to about 5-

kips and then unloaded. The instrumentation was then zeroed. The shear load was applied

at 5-kip increments from zero to 25-kips, and at 3-kip increments thereafter. The specimen

was allowed to settle for 3 minutes between each load increment. The normal load was

kept at approximately 10% of the shear load. The test was stopped when the specimen

would not take any higher load. Specimens were taken apart in order to see the mode of

failure.

6.5 COMPONENT TESTS Tensile coupons were tested to obtain the actual yield strength of the deck and the

steel used in the top chord section. Cylinder tests were performed in accordance to ASTM

C39 standard to obtain the compressive strength of the concrete at different ages. Results

for the compressive strength at test age for each individual specimen are presented in

Appendix G.

6.6 RESULTS Results for all push-out specimens are reported in Appendix G. Tables 6.2-A and B

summarize those results.

Table 6.2-A Push-out Tests Results for ELCO Grade 8 Standoff Screws

Test Number

Specimen

f’c (psi)

Peak Shear Load per

screw, Rn (kips)

Observed Failure

1 3400 5.05 Screw shear 1

(WWF) 2 3400 5.14 Screw shear

1 4000 5.73 Screw shear 2

(XOREX-25) 2 4000 5.55 Screw shear

1 4200 4.94 Screw shear 3

(XOREX-50) 2 4200 5.24 Screw shear

1 3800 4.49 Screw shear 4

(Microfiber-MD) 2 3800 5.30 Screw shear

Page 85: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

73

Table 6.2-B Push-out Test Results for 4- 3/8” Headed Studs

Test Number

Specimen

f’c (psi)

Peak Shear Load

per Stud, Rn (kips)

Observed Failure

1 3400 12.24 Stud shear, web punching 5- Weak Position

(XOREX-25) 2 3400 13.37 Stud shear, web punching

1 4000 12.77 Stud shear, web punching 6- Weak Position

(XOREX-50) 2 4000 12.99 Stud shear, web punching

1 4200 12.95 Stud shear, web punching 7- Weak Position

(Microfiber-MD) 2 4200 11.80 Stud shear, web punching

1 3800 18.82 Stud shear 8- Strong Position

(XOREX-50) 2 3800 18.14 Stud shear

6.7 EVALUATION OF RESULTS 6.7.1 ELCO Grade-8 Standoff Screws Shear Capacity Method (Mujagic et al. 2000)

To calculate the theoretical shear capacity of the screws, the equations developed

by Mujagic (2000) were used. For ribs perpendicular to the girder and a top chord

thickness of 0.187 in. the equation for shear strength capacity per screw, φRn, is given as

follows:

Rn= 61.074.0

13.01

' 15.0)(18.0

tc

utscrspc

tFA

NwInf

≤l

(6-1)

Where:

ttc=top chord thickness = 0.187 in.

Hs= Screw height = 3.0 in.

hr= rib height = 1.5 in. (for 1.5VL 22 Ga. Steel deck)

wr1= bottom rib width = 1.75 in. (for 1.5VL 22 Ga. Steel deck)

f’c= concrete compressive strength; psi.

wr2= top chord width = 3.5 in. (for 1.5VL 22 Ga. Steel deck)

N= number of screws in one rib not to exceed 12 =1 (for these tests)

Asc= nominal cross-sectional area of screw = 0.0767 in2.

Fut= screw tensile strength ≈ 177 ksi.

Page 86: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

74

ℓs= vertical distance between screws in a rib = 0 in. (for single screw per rib)

Lsp= length of shear plane=

( ) srssr

sp hHw

L ll

+−+

= 22

2

22 (6-2)

The following figure illustrates some deck dimensions:

Figure 6.2 Deck Dimensions

The calculated shear strength capacities per screw obtained using equation 6-1 are

presented in Table 6.2 as well as the observed shear load capacity per screw.

Table 6.2- Theoretical and Test Results for Shear Strength Capacity per Screw

Secondary Reinforcement

Specimen Number

Theoretical Shear

Strength Capacity per

Screw, Rn, (kips)

Observed Shear

Strength Capacity per

Screw, Rno, (kips)

Rno/Rn

1 5.05 0.89 WWF

2

5.66

5.14 0.91

1 5.73 1.01 XOREX-25

2

5.66

5.55 0.98

1 4.94 0.87 XOREX-50

2

5.66

5.24 0.93

1 4.49 0.79 Microfiber-MD

2

5.66

5.30 0.94

Mean 5.18

0.915

σ 0.355

0.067

The results from the push-out tests on specimens with ELCO Grade-8 Standoff

screws were very similar between all specimens and very close to the theoretical screw

strengths predicted with the method developed by Mujagic (2000). There were no major

differences between specimens reinforced with fibers and specimens reinforced with

wr2

wr1

hr

Shear Plane

Page 87: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

75

WWF. However, given that there was a single screw per rib, the failure load limit was

controlled by the screw shear failure, which makes it hard to state whether or not the fiber-

reinforced concrete influenced its behavior. Nevertheless, results show that specimens

with fiber reinforced concrete had behavior and strength similar to specimens reinforced

with WWF making the use of fiber reinforced concrete an equivalent and cost-effective

alternative to WWF.

6.7.2 Theoretical Shear Strength Capacity for Headed Studs; AISC Method and

Rambo-Roddenberry et al. (2001)

Two methods were used for determining the theoretical shear strength capacity per

stud. The first method incorporated in the current AISC specifications gives the nominal

stud strength capacity as:

nQ = uscccsc FAEfA ≤'5.0 (6-3)

Where:

Asc = cross-sectional area of the stud

f’c = compressive strength of concrete

Ec = modulus of elasticity of concrete = 57 'cf

Fu = minimum specified tensile stress of the stud ≈ 65 ksi

For deck ribs perpendicular to the girder, the nominal strength of the stud shear connector

is multiplied by the following reduction factor:

SRF = 0.1]0.1)/)[(/(85.0≤−rsrr

r

hHhwN

(6-4)

Where,

Nr = number of stud connectors on a beam in one rib = 1 (for these tests)

wr = average rib width = 6 in. (for 2VL 20 Ga. steel deck)

hr = nominal rib height = 2 in. (for 2VL 20 Ga. steel deck)

Hs = length of shear stud after welding = 4.25 in. (for these tests)

Page 88: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

76

The second method; developed by Rambo-Roddenberry et al. (2001); considers the

position of the stud within the deck rib as well as other factors such as the deck thickness.

The equation for nominal stud strength capacity for 2 in. deep decks is given by:

Qn = RpRdAscFu (6-5)

Where,

Rp = strength coefficient based on stud position

= 0.68 for emid-ht. ≥ 2.2’ (strong position studs)

= 0.48 for emid-ht. < 2.2’ (weak position studs)

= 0.52 for staggered position studs

Rd = strength coefficient or deck thickness influence on weak position studs

= 1.0 for all strong position studs

= 0.88 for 22 ga (0.75 mm) deck (weak studs)

= 1.0 for 20 ga (1.0 mm) deck (weak studs)

= 1.05 for 18 ga (1.25 mm) deck (weak studs)

= 1.11 for 16 ga (1.5 mm) deck (weak studs)

Asc = cross-sectional area of the stud, in2

Fu = tensile stress of the stud, ≈ 65 ksi.

The calculated nominal stud strength capacities obtained using equations 6-3, 6-4

and 6-5 are presented in Table 6.3 as well as the observed shear load capacity per stud.

The results from the different fiber mixtures in the weak position studs are very similar to

each other. Results for both weak and strong position studs fall in the same range of

results from previous tests of specimens reinforced with WWF (Rambo-Roddenberry et al.

2001, Easterling et al. 1993, Mottram and Johnson, 1990). Once again, the use of fiber

reinforced concrete replacing WWF does not result in any significant changes in the

specimens’ behavior.

These results also show the lack of accuracy of the current AISC Specifications

design equation for welded shear studs, which is far too un-conservative. Results show

that the equations proposed by Rambo-Roddenberry et al. (2001) accurately estimate the

shear stud strength in both weak and strong positions.

Page 89: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

77

Table 6.3- Theoretical and Test Results for Shear Strength Capacity per Stud Secondary

Reinforcement

Stud Position

in Rib

Specimen

Number

AISC

Qn (kips)

Rambo-

Roddenberry

Qn (kips)

Observed Shear

Strength,

Qo (kips)

AISC

Qo/ Qn

Rambo-

Roddenberry

Qo/Qn

1 12.24 0.46 0.89

XOREX-25

Weak

2

26.53

13.78 13.37 0.50 0.97

1 12.77 0.46 0.93

XOREX-50

Weak 2

27.51

13.78

12.99 0.47 0.94

1 12.95 0.51 0.94

Microfiber-

MD

Weak 2

25.52

13.78 11.80 0.46 0.86

1 18.82 0.68 0.96

XOREX-50

Strong 2

27.51

19.53 18.14 0.66 0.93

6.8 CONCLUSIONS There were no major differences in the performance of speciemens reinforced with

WWF and those with fiber-reinforced concrete. Given that single screws per rib were

used, the failure mode was controlled by screw shear rather than concrete crushing making

it hard to predict whether or not the concrete mixture would have made a difference.

Nevertheless, the performance of fiber-reinforced concrete once again proved to be

equivalent to that of WWF.

Page 90: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

78

Chapter 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY

Most steel-framed buildings constructed today use composite slabs, where the steel

deck serves as the tensile reinforcement. In most cases, no additional reinforcement is

required for strength, but for serviceability reasons, temperature and shrinkage

reinforcement is added most commonly in the form of welded wire fabric (WWF).

The use of fiber-reinforced concrete is an attractive alternative to WWF because it

reduces shipping costs and is easier to handle. This study focused on the behavior and

strength of fiber-reinforced composite slabs compared to WWF, with the purpose of

providing the necessary data to support the use of fibers as an equivalent alternative to

WWF. The relative serviceability performance of the WWF and the fibers with respect to

the control of temperature and shrinkage cracks was not addressed in this work. The fiber

mixtures considered in this study were 1 ½” XOREX steel fibers in the amounts of 25 and

50 lb/yd3 and a synthetic fiber (Microfiber-MD) in the amount of 1.5 lb/yd3.

Push-out tests with ELCO Grade 8 screws and headed studs were performed to at

least two specimens of each type of fiber mixture. The shear strength of the screws and

the studs was examined but there was no major difference in their behavior that would

suggest an influence of the fibers in the concrete mixtures. Specimens failed in screw and

stud shear rather than in concrete related failure. The theoretical screw shear strength was

calculated using a method developed by Mujagic (2000). This method considers three

failure modes: screw pullout, concrete rib failure and screw shear failure, which was the

dominant failure mode in these tests. The nominal stud shear strength capacity was

estimated using the current AISC Specifications, which applies a stud reduction factor,

SRF, to the regular equation for studs in reinforced concrete slabs. This method is

considered by many to be unconservative. A second set of equations developed by

Rambo-Roddenberry et al. (2001) were used, which considers the position of the stud

within the deck rib as well as other factors that influence the stud strength. This method

produced more accurate estimates of the actual test strengths.

Page 91: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

79

Full-scale slab tests were performed with distributed and non-distributed

(concentrated and linear) loads. Measurements, such as applied load, deflections, strains,

end slip and cracking, were taken and compared with slabs reinforced with WWF.

Current standard design methods were used for determining the theoretical moment

capacity of the slabs. These methods have been developed analytically with the purpose

of predicting composite slab strengths without going through the expensive and time-

consuming process of full-scale testing. The methods used in this study for the slabs with

distributed load were the First Yield Method and the ASCE Appendix D Alternate Method

of Design (Standard, 1994). The ASCE Method was also used for the slabs with

concentrated and linear loads as well as a method developed by Charles Luttrell (1995) for

“Transverse Distribution of Non-Uniform Loads on Composite Slabs”, which predicted

the slabs’ strengths accurately. The ASCE Standard lacks a method of predicting

transverse distribution of load in composite slabs.

Standard ASTM C1018 tests for “Flexural Toughness and First-Crack

Strength of Fiber-Reinforced Concrete” were performed for specimens with fibers.

Results from these tests were compared to results of equivalent tests performed by

Synthetic Industries.

7.2 CONCLUSIONS As a result of this study, the following conclusions were made:

Slabs under Distributed Load Test Conclusions

- All slabs failed in a similar manner and followed the same pattern.

- Slabs reinforced with 50 lb/yd3 of XOREX steel fibers had higher ultimate

strengths than slabs reinforced with WWF (approximately 18%). Some of this

increase in strength may also be attributed to the higher concrete compressive

strength.

- An increase in XOREX steel fiber dosage (from 25 to 50-lb/yd3) increased the

ultimate strength (approximately 37%).

- Slabs reinforced with 1.5 lb/yd3 of Microfiber-MD failed at loads equivalent to

slabs reinforced with WWF.

Page 92: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

80

- At equivalent load, fiber-reinforced concrete slabs had a smaller opening of the

crack over the concrete surface along the interior support.

- There are no major differences in the behavior and strength of slabs reinforced

with WWF or with fiber-reinforced concrete. At a typical design load of 70 psf,

all slabs had a similar and linear load-deflection relationship. Mid-span

deflections at this load magnitude were small and met serviceability deflection

requirements.

- The ease of mixing the fibers with the concrete is an advantage over the

tedious process of placing the WWF correctly.

- Shipping costs can be reduced when using fibers instead of WWF.

- A disadvantage of fiber-reinforced concrete over WWF is the quality of the

surface finishing. Particularly with the synthetic fibers, the surface has a

“hairy” appearance.

Slabs with Concentrated and Linear Loads Test Conclusions

- All slabs showed similar behavior.

- At equivalent load magnitudes, the slabs reinforced with XOREX steel fibers

had smaller deflections and strains than the slab reinforced with WWF.

- The ASCE method underestimates the load distribution capacity of composite

slabs with non-distributed loads.

- The method developed by Luttrell (1995) provides an accurate estimate of the

slabs’ moment capacity for non-distributed loads and is applicable to slabs

reinforced with WWF or fiber-reinforced concrete.

- Fiber reinforced concrete is an equivalent alternative to WWF.

Push-Out Test Conclusions

- Failure of the tested specimens occurred due to screw and stud shear rather

than concrete crushing, making it hard to predict any influence of the concrete

mixture.

Page 93: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

81

- The use of fiber-reinforced concrete in place of WWF produced no visible

changes in the behavior of Grade 8 ELCO standoff screws placed single in a

rib.

- The method developed by Mujagic (2000) for predicting screw shear strength

is also applicable to fiber-reinforced concrete specimens.

- Fiber-reinforced concrete specimens with headed studs had similar results as

tests done in previous researches where WWF was used.

- The method developed by Rambo-Roddenberry et al. (2001) is also applicable

to fiber-reinforced concrete specimens and results in more accurate predictions

of nominal stud strength than the AISC method, which is un-conservative.

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH

The use of the fiber-reinforced concrete mixtures evaluated showed similar

behavior to specimens with WWF. However, this study only used three different fiber

mixtures. Studies considering other sizes, types and quantities of fibers could be useful for

determining the most cost effective product that does not sacrifice strength.

A study that analyzes if there is some effect of the fibers on the mechanical

bonding between the concrete and the steel deck could be useful and advantageous for the

product.

The relative serviceability performance of the fibers with respect to temperature

and shrinkage cracks is important in order to study which material performs better for

crack control.

The adhesion properties of the finished concrete should be addressed in order to

determine any advantages or problems that could arise when placing tile or carpet over the

slab.

Push-out tests with more than one screw or stud per rib where the controlling

failure mode is concrete related should be performed. In this way, any influence of the

fibers on the performance of the shear connectors would become apparent.

Existing strength prediction methods need to make changes for estimating stud

strength and load distribution in composite slabs.

Page 94: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

82

REFERENCES

Alander, C.C., Easterling, W.S., Murray, T.M., (1998). “Standoff Screws used in

Composite Joists.” Report No. CE/VPI-St. 98/03, Virginia Polytechnic Institute and State

University, Blacksburg, Virginia.

ASCE Standard for the Structural Design of Composite Slabs (1992). Steel Deck with

Concrete Standards Committee of Management Group F, Codes and Standards, ASCE,

345 East 47th Street, New York, NY 10017-2398

ASTM C1018-97 (1998) “Standard Test Method for Flexural Toughness and First Crack

Strength of Fiber-Reinforced Concrete”, West Conshohocken, PA.

ASTM C78-94 (1998) “Standard Test Method for Flexural Strength of Concrete”, West

Conshohocken, PA.

ASTM C39-96 (1998) “Standard Test Method for Compressive Strength of Cylindrical

Concrete Specimens”, West Conshohocken, PA.

ASTM C192 (1998) “Standard Practice for Making and Curing Test Specimens in the

Laboratory”, West Conshohocken, PA.

ASTM E8-00b (1998) “Standard Test Method for Tension Testing of Metallic Materials”,

West Conshohocken, PA.

Easterling, W.S., Gibbins, D.R. and Murray, T.M. (1993). “Strength of Shear Studs in

Steel Deck on Composite Beams and Joists.” Engineering Journal, AISC, 30(2), pp. 44-55

Eaterling, W.S. and Young, C. Y. (1992). “Strength of Composite Slabs”, Journal of

Structural Engineering, ASCE, 118(9), pp. 2370-2389

Page 95: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

83

Fisher, J.W. (1970). “Design of Composite Beams with Formed Metal Deck.”

Engineering Journal, AISC, 3(7), pp. 88-96.

Grant, J.A., Fisher, J.W. and Slutter, R.G. (1977). “Composite Beams with Formed Steel

Deck.” Engineering Journal, AISC, 14(1), pp. 24-43.

Hankins, S.C., Gibbings, D.R., Easterling, W.S., Murray, T.M., (1995). “Standoff Screws

Functioning as Shear Connectors in Composite Joists.” Report No. CE/VPI-ST 94/16,

Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Hawkins, N.M., and Mitchell, D.M., (1984). “Seismic Response of Composite Shear

Connections.” Journal of Structural Engineering, ASCE, 110(9), pp. 2120-2136.

Heagler, R.B., Easterling, W.S., Luttrell, L.D. (1993). “The Steel Deck Institute Method

for Composite Slab Design.” [Conference Paper] Composite Construction in Steel and

Concrete II Proc. Eng. Found. Conf. Published by ASCE New York, NY, pp.287-303

Ibrahim, E., Jannoulakis, E., (1994). “Steel Fibre Reinforcement in Composite Decks.”

M.S. Thesis, McGill University, Montreal, Quebec, Canada

Lauer, D.F., Gibbings, D.R., Easterling, W.S., Murray, T.M., (1995). “Short Span

Composite Joists.” Report No. CE/VPI-ST 96/06, Virginia Polytechnic Institute and State

University, Blacksburg, Virginia.

Lloyd, R.M. and Wright, H.D. (1990). “Shear Connection between Composite Slabs and

Steel Beams.” Journal of Construction Steel Research, 15(4), pp. 255-285

LRFD Manual of Steel Construction, Vol. I, (1994). American Institute of Steel

Construction, Inc, Chicago, IL

Page 96: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

84

Luttrell, C.B. (1995). “Transverse Distribution of Non-Uniform Loads on Composite

Slabs.” M.S. Thesis West Virginia University, Morgantown, West Virginia.

Mottram, J.T. and Johnson, R.P. (1990). “Push tests on studs welded through profiled steel

sheeting.” The Structural Engineer, 68(10), pp. 187-193

Mujagic, U. (2000). “Strength Calculation Model for Standoff Screws in Composite

Joists.” M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg,

Virginia.

Mullenex, D.L., (1993). “The Effects of Rust and Concentrated Loads on Composite

Slabs.” M.S. Thesis, West Virginia University, Morgantown, West Virginia.

Oehler, D.J. (1989). “Splitting Induced by Shear Connectors in Composite Beams.”

Journal of Structural Engineering, ASCE, 115(2), 341-362.

Porter, M.L., (1985). “Analysis of Two-Way Acting Composite Slabs.” Journal of

Structural Engineering, January, 111(1), pp.1-17.

Rambo-Roddenberry, M.R., Lyons, J.C., Easterling, W.S. and Murray, T.M. (2001).

“Performance and Strength of Welded Shear Studs.” Composite Construction in Steel and

Concrete IV, Proceedings of an Engineering Foundation Conference, ASCE, New York, to

appear

Robinson, H. (1967). “Tests of Composite Beams with Cellular Deck.” Journal of the

Structural Division, ASCE, 93(ST4), pp. 139-163.

Roeder, C.W., (1981). “Point Loads on Composite Deck-Reinforced Slabs.” Journal of the

Structural Division, 107(ST12), ASCE, pp.2421-2429.

Page 97: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

85

Slutter, R.G. and Driscoll, G.C. (1965). “Flexural Strength of Steel-Concrete Composite

Beams.” Journal of the Structural Division, ASCE, 91(2), pp. 71-99.

Strocchia, L.D., Easterling, W.S., and Murray, T.M., (1991). “Evaluation of Deck

Fasteners Functioning as Shear Connectors for Composite Steel Joists.” Report No.

CE/VPI-ST 91/01, Virginia Polytechnic Institute and State University, Blacksburg,

Virginia.

Student Manual for Strain Gage Technology (1992). Measurement Group, Inc. Raleigh,

NC.

Terry, A. and Easterling, W.S. (1994). “The Effects of Typical Construction Details on the

Strength of Composite Slabs.” Report No. CE/VPI-ST 94/05, Virginia Polytechnic

Institute and State University, Blacksburg, Virginia..

Webler, J.E., Easterling, W.S., and Murray, T.M., (2000). “Further Investigation on

Standoff Screws used in Composite Joists.” Report No. CE/VPI-ST 00/18, Virginia

Polytechnic Institute and State University, Blacksburg, Virginia.

Page 98: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

86

APPENDIX A: WWF-COMPOSITE SLABS UNDER DISTRIBUTED

LOAD TEST PLOTS

Results from the slabs reinforced with WWF tested under distributed load are

illustrated in the graphs presented in this Appendix. Each set of results includes a

summary of test parameters, casting strains, concrete and steel properties, and graphs of

the applied load vs. Mid-Span Deflection, End Slip, bottom and top flange strains along

the span, crack width along interior support and interior and exterior quarter-point

deflection.

Some additional dimensions of the deck and embossments are illustrated below:

Embossment Dimensions:

Nb-v: 0.67 in. Nb-h: 1.85 in. Wb: 0.68 in. s: 3.36 in.

Nt-v: 1.59 in. Nt-h: 1.57 in. Wt: 0.25 in. ph: 0.10 in.

Deck Cross-Section:

Dw: 2.24 in.

Bb: 5.0 in.

Bt: 5.0 in.

Cs: 12 in.

Page 99: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

87

Test Designation: WWF-1 Cast Date: 10/12/2000 Test Date: 11/15/2000

Materials and Dimensions

General: Width: 6 ft (2 panels) Span length: 10 ft. Intermediate Span Length: 4 ft. Type of Reinforcement: Welded Wire Fabric Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 3800 psi Total Depth: 4.5 in

Results

Maximum Applied Load: 367 psf Mid-Span Deflection at Maximum Load: 0.81 in

Interior Quarter Point Deflection at Maximum Load: 0.46 in Exterior Quarter Point Deflection at Maximum Load: 0.66 in

End Slip at Maximum Load: 0.07 in

Strains Due to Fresh Concrete (µe)

1SG1A 1SG1B 1SG2A 1SG2B 1SG3A 1SG3B 1SG4A 1SG4B 1SG5A 1SG5B 1SG6A 1SG6B206.62 -187.05 370.23 -338.2 428.5 -387.62 365.54 -318.8 171.54 -186.93 -85.389 58.196

Page 100: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

88

Steel Deck Strain Gage Locations

10’ 4’ 10’ A-A Typical

Potentiometer and Wire Pot Locations (Top View)

Potentiometer Locations at Each Side of Slab (Side View)

17.14"

A

B

P

P

P

P

P

P

Q E

Q E

Q E

Q E

Q E

Q E Q I

Q I

Q I

Q I

Q I

Q I

M S

M S

M S

M S M S

M S

P

Q E

M S

Q I

Potentiometer Exterior Quarter Point Wire Pot Mid-Span Wire Pot Interior Quarter Point Wire Pot

x x x x x x x x x x x x 1 2 3 4 5 6

x x x x x x x x x x x x 6 5 4 3 2 1

A

A

Page 101: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

89

-50

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5

Mid-Span Deflection, End Slip (in)

App

lied

Load

(psf

)

Mid-Span Deflection

End Slip

Figure A.1 WWF-1 Applied Load vs. Mid-Span Deflection and End Slip

-50

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5

Quarter Point Deflection (in)

App

lied

Load

(psf

)

Interior Quarter Point

Exterior Quarter Point

Figure A.2 WWF-1 Applied Load vs. Quarter Point Deflection

Page 102: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

90

-50

0

50

100

150

200

250

300

350

400

-300 -100 100 300 500 700 900 1100 1300 1500

Strain (ue)

App

lied

Load

(psf

)

1SG1B1SG2B1SG3B1SG4B1SG5B1SG6B

Figure A.3 WWF-1 Applied Load vs. Strain in Deck Top Flange along Span

-50

0

50

100

150

200

250

300

350

400

-300 -100 100 300 500 700 900 1100 1300 1500

Strain (ue)

App

lied

Load

(psf

)

1SG1A

1SG2A

1SG3A

1SG4A

1SG5A

1SG6A

Figure A.4 WWF-1 Applied Load vs. Strain in Deck Bottom Flange along Span

Page 103: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

91

0

50

100

150

200

250

300

350

400

0 0.05 0.1 0.15 0.2 0.25

Crack Width (in)

App

lied

Load

(psf

)

Figure A.5 WWF-1 Applied Load vs. Crack Width at Interior Support

Figure A.6 WWF-1 Crack Over Interior Support

Page 104: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

92

Test Designation: WWF-2 Cast Date: 10/12/2000 Test Date: 11/15/2000

Materials and Dimensions

General: Width: 6 ft (2 panels) Span length: 10 ft. Intermediate Span Length: 4 ft. Type of Reinforcement: Welded Wire Fabric Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 3800 psi Total Depth: 4.5 in

Results

Maximum Applied Load: 337 psf Mid-Span Deflection at Maximum Load: 1.05 in

Interior Quarter Point Deflection at Maximum Load: 0.55 in Exterior Quarter Point Deflection at Maximum Load: 0.80 in

End Slip at Maximum Load: 0.06 in

Strains Due to Fresh Concrete (µe)

2SG1A 2SG1B 2SG2A 2SG2B 2SG3A 2SG3B 2SG4A 2SG4B 2SG5A 2SG5B 2SG6A 2SG6B230 -183 402 -375 466 -420 400.51 -357.5 211.36 -193.79 -77.52 74.633

Page 105: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

93

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Mid-Span Deflection, End Slip (in)

App

lied

Load

(psf

)

Mid-Span Deflection

End Slip

Figure A.6 WWF-2 Applied Load vs. Mid-Span Deflection and End Slip

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Quarter Point Deflection (in)

App

lied

Load

(psf

)

Interior Quarter Point

Exterior Quartr Point

Figure A.7 WWF-2 Applied Load vs. Quarter Point Deflection

Page 106: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

94

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Microstrain (ue)

App

lied

Load

(psf

)

2SG1B

2SG3B

2SG4B

2SG5B

2SG6B

Figure A.8 WWF-2 Applied Load vs. Strain in Deck Top Flange along Span

(WWF-Test 2) Bottom FL Strain along span

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Microstrain (ue)

App

lied

Load

(psf

)

2SG1A

2SG2A

2SG3A

2SG4A

2SG5A

2SG6A

Figure A.9 WWF-2 Applied Load vs. Strain in Deck Bottom Flange along Span

Page 107: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

95

Figure A.11 WWF-2 Crack Over Interior Support

Page 108: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

96

APPENDIX B: XOREX-25-COMPOSITE SLABS UNDER

DISTRIBUTED LOAD TEST PLOTS

Results from the slabs reinforced with 25 lb/yd3 XOREX steel fibers tested under

distributed load are illustrated in the graphs presented in this Appendix. Each set of results

includes a summary of test parameters, casting strains, concrete and steel properties, and

graphs of the applied load vs. Mid-Span Deflection, End Slip, bottom and top flange

strains along the span, crack width along interior support and interior and exterior quarter-

point deflection.

Some additional dimensions of the deck and embossments are illustrated below:

Embossment Dimensions:

Nb-v: 0.67 in. Nb-h: 1.85 in. Wb: 0.68 in. s: 3.36 in.

Nt-v: 1.59 in. Nt-h: 1.57 in. Wt: 0.25 in. ph: 0.10 in.

Deck Cross-Section:

Dw: 2.24 in.

Bb: 5.0 in.

Bt: 5.0 in.

Cs: 12 in.

Page 109: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

97

Test Designation: XOREX25-1 Cast Date: 10/16/2000 Test Date: 11/28/2000

Materials and Dimensions

General: Width: 6 ft (2 panels) Span length: 10 ft. Type of Reinforcement: 25 lb/yd3 –1 ½” Xorex Fiber Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 4300 psi Total Depth: 4.5 in

Results

Maximum Applied Load: 305 psf Mid-Span Deflection at Maximum Load: 1.05 in

Interior Quarter Point Deflection at Maximum Load: 0.55 in Exterior Quarter Point Deflection at Maximum Load: 0.64 in

End Slip at Maximum Load: 0.10 in

Strains Due to Fresh Concrete (µe)

1SG1A 1SG1B 1SG2A 1SG2B 1SG3A 1SG3B 1SG4A 1SG4B 1SG5A 1SG5B 1SG6A 1SG6B209.6 -171.5 404.7 -402.5 508.3 -423.7 461.8 -380.5 262.1 -214.3 -76.7 77.6

Page 110: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

98

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Mid-Span Deflection, End Slip (in)

App

lied

Load

(psf

)

Mid-Span Deflection

Slip

Figure B.1 XOREX25-1 Applied Load vs. Mid-Span Deflection and End Slip

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Quarter Point Deflection (in)

App

lied

Load

(psf

)

Interior Quarter Point

Exterior Quarter Point

Figure B.2 XOREX25-1 Applied Load vs. Quarter Point Deflection

Page 111: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

99

0

50

100

150

200

250

300

350

-200 0 200 400 600 800 1000 1200 1400 1600

Microstrain (ue)

App

lied

Load

(psf

)

1SG1B

1SG2B

1SG3B

1SG4B

1SG5B

1SG6B

Figure B.3 XOREX25-1 Applied Load vs. Strain in Deck Top Flange along Span

0

50

100

150

200

250

300

350

-200 0 200 400 600 800 1000 1200 1400 1600

Microstrain (ue)

App

lied

Load

(psf

)

1SG1A

1SG2A

1SG3A

1SG4A

1SG5A

1SG6A

Figure B.4 XOREX25-1 Applied Load vs. Strain in Deck Bottom Flange along Span

Page 112: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

100

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

C rack Width o ver Suppo rt ( in)

Figure B.5 XOREX25-1 Applied Load vs. Crack Width at Interior Support

Page 113: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

101

Test Designation: XOREX25-2 Cast Date: 10/16/2000 Test Date: 11/28/2000

Materials and Dimensions

General: Width: 6 ft (2 panels) Span length: 10 ft. Intermediate Span Length: 4 ft. Type of Reinforcement: 25 lb/yd3 –1 ½” Xorex Fiber Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60ksi Concrete: Test Strength: 4300 psi Total Depth: 4.5 in

Results

Maximum Applied Load: 387 psf Mid-Span Deflection at Maximum Load: 0.76 in

Interior Quarter Point Deflection at Maximum Load: 0.47 in Exterior Quarter Point Deflection at Maximum Load: 0.47 in

End Slip at Maximum Load: 0.01 in

Strains Due to Fresh Concrete (µe)

2SG1A 2SG1B 2SG2A 2SG2B 2SG3A 2SG3B 2SG4A 2SG4B 2SG5A 2SG5B 2SG6A 2SG6B202.8 -206.7 532.8 -407.1 502.1 -444.6 451.6 -397.0 N/A -195.0 -43.7 74.7

Page 114: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

102

-50

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5

Mid-Span Deflection, End Slip (in)

App

lied

Load

(psf

)

Mid-Span Deflection

End Slip

Figure B.6 XOREX25-2 Applied Load vs. Mid-Span Deflection and End Slip

-50

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5

Quarter Point Deflection (in)

App

lied

Load

(psf

)

Interior Quarter Point

Exterior Quarter Point

Figure B.7 XOREX25-2 Applied Load vs. Quarter Point Deflection

Page 115: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

103

-50

0

50

100

150

200

250

300

350

400

450

-200 0 200 400 600 800 1000 1200 1400 1600 1800

Microstrain (ue)

App

lied

Load

(psf

)

2SG1B

2SG2B

2SG3B

2SG4B

2SG5B

2SG6B

Figure B.8 XOREX25-2 Applied Load vs. Strain in Deck Top Flange along Span

-50

0

50

100

150

200

250

300

350

400

450

-200 0 200 400 600 800 1000 1200 1400 1600 1800

Microstrain (ue)

App

lied

Load

(psf

)

2SG1A

2SG3A

2SG4A

2SG5A

2SG6A

Figure B.9 XOREX25-2 Applied Load vs. Strain in Deck Bottom Flange along Span

Page 116: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

104

APPENDIX C: XOREX-50-COMPOSITE SLABS UNDER

DISTRIBUTED LOAD TEST PLOTS

Results from the slabs reinforced with 50 lb/yd3 XOREX steel fibers tested under

distributed load are illustrated in the graphs presented in this Appendix. Each set of results

includes a summary of test parameters, casting strains, concrete and steel properties, and

graphs of the applied load vs. Mid-Span Deflection, End Slip, bottom and top flange

strains along the span, crack width along interior support and interior and exterior quarter-

point deflection.

Some additional dimensions of the deck and embossments are illustrated below:

Embossment Dimensions:

Nb-v: 0.67 in. Nb-h: 1.85 in. Wb: 0.68 in. s: 3.36 in.

Nt-v: 1.59 in. Nt-h: 1.57 in. Wt: 0.25 in. ph: 0.10 in.

Deck Cross-Section:

Dw: 2.24 in.

Bb: 5.0 in.

Bt: 5.0 in.

Cs: 12 in.

Page 117: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

105

Test Designation: XOREX50-1 Cast Date: 12/07/2000 Test Date: 01/10/2001

Materials and Dimensions

General: Width: 6 ft (2 panels) Span length: 10 ft. Intermediate Span Length: 4 ft. Type of Reinforcement: 50 lb/yd3 –1 ½” Xorex Fiber Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 5800 psi Total Depth: 4.5 in

Results

Maximum Applied Load: 417 psf Mid-Span Deflection at Maximum Load: 0.48 in

Interior Quarter Point Deflection at Maximum Load: 0.27 in Exterior Quarter Point Deflection at Maximum Load: 0.28 in

End Slip at Maximum Load: 0.0004 in

Strains Due to Fresh Concrete (µe)

1SG1A 1SG1B 1SG2A 1SG2B 1SG3A 1SG3B 1SG4A 1SG4B 1SG5A 1SG5B 1SG6A 1SG6B167.7 -226.4 420.0 -415.2 512.6 -510.3 486.8 -444.7 280.0 -242.1 -35.8 62.9

Page 118: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

106

Steel Deck Strain Gage Locations

10’ 4’ 10’ A-A Typical

Potentiometer and Wire Pot Locations (Top View)

Potentiometer Locations at Each Side of Slab (Side View)

17.14"

A

B

P

P

P

P

P

P

Q E

Q E

Q E

Q E

Q E

Q E Q I

Q I

Q I

Q I

Q I

Q I

M S

M S

M S

M S M S

M S

P

Q E

M S

Q I

Potentiometer Exterior Quarter Point Wire Pot Mid-Span Wire Pot Interior Quarter Point Wire Pot

x x x x x x x x x x x x 1 2 3 4 5 6

x x x x x x x x x x x x 6 5 4 3 2 1

A

A

Page 119: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

107

-50

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5

Mid-Span Deflection, End Slip (in)

App

lied

Load

(psf

)

Mid-Span Deflection End Slip

Figure C.1 XOREX50-1 Applied Load vs. Mid-Span Deflection and End Slip

-50

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5

Quarter Point Deflection (in)

App

lied

Load

(psf

)

Interior Quarter PointExterior Quarter Point

Figure C.2 XOREX50-1 Applied Load vs. Quarter Point Deflection

Page 120: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

108

-50

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400

Microstrain (ue)

App

lied

Load

(psf

) 1SG1B1SG2B1SG3B1SG4B1SG5B1SG6B

Figure C.3 XOREX50-1 Applied Load vs. Strain in Deck Top Flange along Span

-50

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400

Microstrain (ue)

App

lied

Load

(psf

) 1SG1A1SG2A1SG3A1SG4A1SG5A1SG6A

Figure C.4 XOREX50-1 Applied Load vs. Strain in Deck Bottom Flange along Span

Page 121: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

109

0

50

100

150

200

250

300

350

400

450

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Crack Width over support

App

lied

Load

(psf

)

Figure C.5 XOREX50-1 Applied Load vs. Crack Width at Interior Support

Figure C.6 XOREX50-1 Crack Over Interior Support

Page 122: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

110

Test Designation: XOREX50-2 Cast Date: 12/07/2000 Test Date: 01/10/2001

Materials and Dimensions

General: Width: 6 ft (2 panels) Span length: 10 ft. Intermediate Span Length: 4 ft. Type of Reinforcement: 50 lb/yd3 –1 ½” Xorex Fiber Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 5800 psi Total Depth: 4.5 in

Results

Maximum Applied Load: 489 psf Mid-Span Deflection at Maximum Load: 1.51 in

Interior Quarter Point Deflection at Maximum Load: 0.80 in Exterior Quarter Point Deflection at Maximum Load: 1.07 in

End Slip at Maximum Load: 0.15 in

Strains Due to Fresh Concrete (µe)

2SG1A 2SG1B 2SG2A 2SG2B2SG3A2SG3B2SG4A2SG4B2SG5A 2SG5B2SG6A2SG6BN/A -236.6 434.4 -433.1 522.7 -493.5 448.4 -428.8 7225.2 -233.2 -63.0 61.1

Page 123: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

111

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5

Mid-Span Deflection, End Slip (in)

App

lied

Load

(psf

)

Mid-Span DeflectionEnd Slip

Figure C.6 XOREX50-2 Applied Load vs. Mid-Span Deflection and End Slip

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5

Quarter point Deflection (in)

App

lied

Load

(psf

)

Interior Quarter PointExterior Quarter Point

Figure C.7 XOREX50-2 Applied Load vs. Quarter Point Deflection

Page 124: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

112

-100

0

100

200

300

400

500

600

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000

Microstrain (ue)

App

lied

Load

(psf

) 2SG1B2SG2B2SG3B2SG4B2SG5B2SG6B

Figure C.8 XOREX50-2 Applied Load vs. Strain in Deck Top Flange along Span

-100

0

100

200

300

400

500

600

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000

Microstrain (ue)

App

lied

Load

(psf

)

2SG2A2SG3A2SG4A2SG5A2SG6A

Figure C.9 XOREX50-2 Applied Load vs. Strain in Deck Bottom Flange along Span

Page 125: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

113

0

100

200

300

400

500

600

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

C rack Width o ver suppo rt ( in)

Figure C.10 XOREX50-2 Applied Load vs. Crack Width at Interior Support

Figure C.12 XOREX 50-2 Crack Over Interior Support

Page 126: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

114

APPENDIX D: Microfiber-MD-COMPOSITE SLABS UNDER

DISTRIBUTED LOAD TEST PLOTS

Results from the slabs reinforced with 1.5 lb/yd3 of Microfiber-MD synthetic

fibers tested under distributed load are illustrated in the graphs presented in this Appendix.

Each set of results includes a summary of test parameters, casting strains, concrete and

steel properties, and graphs of the applied load vs. Mid-Span Deflection, End Slip, bottom

and top flange strains along the span, crack width along interior support and interior and

exterior quarter-point deflection.

Some additional dimensions of the deck and embossments are illustrated below:

Embossment Dimensions:

Nb-v: 0.67 in. Nb-h: 1.85 in. Wb: 0.68 in. s: 3.36 in.

Nt-v: 1.59 in. Nt-h: 1.57 in. Wt: 0.25 in. ph: 0.10 in.

Deck Cross-Section:

Dw: 2.24 in.

Bb: 5.0 in.

Bt: 5.0 in.

Cs: 12 in.

Page 127: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

115

Test Designation: MicrofiberMD-1 Cast Date: 12/07/2000 Test Date: 01/11/2001

Materials and Dimensions

General: Width: 6 ft (2 panels) Span length: 10 ft. Intermediate Span Length: 4 ft. Type of Reinforcement: 1.5 lb/yd3 –MicrofiberMD Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 4100 psi Total Depth: 4.5 in

Results

Maximum Applied Load: 372 psf Mid-Span Deflection at Maximum Load: 4.85 in

Interior Quarter Point Deflection at Maximum Load: 2.27 in Exterior Quarter Point Deflection at Maximum Load: 3.30 in

End Slip at Maximum Load: 0.92 in

Strains Due to Fresh Concrete (µe)

1SG1A 1SG1B 1SG2A 1SG2B1SG3A1SG3B1SG4A1SG4B1SG5A 1SG5B1SG6A1SG6B181.0 -60.2 406.7 -391.9 469.0 -454.9 389.5 -361.0 175.8 -191.9 -149.1 104.7

Page 128: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

116

Steel Deck Strain Gage Locations

10’ 4’ 10’ A-A Typical

Potentiometer and Wire Pot Locations (Top View)

Potentiometer Locations at Each Side of Slab (End View)

17.14"

A

B

P

P

P

P

P

P

Q E

Q E

Q E

Q E

Q E

Q E Q I

Q I

Q I

Q I

Q I

Q I

M S

M S

M S

M S M S

M S

P

Q E

M S

Q I

Potentiometer Exterior Quarter Point Wire Pot Mid-Span Wire Pot

Interior Quarter Point Wire Pot

x x x x x x x x x x x x 1 2 3 4 5 6

x x x x x x x x x x x x 6 5 4 3 2 1

A

A

Page 129: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

117

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6

Mid-Span Deflection, End Slip (in)

App

lied

Load

(psf

)

Mid-Span DeflectionEnd Slip

Figure D.1 MicrofiberMD-1 Applied Load vs. Mid-Span Deflection and End Slip

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6

Quarter Point Deflection (in)

App

lied

Load

(psf

)

Interior Quarter PointExterior Quarter Point

Figure D.2 MicrofiberMD-1 Applied Load vs. Quarter Point Deflection

Page 130: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

118

0

50

100

150

200

250

300

350

400

-1000 -500 0 500 1000 1500 2000 2500 3000 3500

Microstrain (ue)

App

lied

Load

(psf

) 1SG1B1SG2B1SG3B1SG4B1SG5B1SG6B

Figure D.3 MicrofiberMD-1 Applied Load vs. Strain in Deck Top Flange along Span

0

50

100

150

200

250

300

350

400

-1000 -500 0 500 1000 1500 2000 2500 3000 3500

Microstrain (ue)

App

lied

Load

(psf

) 1SG1A1SG2A1SG3A1SG4A1SG5A1SG6A

Figure D.4 MicrofiberMD-1 Applied Load vs. Strain in Deck Bottom Flange along

Span

Page 131: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

119

0

50

100

150

200

250

300

350

400

0 0.05 0.1 0.15 0.2 0.25

Crack Width over support (in)

App

lied

Load

(psf

)

Figure D.5 MicrofiberMD-1 Applied Load vs. Crack Width at Interior Support

Figure D.6 MicrofiberMD-2 Crack Over Interior Support

Page 132: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

120

Test Designation: MicrofiberMD-2 Cast Date: 12/07/2000 Test Date: 01/11/2001

Materials and Dimensions

General: Width: 6 ft (2 panels) Span length: 10 ft. Intermediate Span Length: 4 ft. Type of Reinforcement: 50 lb/yd3 –1 ½” Xorex Fiber Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 4100 psi Total Depth: 4.5 in

Results

Maximum Applied Load: 361 psf Mid-Span Deflection at Maximum Load: 0.64 in

Interior Quarter Point Deflection at Maximum Load: 0.38 in Exterior Quarter Point Deflection at Maximum Load: 0.59 in

End Slip at Maximum Load: 0.08 in

Strains Due to Fresh Concrete (µe)

2SG1A 2SG1B 2SG2A 2SG2B2SG3A2SG3B2SG4A2SG4B2SG5A 2SG5B2SG6A2SG6B159.0 -202.4 379.9 -378.5 461.3 -437.6 394.2 -387.4 179.6 -201.8 -114.4 105.6

Page 133: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

121

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3 3.5 4

Mid-Span Deflection, End Slip (in)

App

lied

Load

(psf

)

Mid-Span DeflectionEnd Slip

Figure D.6 MicrofiberMD-2 Applied Load vs. Mid-Span Deflection and End Slip

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3 3.5 4

Quarter Point Deflection (in)

App

lied

Load

(psf

)

Interior Quarter PointExterior Quarter Point

Figure D.7 MicrofiberMD -2 Applied Load vs. Quarter Point Deflection

Page 134: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

122

0

50

100

150

200

250

300

350

400

-600 -400 -200 0 200 400 600 800 1000 1200 1400 1600

Microstrain (ue)

App

lied

Load

(psf

) 1SG1B1SG2B1SG3B1SG4B1SG5B1SG6B

Figure D.8 MicrofiberMD -2 Applied Load vs. Strain in Deck Top Flange along Span

0

50

100

150

200

250

300

350

400

-600 -400 -200 0 200 400 600 800 1000 1200 1400 1600

Microstrain (ue)

App

lied

Load

(psf

) 1SG1A1SG2A1SG3A1SG4A1SG5A1SG6A

Figure D.9 MicrofiberMD -2 Applied Load vs. Strain in Deck Bottom Flange along

Span

Page 135: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

123

APPENDIX E:

ASTM C1018 STANDARD TEST SUMMARY OF RESULTS

The results obtained from the ASTM C1018 Standard Test for “Flexural

Toughness and First-Crack Strength of Fiber-Reinforced Concrete” are presented in this

Appendix. A set of Results is provided for each fiber mixture and includes general

material properties, summary table and a graph of applied load vs. mid-span deflection.

Page 136: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

124

SUMMARY OF RESULTS FOR XOREX-25 GENERAL Secondary Reinforcement: 25 lb/yd3- 1 ½” XOREX-Steel Fibers f'c = 3000 psi

E = 3122 ksi

Age: 14 days

Table E.1 Summary of Results- XOREX 25

No. b (in) d (in) L (in) I (in4) δtheo P (kips) δ (in) Crack Location R (psi) I5 I10 I20

1 3.94 3.97 12 20.53 0.0021 3.570 0.0090 6.75 690.32 3.71 6.14 9.462 3.94 4.00 12 21.00 0.0023 3.850 0.0058 6.25 733.33 N/A N/A N/A 3 3.94 3.94 12 20.03 0.0019 3.180 0.0047 5.13 625.10 5.06 6.77 10.214 3.94 3.94 12 20.03 0.0017 2.830 0.0052 6.00 556.30 3.40 5.18 7.805 3.94 4.00 12 21.00 0.0021 3.570 0.0050 6.25 680.00 3.87 6.28 7.27

Avg 3.94 3.97 12 20.52 0.0020 3.400 0.00594 6.075 657.01 4.110 6.077 8.427σ 0 0.031 0 0.4846 0.00020 0.3980 0.00176 0.5969 68.237 0.856 0.814 1.567

XOREX25- Load- Deflection

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Deflection (in)

Load

(kip

s)

XOREX25-1XOREX25-3XOREX25-4XOREX25-5

Figure E.1- XOREX25-Load vs. Deflection at 14 days

Page 137: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

125

SUMMARY OF RESULTS FOR XOREX-50 GENERAL: Secondary Reinforcement: 50 lb/yd3- 1 ½” XOREX-Steel Fibers f'c = 3000 psi

E = 3122 ksi

Age: 14 days

Table E.2 Summary of Results- XOREX-50 at 14 days

No. b (in) d (in) L (in) I (in4) δtheo P (kips) δ(in) Crack Location R (psi) I5 I10 I20

1 3.94 3.97 12 20.53 0.0019 3.150 6.00 609.10 2 3.94 3.94 12 20.03 0.0018 3.000 0.0058 6.88 589.71 3.92 6.73 11.633 3.94 3.94 12 20.03 0.0021 3.420 0.0051 6.50 672.27 3.49 5.62 9.124 3.94 4.00 12 21.00 0.0019 3.230 0.0041 6.00 615.24 4.05 6.68 11.065 3.94 4.00 12 21.00 0.0020 3.340 0.0045 5.50 636.19 4.05 6.91 11.67

Avg 3.94 3.97 12 20.52 0.0019 3.228 0.0049 6.175 624.50 3.878 6.485 10.870σ 0.000 0.031 0.000 0.485 0.000 0.164 0.001 0.527 31.432 0.266 0.585 1.199

XOREX-50: Load-Deflection

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Deflection (in)

Load

(kip

s)

XOREX50-2XOREX50-3XOREX50-4XOREX50-5

Figure E.2- XOREX50- Load vs. Deflection at 14 days

Page 138: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

126

f'c = 5800 psi E = 4344 ksi Age: 45 days

Table E.3 Summary of Results XOREX-50 at 45 days

No. b (in) d (in) L (in) I (in4) δtheo P

(kips) δ(in) Crack

Location R (psi) I5 I10 1 3.94 3.97 12 20.53 0.0021 4.879 0.0060 6.88 943.43 3.91 6.062 3.94 3.94 12 20.03 0.0023 5.222 0.0050 5.75 1026.49 4.21 7.783 3.94 3.94 12 20.03 0.0022 4.946 0.0060 5.50 972.24 2.63 4.004 3.94 4.00 12 21.00 0.0020 4.690 0.0060 6.50 893.33 4.02 6.405 3.94 4.00 12 21.00 0.0019 4.620 0.0070 6.94 880.00 4.06 5.60

Avg 3.94 3.97 12 20.52 0.0021 4.871 0.006 6.313 943.10 3.77 5.967σ 0.000 0.031 0.000 0.485 0.000 0.237 0.001 0.656 59.712 0.644 1.368

XOREX-50 lb/cy 4x4x14

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Mid-Span Deflection (in)

Appl

ied

Load

(kip

s)

Beam 1Beam 2Beam 3Beam 4Beam 5

Figure E.3-XOREX-50-Load vs. Deflection at 45 days

Page 139: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

127

SUMMARY OF RESULTS FOR MICROFIBER-MD GENERAL: Secondary Reinforcement: 1.5 lb/yd3- Microfiber-MD Synthetic fibers f'c = 3000 psi

E = 3122 ksi

Age: 14 days

Table E.4 Summary of Results Microfiber-MD at 14 days

No. b (in) δ(in) L (in) I (in4) δtheo P (kips)D (in) Crack LocationR (psi) I5 I10 I20

1 3.94 3.94 12 20.03 0.0020 3.246 0.0045 5.75 638.07 4.26 7.40 8.31 2 3.87 3.87 12 18.79 0.0022 3.450 0.0043 6.75 711.52 4.73 5.70 7.15 3 3.94 3.94 12 20.03 0.0021 3.480 5.13 684.07 4 3.94 3.94 12 20.03 0.0019 3.070 0.0037 5.00 603.47 4.60 5.15 6.60 5 3.94 4.00 12 21.00 0.0022 3.770 0.0044 6.00 718.10 3.62 7.14 8.21 Avg 3.94 3.94 12.000 19.976 0.002 3.403 0.004 5.725 671.044 4.303 6.348 7.568σ 0.0280 0.0442 0.0000 0.7852 0.0002 0.2638 0.0004 0.7093 49.1798 0.496 1.094 0.832

Microfiber-MD: Load-Deflection

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Deflection (in)

Load

(kip

s) Microfiber-1Microfiber-2Microfiber-4Microfiber-5

Figure E.4- Microfiber-MD-Load vs. Deflection at 14 days

Page 140: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

128

f'c = 4000 psi E = 3640 ksi Age: 45 days

Table E.5 Summary of Results Microfiber-MD at 45 days

No. b (in) d (in) L (in) I (in4) δtheo

P (kips) δ(in)

Crack Location R (psi) I5 I10 I20

1 3.94 3.94 12 20.03 0.0025 4.731 6.88 929.98 2 3.87 3.87 12 18.79 0.0021 4.478 0.0025 6.00 923.49 4.50 9.06 14.023 3.94 3.94 12 20.03 0.0023 5.207 5.81 1023.55 4 3.94 3.94 12 20.03 0.0019 4.363 5.19 857.64 5 3.94 4.00 12 21.00 0.0020 4.716 0.0023 6.56 898.29 4.67 8.34 12.38

Avg 3.94 3.94 12 19.98 0.0021 4.699 0.002384 6.0875 926.59 4.59 8.6975 13.2

Microfiber MD, 4x4x14

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Mid-Span Deflection (in)

Appl

ied

Load

(kip

s)

Beam 1Beam 2Beam 3Beam 4

Figure E.5-Microfiber-MD- Load vs. Deflection at 45 days

Page 141: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

129

APPENDIX F

COMPOSITE SLABS UNDER NON-DISTRIBUTED LOADS TEST

DATA The data from the tests on composite slabs under non-distributed loads are

presented in this Appendix. Given that a total of forty-one tests were performed only the

data will be presented in table format. Each individual tests data is presented in a single

table where the strains and deflections at mid-span and quarter-points are presented at

every load increment. Refer to figures 5.3-A-K for the load locations.

The figure bellow illustrated the locations of the strain gages and displacement

transducers across mid-span and at each quarter point. Strain Gages are numbered one

through six from left to right. Displacement Transducers are numbered zero through five

from left to right.

Figure F1-Strain Gage and Wire-Pot Locations across Mid-Span and Quarter-Points

Wire-pot Strain gage

x x

0 3 2 4 5 1 1 2 3 4 5 6

Page 142: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

130

Test Designation: WWF- Concentrated Loads Cast Date: 06/29/2001 Test Date: 08/15/2001

Materials and Dimensions

General: Width: 9 ft (3 panels) Span length: 10 ft. Type of Reinforcement: 25 lb/yd3 –1 ½” Xorex Fiber Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 3400 psi Total Depth: 5.5 in

Results

Maximum Applied Load: 14.30 kips Mid-Span Deflection at Maximum Load: 0.16 in

Quarter Point-1 Deflection at Maximum Load: 0.10 in Quarter Point-2 Deflection at Maximum Load: 0.11 in

End Slip at Maximum Load: 0.00 in

Strains Due to Fresh Concrete (µe)

Strain Gage 1 2 3 4 5 6 Quarter Point-1 399.31 490.89 516.38 518.97 452.86 509.89

Mid-Span 497.93 602.20 717.61 687.59 540.41 615.64Quarter Point-2 251.16 396.12 397.28 N/A 337.92 329.03

Page 143: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

131

Table F-1: Non-Distributed Load Tests Data for WWF Slab Slab: WWF

Test: Concentrated Load at Bottom Quarter Point (Fig. 5.3-A) Strain Gage readings are in µin/in Displacement readings are in in.

Load in lbs Strain Gage Number

0 1400 2000.0 2500.0 3000.0 3500.0 4500.0 5000.0 5500.0 6000.0 6500.0 7000.0 7500.0

QPT-1 0.0 3.9 5.8 6.8 7.8 9.7 11.6 13.6 15.5 17.5 18.4 20.4 22.3

QPT-2 0.0 3.9 5.8 6.8 8.7 10.7 12.6 14.6 16.5 17.5 18.4 20.4 21.4

QPT-3 0.0 2.9 4.8 5.8 6.8 8.7 9.7 12.6 13.6 14.5 16.5 17.5 19.4

QPT-4 0.0 3.9 5.8 6.8 8.7 10.7 13.6 15.5 17.5 18.4 20.4 22.3 24.3

QPT-5 0.0 3.9 5.8 6.8 8.7 10.7 12.6 14.6 16.5 18.4 20.4 22.3 24.3

QPT-6 0.0 3.9 5.8 6.8 8.7 9.7 11.6 14.5 15.5 17.5 18.4 20.4 22.3

MS-1 0.0 6.8 10.7 12.6 15.5 18.5 23.3 27.2 30.1 33.0 36.9 40.8 44.7

MS-2 0.0 7.8 10.7 13.6 16.5 20.4 24.3 28.1 31.1 34.0 37.8 40.8 43.7

MS-3 0.0 6.8 10.7 12.6 15.5 18.4 22.3 25.2 28.1 30.1 33.0 35.9 37.9

MS-4 0.0 6.8 9.7 12.6 15.5 17.5 21.4 25.2 28.1 31.1 34.0 35.9 38.8

MS-5 0.0 7.8 10.7 13.6 16.5 19.4 24.3 28.2 31.1 34.0 36.9 39.8 43.7

MS-6 0.0 7.8 9.7 14.6 17.5 19.4 24.3 26.2 31.0 32.0 34.9 39.8 42.7

QPB-1 0.0 7.8 11.6 14.6 17.5 21.3 26.2 30.1 34.0 36.9 41.7 45.6 51.4

QPB-2 0.0 13.6 19.4 24.3 30.1 35.0 43.7 50.5 56.4 64.1 70.0 77.7 86.5

QPB-3 0.0 19.4 27.1 33.9 42.7 49.5 62.1 71.8 80.5 90.2 100.8 117.3 132.9

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0.0 15.5 21.4 26.2 32.1 36.9 46.6 53.4 59.3 64.1 71.9 88.4 100.1

QPB-6 0.0 8.7 8.7 13.6 18.5 19.4 23.3 28.2 31.1 34.0 37.9 43.7 47.6

Displacement

tqp-1 0.00 0.0043 0.0043 0.0043 0.0000 0.0000 0.0022 0.0000 0.0000 -0.0065 -0.0065 -0.0065 -0.0065

tqp-2 0.00 -0.0011 -0.0022 -0.0033 -0.0044 -0.0055 -0.0077 -0.0099 -0.0122 -0.0133 -0.0144 -0.0166 -0.0188

tqp-3 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0065 -0.0065 -0.0065 -0.0065

tqp-4 0.00 0.0000 0.0000 -0.0011 -0.0011 -0.0032 -0.0054 -0.0075 -0.0086 -0.0108 -0.0129 -0.0151 -0.0161

midspan-1 0.00 0.0000 0.0000 0.0067 0.0067 0.0067 0.0134 0.0156 0.0156 0.0201 0.0201 0.0201 0.0201

midspan-2 0.00 -0.0011 -0.0022 -0.0033 -0.0044 -0.0066 -0.0100 -0.0144 -0.0155 -0.0177 -0.0210 -0.0221 -0.0244

midspan-3 0.00 -0.0223 -0.0011 0.0067 0.0681 0.1083 0.0625 0.0480 0.0994 0.1038 0.0927 0.0759 0.0525

midspan-4 0.00 -0.0033 -0.0056 -0.0078 -0.0100 -0.0122 -0.0156 -0.0178 -0.0189 -0.0211 -0.0234 -0.0256 -0.0278

bqp-1 0.00 -0.0033 -0.0044 -0.0055 -0.0077 -0.0099 -0.0122 -0.0133 -0.0155 -0.0177 -0.0199 -0.0210 -0.0232

bqp-2 0.00 0.0000 0.0000 0.0000 -0.0046 -0.0091 -0.0137 -0.0137 -0.0137 -0.0228 -0.0182 -0.0182 -0.0274

bqp-3 0.00 0.0000 0.0000 -0.0046 -0.0046 -0.0046 -0.0138 -0.0138 -0.0138 -0.0183 -0.0183 -0.0183 -0.0275

Page 144: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

132

Concentrated Load at Bottom Quarter Point Continued. Load in lbs.

Strain Gage Number

8000 8500 9000 9500 10000 10500 11000 11500 12000 12300 12800 13300 13900 14300 14700 15000

QPT-1 24.244 25.214 27.154 29.093 30.063 32.003 33.942 35.882 37.822 39.761 41.701 43.641 45.58 47.52 48.49 49.46

QPT-2 23.304 24.275 26.217 28.159 29.13 30.101 32.043 33.985 34.956 36.899 37.87 39.812 41.754 43.696 44.667 44.667

QPT-3 20.361 22.3 23.27 24.24 26.179 27.148 28.118 30.057 31.027 31.997 34.906 33.936 34.906 35.875 36.845 37.815

QPT-4 26.21 28.152 30.094 32.035 33.006 34.948 36.889 38.831 40.773 41.743 43.685 44.656 46.598 47.568 48.539 49.51

QPT-5 26.2 27.17 29.111 31.052 32.022 34.934 35.904 37.845 39.786 40.756 41.727 42.697 44.638 45.609 46.579 47.549

QPT-6 23.279 25.219 27.159 28.129 29.099 32.009 32.979 34.919 36.859 38.799 39.769 41.709 43.649 45.589 46.559 47.529

MS-1 48.566 52.452 56.337 61.194 64.108 69.937 74.794 79.651 85.48 90.337 95.195 101.99 116.56 124.34 135.02 143.77

MS-2 47.555 49.496 52.408 56.29 58.231 61.143 64.055 66.967 70.849 72.79 74.732 75.702 78.614 80.555 83.467 85.409

MS-3 39.797 41.739 43.68 45.622 47.563 49.504 51.446 52.417 54.358 55.329 56.3 57.27 58.241 59.212 60.183 60.183

MS-4 40.767 42.709 45.621 48.533 49.504 52.416 54.357 56.299 58.24 60.182 62.123 64.065 66.006 66.977 68.919 69.889

MS-5 46.605 48.547 51.46 54.373 56.315 60.199 62.141 66.025 71.852 74.765 77.678 82.533 88.36 93.215 99.042 101.95

MS-6 45.604 49.486 51.427 55.308 58.219 62.101 65.012 68.894 72.775 76.657 79.568 83.45 87.332 90.243 92.184 94.125

QPB-1 56.269 61.12 67.912 75.674 82.466 92.168 118.36 142.62 175.62 189.2 204.73 221.23 239.67 248.41 259.08 269.76

QPB-2 95.218 103.96 117.56 135.05 147.69 163.24 179.76 203.08 223.5 238.08 259.46 283.76 316.81 332.37 350.84 338.2

QPB-3 137.7 149.34 174.56 213.35 223.06 238.58 239.55 245.37 253.13 263.8 268.65 267.68 266.71 271.56 281.26 268.65

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 108.83 119.52 130.21 142.85 152.57 165.2 176.87 192.42 207 218.67 240.05 267.27 291.58 309.08 326.58 336.3

QPB-6 51.481 57.309 61.195 67.023 72.852 77.709 82.566 89.366 99.081 107.82 138.91 181.66 198.18 208.87 219.56 227.33

Displacement

tqp-1 0.0065 0.0130 0.0130 0.0130 0.0130 0.0130 0.0195 0.0195 0.0195 0.0195 0.0282 0.0282 0.028 0.035 0.035 0.035

tqp-2 0.0199 0.0210 0.0232 0.0243 0.0265 0.0276 0.0287 0.0298 0.0321 0.0343 0.0365 0.0387 0.042 0.044 0.046 0.049

tqp-3 0.0108 0.0129 0.0129 0.0129 0.0129 0.0194 0.0194 0.0194 0.0194 0.0258 0.0258 0.0258 0.032 0.032 0.032 0.039

tqp-4 0.0161 0.0172 0.0172 0.0215 0.0237 0.0258 0.0269 0.0280 0.0280 0.0291 0.0301 0.0312 0.038 0.041 0.042 0.043

midspan-1 0.0290 0.0268 0.0290 0.0334 0.0357 0.0334 0.0424 0.0401 0.0424 0.0491 0.0491 0.0535 0.056 0.062 0.062 0.0691

midspan-2 0.0277 0.0288 0.0310 0.0332 0.0354 0.0376 0.0399 0.0432 0.0465 0.0498 0.0531 0.0565 0.062 0.065 0.068 0.071

midspan-3 0.0279 0.0458 0.0212 0.0458 0.0714 0.0223 .0000 .0290 0.0915 0.0279 0.0815 0.0737 0.048 0.075 0.171 0.167

midspan-4 0.0289 0.0311 0.0334 0.0356 0.0378 0.0400 0.0423 0.0445 0.0478 0.0500 0.0534 0.0567 0.062 0.066 0.068 0.071

bqp-1 0.0254 0.0276 0.0298 0.0332 0.0343 0.0376 0.0398 0.0420 0.0442 0.0475 0.0497 0.0531 0.060 0.062 0.065 0.069

bqp-2 0.0274 0.0274 0.0319 0.0319 0.0411 0.0365 0.0456 0.0456 0.0547 0.0547 0.0593 -0.0593 -0.073 -0.078 -0.082 -0.087

bqp-3 -0.0275 -0.0275 -0.0321 -0.0367 -0.0321 -0.0413 -0.0413 -0.0459 -0.0459 -0.0505 -0.0550 -0.0642 -0.069 -0.073 -0.078 -0.078

Page 145: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

133

Slab: WWF Test: Concentrated Load at Mid-Span (Figure 5.3-B) Strain Gage readings are in µin/in Displacement readings are in inches

Load in lbs.

Strain Gage Number

0 632.2 1239.7 1559.9 2175.6 2610.8 3013.1 3604.2 3973.7 4499.1 5049.2 5476.1 6387.5 7052.5 7569.7

QPT-1 0 3.9 7.8 9.7 13.6 16.5 19.4 22.3 25.2 29.1 33.0 35.9 39.8 47.5 52.4

QPT-2 0 4.9 8.7 10.7 15.5 18.4 21.4 26.2 29.1 33.0 36.9 39.8 44.7 57.3 62.1

QPT-3 0 4.8 8.7 9.7 14.5 18.4 21.3 24.2 27.1 31.0 34.9 37.8 41.7 46.5 49.5

QPT-4 0 4.9 9.7 11.6 17.5 20.4 24.3 28.2 32.0 35.9 40.8 43.7 48.5 56.3 61.2

QPT-5 0 4.9 9.7 10.7 16.5 19.4 22.3 27.2 30.1 34.9 38.8 42.7 46.6 55.3 60.2

QPT-6 0 3.9 7.8 8.7 12.6 15.5 17.5 21.3 24.2 28.1 31.0 33.9 37.8 44.6 49.5

MS-1 0 6.8 13.6 16.5 25.3 30.1 35.9 42.7 48.6 55.4 62.2 68.0 75.8 91.3 101.0

MS-2 0 7.8 15.5 18.4 28.1 33.0 38.8 46.6 52.4 60.2 67.0 73.8 81.5 118.4 152.4

MS-3 0 8.7 17.5 20.4 30.1 35.9 42.7 50.5 56.3 64.1 71.8 78.6 97.1 160.2 181.5

MS-4 0 8.7 18.4 22.3 33.0 38.8 46.6 55.3 62.1 70.9 79.6 87.4 100.0 164.1 197.1

MS-5 0 6.8 14.6 17.5 26.2 31.1 37.9 44.7 50.5 57.3 65.1 70.9 78.7 96.1 110.7

MS-6 0 3.9 9.7 12.6 19.4 21.3 27.2 31.1 34.9 39.8 43.7 50.5 56.3 67.0 73.7

QPB-1 0 4.9 10.7 13.6 22.3 27.2 33.0 40.8 46.6 53.4 61.1 66.9 75.7 89.3 99.0

QPB-2 0 4.9 10.7 13.6 21.4 26.2 32.1 39.8 44.7 52.5 59.3 66.1 72.9 86.5 94.3

QPB-3 0 5.8 10.7 13.6 21.3 25.2 30.1 36.8 41.7 48.5 54.3 59.2 65.9 75.6 80.5

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 5.8 11.7 14.6 23.3 28.2 34.0 41.8 47.6 55.4 63.2 69.0 77.7 91.4 100.1

QPB-6 0 3.9 8.7 10.7 19.4 27.2 35.9 38.9 44.7 51.5 56.3 64.1 69.9 81.6 89.4

Displacement

tqp-1 0 0.0000 0.0000 0.0000 -0.0065 -0.0065 -0.0065 -0.0109 -0.0152 -0.0130 -0.0130 -0.0195 -0.0217 -0.0282 -0.0282

tqp-2 0 -0.0011 -0.0022 -0.0044 -0.0088 -0.0099 -0.0122 -0.0155 -0.0177 -0.0199 -0.0221 -0.0254 -0.0265 -0.0321 -0.0354

tqp-3 0 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0022 -0.0065 -0.0065 -0.0065 -0.0129 -0.0129 -0.0172 -0.0194 -0.0258

tqp-4 0 0.0000 0.0000 -0.0011 -0.0054 -0.0086 -0.0097 -0.0118 -0.0129 -0.0161 -0.0205 -0.0215 -0.0237 -0.0258 -0.0312

mid-span-1

0 0.0022 0.0067 0.0067 0.0067 0.0134 0.0134 0.0223 0.0223 0.0223 0.0290 0.0268 0.0357 0.0401 0.0424

mid-span-2

0 -0.0022 -0.0033 -0.0055 -0.0100 -0.0122 -0.0144 -0.0166 -0.0199 -0.0233 -0.0266 -0.0288 -0.0332 -0.0399 -0.0443

mid-span-3

0 0.0078 0.0179 -0.0022 -0.0882 -0.0714 -0.0569 -0.0502 -0.0614 -0.0167 0.0335 -0.0290 -0.0447 -0.0357 -0.0223

mid-span-4

0 -0.0011 -0.0044 -0.0067 -0.0111 -0.0122 -0.0156 -0.0189 -0.0211 -0.0234 -0.0278 -0.0300 -0.0345 -0.0400 -0.0434

bqp-1 0 0.0000 -0.0011 -0.0022 -0.0055 -0.0077 -0.0099 -0.0122 -0.0144 -0.0177 -0.0199 -0.0221 -0.0254 -0.0298 -0.0332

BQP-2 0 0.0000 0.0000 0.0000 0.0000 -0.0046 -0.0046 -0.0091 -0.0137 -0.0137 -0.0182 -0.0182 -0.0228 -0.0274 -0.0319

BQP-3 0 0.0000 0.0000 0.0000 -0.0046 -0.0046 -0.0046 -0.0138 -0.0138 -0.0138 -0.0183 -0.0183 -0.0275 -0.0275 -0.0367

Page 146: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

134

Concentrated Load at Mid-Span Continued. Load in lbs.

Strain Gage Number

7914.6 8513.9 8916.2 9441.7 9958.9 10451.0 10927.0 11395.0 11970.0 12454.0 13045.0 13382.0 13850.0 14302.0

QPT-1 55.3 61.1 65.9 70.8 76.6 82.4 88.3 90.2 92.1 104.7 116.4 123.2 132.9 146.5

QPT-2 66.0 73.8 78.7 83.5 88.4 92.3 97.1 101.0 106.8 111.7 118.5 126.2 146.6 164.1

QPT-3 51.4 54.3 56.2 59.1 62.1 64.0 65.9 68.8 72.7 76.6 151.3 200.7 231.8 259.9

QPT-4 64.1 68.9 71.8 74.8 78.6 81.6 85.4 89.3 95.1 104.9 113.6 119.4 135.0 158.3

QPT-5 64.0 69.9 73.8 78.6 84.4 90.3 97.0 103.8 111.6 121.3 133.9 140.7 153.3 166.0

QPT-6 52.4 57.2 61.1 66.0 70.8 75.7 79.5 82.5 87.3 95.1 101.9 105.7 114.5 128.1

MS-1 107.8 123.4 137.9 154.5 180.7 205.0 216.7 229.3 248.7 275.0 310.0 329.4 370.2 424.7

MS-2 171.8 188.3 203.8 222.3 242.7 271.8 298.0 331.0 368.0 395.1 425.3 444.7 420.4 452.5

MS-3 201.0 225.2 242.7 264.1 261.2 275.7 295.2 317.5 349.6 379.7 410.8 428.2 415.6 450.6

MS-4 221.4 236.9 252.4 262.1 270.9 284.5 306.8 330.1 360.2 391.3 436.0 460.3 476.8 506.0

MS-5 120.4 137.9 155.4 177.7 203.0 220.5 239.9 259.3 290.4 320.5 360.3 386.6 423.5 464.3

MS-6 76.7 85.4 93.2 102.9 111.6 123.2 157.2 177.6 201.9 226.1 259.1 281.5 308.6 354.3

QPB-1 103.8 113.5 121.3 130.0 138.8 148.5 155.3 163.0 172.7 182.4 194.1 200.9 212.5 221.3

QPB-2 98.1 105.9 111.8 118.6 124.4 129.2 135.1 139.9 145.8 150.6 158.4 163.3 158.4 157.4

QPB-3 83.4 89.2 93.1 98.9 107.6 115.4 122.2 130.0 138.7 148.4 166.8 177.5 184.3 197.9

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 105.0 113.7 119.5 127.3 134.1 141.9 148.7 156.5 166.2 175.0 190.5 198.3 214.8 260.5

QPB-6 93.3 102.0 105.9 114.6 122.4 131.2 138.0 144.8 155.4 164.2 172.0 178.8 192.4 213.8

Displacement

tqp-1 -0.0282 -0.0369 -0.0347 -0.0413 -0.0413 -0.0499 -0.0499 -0.0565 -0.0608 -0.0630 -0.0717 -0.0782 -0.0847 -0.0912

tqp-2 -0.0376 -0.0420 -0.0453 -0.0486 -0.0520 -0.0564 -0.0608 -0.0663 -0.0718 -0.0774 -0.0862 -0.0906 -0.0984 -0.1072

tqp-3 -0.0258 -0.0323 -0.0323 -0.0387 -0.0387 -0.0452 -0.0452 -0.0516 -0.0602 -0.0645 -0.0731 -0.0731 -0.0796 -0.0925

tqp-4 -0.0345 -0.0377 -0.0398 -0.0409 -0.0463 -0.0538 -0.0549 -0.0581 -0.0624 -0.0678 -0.0754 -0.0807 -0.0840 -0.0947

mid-span-1 0.0424 0.0491 0.0557 0.0557 0.0624 0.0691 0.0758 0.0825 0.0892 0.0981 0.1048 0.1115 0.1226 0.1382

mid-span-2 -0.0476 -0.0554 -0.0576 -0.0620 -0.0675 -0.0764 -0.0819 -0.0897 -0.0974 -0.1085 -0.1207 -0.1284 -0.1406 -0.1594

mid-span-3 -0.0234 0.0134 0.0156 0.0100 0.0100 0.0000 -0.0056 0.0246 -0.0078 -0.0458 -0.0502 -0.0915 -0.0815 -0.0982

mid-span-4 -0.0456 -0.0500 -0.0545 -0.0578 -0.0634 -0.0689 -0.0734 -0.0801 -0.0879 -0.0934 -0.1034 -0.1090 -0.1168 -0.1312

bqp-1 -0.0354 -0.0376 -0.0398 -0.0431 -0.0475 -0.0497 -0.0542 -0.0586 -0.0630 -0.0685 -0.0752 -0.0785 -0.0851 -0.0940

BQP-2 -0.0319 -0.0411 -0.0411 -0.0456 -0.0456 -0.0547 -0.0547 -0.0593 -0.0639 -0.0730 -0.0776 -0.0867 -0.0912 -0.1004

BQP-3 -0.0367 -0.0367 -0.0413 -0.0413 -0.0459 -0.0550 -0.0550 -0.0642 -0.0642 -0.0688 -0.0780 -0.0826 -0.0917 -0.1055

Page 147: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

135

Slab: WWF Test: Concentrated Load at Top Quarter Point (Figure 5.3-C) Strain Gage readings are in µin/in. Displacement readings are in inches

Load in lbs.

Strain Gage

0 1247.9 1863.7 2331.6 2520.5 3095.2 3587.8 4203.6 4712.6 5213.4 5615.7 6124.7 6715.9 6986.8 7528.7

QPT-1 0 6.8 10.7 13.6 15.5 19.4 23.3 27.2 31.0 34.9 38.8 41.7 47.5 49.5 52.4

QPT-2 0 12.6 20.4 26.2 28.2 36.9 44.7 54.4 61.2 69.9 76.7 83.5 97.1 102.9 111.7

QPT-3 0 15.5 24.2 31.0 33.9 42.7 50.4 60.1 67.9 76.6 84.4 92.1 108.6 115.4 127.0

QPT-4 0 18.4 28.2 36.9 40.8 51.5 60.2 71.8 80.6 90.3 99.0 107.8 125.2 132.0 144.7

QPT-5 0 12.6 19.4 24.3 26.2 33.0 38.8 46.6 52.4 59.2 64.1 69.9 80.6 84.4 92.2

QPT-6 0 8.7 11.6 15.5 16.5 21.3 24.3 29.1 33.0 36.9 39.8 43.7 49.5 52.4 56.3

MS-1 0 12.6 19.4 25.3 28.2 36.9 43.7 53.4 62.2 70.9 76.8 83.6 94.2 98.1 104.9

MS-2 0 13.6 21.4 28.2 31.1 41.7 50.5 63.1 73.8 85.4 94.2 103.9 119.4 125.2 136.9

MS-3 0 14.6 22.3 30.1 33.0 43.7 53.4 67.0 77.7 89.3 98.1 106.8 121.4 127.2 137.9

MS-4 0 14.6 23.3 30.1 33.0 43.7 53.4 67.0 77.7 88.4 97.1 106.8 120.4 126.2 136.9

MS-5 0 13.6 21.4 29.1 32.1 41.8 49.5 60.2 69.0 77.7 85.5 92.3 103.9 107.8 117.5

MS-6 0 11.6 18.4 24.3 27.2 34.9 41.7 51.4 59.2 67.0 72.8 80.6 90.3 94.2 101.9

QPB-1 0 4.9 7.8 10.7 11.6 14.6 17.5 20.4 22.3 25.2 27.2 29.1 32.0 33.0 35.9

QPB-2 0 5.8 9.7 13.6 14.6 19.4 24.3 30.1 35.0 39.8 43.7 48.6 54.4 57.3 62.2

QPB-3 0 5.8 9.7 12.6 14.5 19.4 23.3 29.1 33.9 39.8 43.6 48.5 55.3 58.2 63.0

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 6.8 9.7 13.6 14.6 19.4 24.3 30.1 35.0 39.8 43.7 48.6 55.4 57.3 61.2

QPB-6 0 4.9 7.8 10.7 10.7 13.6 15.5 18.5 21.4 24.3 27.2 30.1 35.0 36.9 40.8

Displacement

tqp-1 0.0000 0.0000 0.0000 0.0000 0.0043 0.0065 0.0065 0.0152 0.0130 0.0195 0.0195 0.0282 0.0282 0.0347 0.0347

tqp-2 0.0000 0.0033 0.0077 0.0111 0.0122 0.0155 0.0188 0.0232 0.0254 0.0298 0.0332 0.0365 0.0420 0.0442 0.0497

tqp-3 0.0000 0.0000 0.0000 0.0043 0.0043 0.0065 0.0065 0.0129 0.0129 0.0194 0.0194 0.0258 0.0344 0.0344 0.0409

tqp-4 0.0000 0.0011 0.0075 0.0097 0.0108 0.0129 0.0151 0.0172 0.0194 0.0248 0.0280 0.0301 0.0377 0.0388 0.0409

mid-span-1

0.0000 0.0089 0.0067 0.0089 0.0156 0.0134 0.0201 0.0201 0.0268 0.0268 0.0357 0.0334 0.0401 0.0491 0.0557

mid-span-2

0.0000 0.0033 0.0044 0.0055 0.0066 0.0122 0.0166 0.0210 0.0244 0.0299 0.0332 0.0365 0.0443 0.0465 0.0543

mid-span-3

0.0000 0.0357 0.0067 0.0458 0.0380 0.0022 0.0647 0.0525 0.0692 0.0860 0.0759 0.0703 0.0860 0.0837 0.1072

mid-span-4

0.0000 0.0044 0.0067 0.0100 0.0111 0.0145 0.0178 0.0222 0.0267 0.0311 0.0345 0.0378 0.0445 0.0467 0.0534

bqp-1 0.0000 0.0000 0.0033 0.0044 0.0044 0.0066 0.0088 0.0122 0.0144 0.0166 0.0188 0.0210 0.0254 0.0276 0.0321

BQP-2 0.0000 0.0046 0.0046 0.0046 0.0091 0.0091 0.0137 0.0137 0.0182 0.0228 0.0182 0.0228 0.0274 0.0274 0.0319

BQP-3 0.0000 0.0046 0.0046 0.0046 0.0046 0.0092 0.0138 0.0092 0.0183 0.0183 0.0138 0.0229 0.0321 0.0321 0.0321

Page 148: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

136

Concentrated Load at Top Quarter Point Continued. Load in lbs.

Strain Gage 8070.6 8505.7 8990.1 9532 10057 10484 10862 11412 11830 12372 12931 13292 13743 13940 14252 14860

QPT-1 56.3 60.1 64.0 68.9 73.7 77.6 81.5 86.3 91.2 98.9 108.6 114.5 128.0 170.7 195.9 249.3

QPT-2 122.4 132.1 141.8 154.4 167.0 175.8 185.5 197.2 209.8 230.2 265.2 281.7 319.6 286.5 319.6 380.8

QPT-3 138.7 151.3 162.9 180.4 194.9 205.6 217.2 231.8 245.4 253.1 252.2 261.9 273.5 297.8 336.6 394.8

QPT-4 158.3 166.0 178.6 193.2 206.8 216.5 227.2 240.8 253.4 267.0 267.0 276.7 272.8 290.3 315.6 363.2

QPT-5 100.9 110.6 118.4 129.1 138.8 146.6 155.3 166.0 176.6 193.2 219.4 230.0 241.7 256.3 250.4 266.0

QPT-6 61.1 66.0 70.8 76.6 81.5 85.4 90.2 96.0 99.9 106.7 113.5 116.4 126.1 146.5 157.2 196.0

MS-1 112.7 119.5 126.3 134.1 141.9 147.7 153.5 160.3 167.1 174.9 182.7 187.5 192.4 196.3 200.2 202.1

MS-2 148.6 158.3 168.9 181.6 193.2 202.0 210.7 222.4 232.1 244.7 257.3 266.1 278.7 266.1 265.1 270.0

MS-3 149.6 158.3 169.0 179.7 191.3 199.1 206.9 218.5 227.3 237.9 248.6 254.5 262.2 250.6 249.6 253.5

MS-4 147.6 155.4 165.1 174.8 183.5 190.3 197.1 206.9 214.6 223.4 233.1 239.9 246.7 248.6 256.4 267.1

MS-5 126.3 133.1 140.8 150.6 159.3 166.1 171.9 180.7 187.5 197.2 205.9 211.8 218.6 224.4 226.3 239.9

MS-6 109.7 116.5 125.2 134.0 142.7 149.5 156.3 164.1 171.8 181.5 190.3 197.1 204.8 213.6 219.4 236.9

QPB-1 38.8 40.7 42.7 45.6 48.5 50.5 52.4 55.3 58.2 61.1 64.0 66.0 67.9 68.9 71.8 73.7

QPB-2 68.0 71.9 76.8 82.6 88.4 92.3 97.2 102.0 106.9 113.7 119.5 123.4 129.2 128.3 131.2 136.0

QPB-3 68.9 72.7 77.6 82.4 88.2 92.1 96.0 101.8 106.7 112.5 119.3 124.1 130.0 130.0 132.9 138.7

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 66.1 70.0 73.9 78.7 82.6 85.5 88.4 93.3 96.2 101.1 105.0 108.8 112.7 119.5 124.4 135.1

QPB-6 44.7 47.6 51.5 55.4 59.3 62.2 65.1 68.0 70.9 74.8 78.7 81.6 85.5 87.4 87.4 89.4

Displacement

tqp-1 0.0434 0.0456 0.0499 0.0565 0.0608 0.0630 0.0695 0.0695 0.0760 0.0847 0.0912 0.0956 0.1042 0.1260 0.1412 0.1694

tqp-2 0.0542 0.0586 0.0641 0.0707 0.0774 0.0818 0.0862 0.0928 0.0984 0.1050 0.1139 0.1205 0.1304 0.1536 0.1691 0.1979

tqp-3 0.0473 0.0473 0.0538 0.0602 0.0645 0.0667 0.0731 0.0796 0.0796 0.0860 0.0989 0.0989 0.1054 0.1269 0.1398 0.1591

tqp-4 0.0463 0.0517 0.0528 0.0581 0.0646 0.0689 0.0721 0.0764 0.0818 0.0861 0.0904 0.0947 0.1034 0.1163 0.1238 0.1400

mid-span-1 0.0557 0.0624 0.0691 0.0758 0.0825 0.0892 0.0959 0.0959 0.1026 0.1115 0.1249 0.1226 0.1315 0.1516 0.1583 0.1784

mid-span-2 0.0609 0.0653 0.0742 0.0819 0.0875 0.0930 0.0974 0.1041 0.1096 0.1185 0.1262 0.1306 0.1384 0.1528 0.1639 0.1827

mid-span-3 0.1038 0.1072 0.0927 0.0759 0.0826 0.0860 0.0848 0.0871 0.0781 0.1083 0.0737 0.0960 0.1038 0.0871 0.0737 0.0424

mid-span-4 0.0589 0.0645 0.0712 0.0778 0.0845 0.0890 0.0956 0.1012 0.1056 0.1145 0.1223 0.1246 0.1312 0.1412 0.1490 0.1635

bqp-1 0.0354 0.0387 0.0420 0.0464 0.0497 0.0531 0.0564 0.0608 0.0641 0.0685 0.0741 0.0763 0.0807 0.0906 0.0962 0.1072

BQP-2 0.0365 0.0365 0.0456 0.0456 0.0547 0.0547 0.0593 0.0684 0.0639 0.0730 0.0821 0.0776 0.0867 0.0912 0.1004 0.1049

BQP-3 0.0367 0.0367 0.0459 0.0505 0.0550 0.0596 0.0596 0.0688 0.0688 0.0734 0.0826 0.0826 0.0872 0.0963 0.1009 0.1101

Page 149: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

137

Slab: WWF Test: Concentrated Load at Top Third Point (Figure 5.3-D) Strain Gage readings are in µin/in Displacement readings are in inches.

Load in lbs. Strain Gage 0 681.44 1346.4 1568.1 2068.9 2487.6 3136.2 3612.4 4129.7 4507.3 5123.1 5509 6001.6 6666.6 7044.3 7602.6

QPT-1 0 5.8 12.6 14.5 21.3 26.2 34.9 41.7 48.5 53.3 61.1 66.9 73.7 83.4 89.2 97.0

QPT-2 0 7.8 17.5 21.4 31.1 38.8 53.4 65.1 76.7 86.4 100.0 108.8 119.5 133.1 140.8 151.5

QPT-3 0 9.7 21.3 25.2 36.9 46.5 64.0 76.6 91.2 100.9 116.4 126.1 138.7 153.2 162.0 173.6

QPT-4 0 10.7 22.3 27.2 37.9 47.6 64.1 75.7 89.3 99.0 113.6 122.3 134.0 148.6 156.3 168.0

QPT-5 0 7.8 16.5 19.4 27.2 34.0 45.6 53.4 61.1 67.9 77.6 84.4 92.2 103.9 109.7 119.4

QPT-6 0 4.9 11.6 13.6 18.4 23.3 31.0 36.9 42.7 46.6 53.4 58.2 64.0 72.8 77.6 84.4

MS-1 0 9.7 20.4 24.3 34.0 41.8 54.4 64.1 73.8 80.6 91.3 98.1 105.9 116.6 122.4 132.1

MS-2 0 9.7 22.3 27.2 37.9 47.6 65.0 77.7 92.2 102.9 121.4 132.0 145.6 164.1 173.8 188.4

MS-3 0 10.7 23.3 28.2 39.8 49.5 66.0 79.6 94.2 103.9 120.4 130.1 141.8 158.3 167.0 180.6

MS-4 0 10.7 23.3 28.2 39.8 50.5 68.9 82.5 97.1 107.8 124.3 135.0 147.6 164.1 173.8 188.4

MS-5 0 10.7 23.3 28.2 38.8 47.6 62.2 72.8 84.5 93.2 106.8 115.6 127.2 142.8 151.5 164.2

MS-6 0 8.7 20.4 24.3 34.9 42.7 56.3 66.0 75.7 83.5 95.1 102.9 112.6 126.2 134.0 145.6

QPB-1 0 3.9 7.8 9.7 13.6 15.5 19.4 22.3 25.2 28.1 31.0 34.0 36.9 41.7 44.6 48.5

QPB-2 0 4.9 9.7 12.6 17.5 22.3 31.1 36.9 43.7 47.6 55.4 59.3 64.1 71.9 75.8 82.6

QPB-3 0 4.8 10.7 12.6 18.4 23.3 32.0 37.8 45.6 50.4 58.2 63.0 67.9 75.6 79.5 86.3

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 4.9 10.7 12.6 18.5 23.3 33.0 38.9 46.6 51.5 59.3 64.1 70.0 77.7 81.6 87.5

QPB-6 0 3.9 7.8 8.7 11.7 14.6 18.5 22.3 26.2 30.1 35.0 37.9 41.8 47.6 51.5 55.4

Displacement

tqp-1 0 0.0022 0.0043 0.0043 0.0043 0.0130 0.0195 0.0261 0.0261 0.0347 0.0391 0.0478 0.0521 0.0630 0.0695 0.0760

tqp-2 0 0.0022 0.0066 0.0088 0.0133 0.0177 0.0232 0.0287 0.0354 0.0409 0.0486 0.0531 0.0619 0.0718 0.0763 0.0829

tqp-3 0 0.0000 0.0000 0.0000 0.0022 0.0043 0.0108 0.0172 0.0237 0.0237 0.0301 0.0366 0.0430 0.0516 0.0581 0.0645

tqp-4 0 0.0011 0.0022 0.0022 0.0075 0.0108 0.0194 0.0226 0.0248 0.0301 0.0345 0.0366 0.0452 0.0528 0.0571 0.0646

mid-span-1 0 0.0045 0.0111 0.0111 0.0178 0.0178 0.0245 0.0312 0.0379 0.0468 0.0535 0.0602 0.0669 0.0803 0.0870 0.0936

mid-span-2 0 0.0011 0.0055 0.0078 0.0122 0.0177 0.0244 0.0310 0.0388 0.0443 0.0520 0.0598 0.0675 0.0808 0.0864 0.0963

mid-span-3 0 0.0045 0.0201 0.0301 4.4318 4.3414 4.2733 4.2331 4.2085 4.1672 4.2297 4.1817 4.1784 4.1862 4.2108 4.1605

mid-span-4 0 0.0011 0.0056 0.0067 0.0122 0.0156 0.0234 0.0289 0.0356 0.0400 0.0478 0.0534 0.0612 0.0734 0.0790 0.0879

bqp-1 0 0.0011 0.0044 0.0044 0.0077 0.0099 0.0144 0.0188 0.0232 0.0254 0.0309 0.0343 0.0398 0.0464 0.0508 0.0564

BQP-2 0 0.0091 0.5794 0.5839 0.5885 0.5885 0.5976 0.5976 0.5976 0.6022 0.6068 0.6113 0.6204 0.6296 0.6296 0.6341

BQP-3 0 0.0000 0.0000 0.0092 0.0092 0.0092 0.0138 0.0229 0.0183 0.0321 0.0367 0.0367 0.0459 0.0505 0.0596 0.0642

Page 150: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

138

Concentrated Load at Top Third Point Continued Load in lbs.

Strain Gage 7947.4 8596 9022.9 9663.3 9983.5 10484 11001 11781 11962 12413 12865 13325 13883 14351 14573

QPT-1 102.8 112.5 119.3 130.0 134.8 143.6 152.3 167.8 171.7 183.3 201.8 219.2 238.6 257.1 292.0

QPT-2 159.3 171.9 180.7 194.3 201.1 210.8 222.4 240.9 245.8 259.4 275.9 293.4 315.7 335.2 374.0

QPT-3 182.3 195.9 204.7 218.2 225.0 235.7 247.3 266.7 271.6 285.2 300.7 315.3 333.7 351.2 388.0

QPT-4 175.7 189.3 198.1 212.6 221.4 233.0 246.6 271.9 278.7 295.2 315.6 335.0 364.2 393.3 463.3

QPT-5 125.2 135.9 143.7 156.3 162.1 170.8 181.5 200.9 205.8 214.5 212.6 218.4 199.0 220.3 291.2

QPT-6 89.3 98.0 103.8 111.6 116.4 123.2 130.0 139.7 141.6 146.5 152.3 160.1 176.6 194.0 309.5

MS-1 138.0 149.6 157.4 169.1 174.9 184.6 193.4 208.9 212.8 221.6 232.3 242.9 258.5 275.0 300.3

MS-2 197.1 214.6 225.3 240.8 248.6 260.2 273.8 294.2 299.1 312.7 328.2 342.8 356.4 368.1 383.6

MS-3 188.4 203.9 213.7 227.3 234.1 244.7 256.4 275.8 281.7 294.3 308.9 324.4 339.9 352.6 369.1

MS-4 197.1 213.7 224.3 236.0 242.8 249.6 261.3 279.7 284.6 296.2 310.8 325.4 339.0 351.6 363.3

MS-5 171.9 186.5 196.2 210.8 217.6 230.2 241.9 260.4 264.2 275.9 292.4 309.9 328.4 342.0 314.8

MS-6 152.4 166.0 174.7 188.3 194.2 205.8 216.5 228.1 231.1 239.8 252.4 264.1 273.8 288.4 278.6

QPB-1 51.4 56.3 59.2 64.0 66.0 70.8 74.7 80.5 81.5 86.4 91.2 96.1 101.9 105.8 111.6

QPB-2 86.5 94.2 100.1 107.9 110.8 116.6 122.4 130.2 132.1 137.0 143.8 149.6 155.5 159.4 166.2

QPB-3 90.2 98.9 103.8 110.6 114.4 119.3 124.1 131.9 134.8 138.7 144.5 151.3 156.1 160.0 164.9

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 91.4 99.1 104.0 111.8 115.7 121.5 129.3 140.0 142.9 151.6 161.3 170.1 181.8 189.5 186.6

QPB-6 59.3 64.1 67.0 72.9 75.8 80.6 84.5 97.1 99.1 105.9 112.7 118.5 124.4 130.2 128.2

Displacement

tqp-1 0.0760 0.0890 0.0934 0.1042 0.1042 0.1108 0.1194 0.1325 0.1325 0.1433 0.1542 0.1672 0.1889 0.2106 0.2389

tqp-2 0.0895 0.1006 0.1050 0.1150 0.1205 0.1271 0.1337 0.1459 0.1503 0.1614 0.1746 0.1901 0.2122 0.2332 0.2664

tqp-3 0.0710 0.0774 0.0839 0.0903 0.0968 0.1032 0.1097 0.1226 0.1290 0.1355 0.1484 0.1677 0.1892 0.2043 0.2408

tqp-4 0.0678 0.0721 0.0786 0.0861 0.0937 0.0969 0.1001 0.1141 0.1163 0.1217 0.1346 0.1475 0.1637 0.1776 0.2143

mid-span-1 0.1003 0.1093 0.1159 0.1293 0.1360 0.1427 0.1494 0.1628 0.1650 0.1784 0.1895 0.2051 0.2252 0.2453 0.2742

mid-span-2 0.1030 0.1129 0.1207 0.1306 0.1351 0.1450 0.1528 0.1683 0.1716 0.1838 0.1982 0.2148 0.2358 0.2524 0.2790

mid-span-3 4.1773 4.2141 4.2130 4.2264 4.2197 4.2588 4.2275 4.1650 4.1471 4.1103 4.0980 4.0601 4.0377 4.0935 4.1092

mid-span-4 0.0934 0.1045 0.1101 0.1190 0.1234 0.1312 0.1379 0.1512 0.1546 0.1646 0.1790 0.1946 0.2135 0.2335 0.2624

bqp-1 0.0597 0.0663 0.0707 0.0774 0.0807 0.0862 0.0906 0.0984 0.1017 0.1072 0.1150 0.1249 0.1360 0.1448 0.1592

BQP-2 0.6387 0.6432 0.6478 0.6569 0.6615 0.6615 0.6706 0.6752 0.6797 0.6889 0.6934 0.6980 0.7162 0.7208 0.7436

BQP-3 0.0642 0.0688 0.0780 0.0872 0.0872 0.0917 0.1009 0.1055 0.1055 0.1147 0.1193 0.1330 0.1422 0.1560 0.1697

Page 151: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

139

Slab: WWF Test: Concentrated Load at Bottom Third Point (Figure 5.3-E) Strain Gage Readings are in µin/in Displacement Readings are in inches.

Load in lbs.

Strain Gage Number

0 1206.8 1584.5 2151 2610.8 3078.8 3538.5 4137.9 4605.9 5443.3 6116.5 6576.3 7216.7 7520.5

QPT-1 0 6.8 9.7 13.6 16.5 20.4 23.3 26.2 30.1 35.9 41.7 45.6 51.4 54.3

QPT-2 0 7.8 11.7 18.5 24.3 30.1 36.9 43.7 49.5 60.2 67.0 70.9 76.7 79.6

QPT-3 0 9.7 13.6 21.3 28.1 34.9 41.7 49.5 56.2 66.9 74.7 79.5 85.3 88.3

QPT-4 0 8.7 12.6 21.4 28.2 35.9 42.7 51.5 58.3 69.9 77.7 82.5 89.3 93.2

QPT-5 0 8.7 11.6 18.4 24.3 30.1 35.9 42.7 47.6 57.3 64.1 67.9 74.7 77.6

QPT-6 0 6.8 8.7 13.6 17.5 20.4 24.3 29.1 33.0 39.8 45.6 50.4 57.2 60.1

MS-1 0 20.4 27.2 39.8 49.6 59.3 69.0 80.6 90.4 106.9 119.5 128.3 143.8 149.6

MS-2 0 23.3 32.0 46.6 60.2 73.8 88.4 106.8 121.4 145.6 166.0 179.6 198.1 207.8

MS-3 0 23.3 32.0 47.6 60.2 74.8 88.4 106.8 121.4 144.7 163.1 175.8 187.4 197.1

MS-4 0 22.3 31.1 46.6 60.2 74.8 89.3 108.8 124.3 149.6 169.0 181.6 194.2 203.9

MS-5 0 21.4 29.1 41.8 52.4 65.1 75.8 90.3 102.0 122.4 137.9 148.6 164.2 171.9

MS-6 0 16.5 23.3 34.0 43.7 53.4 64.1 76.7 87.4 105.8 120.4 129.1 144.6 150.5

QPB-1 0 12.6 16.5 21.3 26.2 31.0 35.9 42.7 47.5 57.2 64.0 68.9 78.6 82.5

QPB-2 0 20.4 27.2 37.9 46.6 55.4 63.2 72.9 81.6 95.2 104.9 111.7 124.4 129.2

QPB-3 0 21.3 28.1 39.8 47.5 56.2 65.0 76.6 85.3 100.9 112.5 120.3 134.8 140.6

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 18.5 24.3 34.0 41.8 50.5 58.3 69.0 76.8 92.3 103.0 118.6 133.1 137.0

QPB-6 0 11.7 15.5 23.3 30.1 36.9 44.7 53.4 59.3 71.9 81.6 88.4 100.1 104.9

Displacement

tqp-1 0 0.0000 0.0000 0.0000 0.0065 0.0065 0.0130 0.0217 0.0217 0.0326 0.0413 0.0413 0.0565 0.0565

tqp-2 0 0.0033 0.0066 0.0111 0.0144 0.0177 0.0221 0.0287 0.0332 0.0420 0.0464 0.0542 0.0652 0.0674

tqp-3 0 0.0000 0.0000 0.0000 0.0000 0.0043 0.0065 0.0129 0.0194 0.0258 0.0344 0.0387 0.0473 0.0538

tqp-4 0 0.0011 0.0022 0.0043 0.0075 0.0129 0.0172 0.0215 0.0258 0.0345 0.0388 0.0441 0.0549 0.0603

mid-span-1

0 0.0067 0.0045 0.0134 0.0201 0.0290 0.0312 0.0424 0.0468 0.0602 0.0758 0.0803 0.0959 0.1026

mid-span-2

0 0.0044 0.0100 0.0155 0.0210 0.0299 0.0354 0.0454 0.0520 0.0642 0.0764 0.0853 0.0996 0.1041

mid-span-3

0 0.0112 0.0045 0.0033 0.0179 0.0179 0.0257 0.0558 0.0614 0.0703 0.0826 0.0558 0.1005 0.1585

mid-span-4

0 0.0067 0.0100 0.0156 0.0222 0.0278 0.0334 0.0434 0.0500 0.0634 0.0756 0.0834 0.0956 0.1012

bqp-1 0 0.0055 0.0077 0.0122 0.0155 0.0199 0.0254 0.0309 0.0354 0.0453 0.0531 0.0586 0.0696 0.0730

BQP-2 0 0.0046 0.0000 0.0091 0.0137 0.0182 0.0228 0.0319 0.0365 0.0502 0.0547 0.0639 0.0730 0.0776

BQP-3 0 0.0046 0.0046 0.0092 0.0138 0.0229 0.0229 0.0321 0.0367 0.0550 0.0596 0.0688 0.0826 0.0826

Page 152: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

140

Concentrated Load at Bottom Third Point Continued. Load in lbs.

Strain Gage Number

8111.6 8505.7 8899.8 9449.9 9885 10213 11420 12019 12471 12816 13349 13686 14285 14876

QPT-1 60.1 64.0 68.9 74.7 79.5 83.4 98.0 104.8 108.6 112.5 119.3 123.2 130.0 136.8

QPT-2 86.4 91.3 96.2 102.0 106.8 111.7 126.3 134.0 139.9 143.8 150.6 154.4 160.3 166.1

QPT-3 95.0 99.9 103.8 109.6 115.4 121.2 136.8 146.5 152.3 156.2 162.9 166.8 173.6 178.5

QPT-4 99.0 103.9 108.8 114.6 120.4 125.3 139.8 149.5 154.4 158.3 165.1 169.0 174.8 180.6

QPT-5 84.4 89.3 95.1 101.9 108.7 113.6 128.1 136.9 143.7 148.5 156.3 160.2 167.0 174.7

QPT-6 66.0 69.9 75.7 82.5 90.2 94.1 111.6 125.2 132.0 135.8 142.6 146.5 154.3 162.0

MS-1 162.3 171.0 179.8 192.4 201.2 208.0 236.2 255.6 269.2 279.9 298.4 312.0 333.4 354.8

MS-2 225.3 236.0 246.6 261.2 273.8 288.4 324.4 345.7 358.4 367.1 382.6 394.3 410.8 424.4

MS-3 212.7 223.4 231.1 242.8 252.5 263.2 293.3 311.8 323.4 332.2 347.7 358.4 374.9 392.4

MS-4 219.5 229.2 237.9 251.5 261.3 271.0 302.1 322.5 335.1 344.8 358.4 367.2 380.8 395.3

MS-5 186.5 196.2 205.9 219.5 232.2 242.9 277.8 296.3 308.0 317.7 332.3 340.0 356.6 373.1

MS-6 161.1 169.9 179.6 192.2 203.9 209.7 234.0 247.6 262.1 271.8 284.5 291.3 307.8 326.2

QPB-1 90.2 97.0 103.8 118.4 150.4 211.5 351.3 390.2 420.3 442.6 481.4 517.4 582.5 653.4

QPB-2 140.9 149.6 159.4 178.8 214.8 263.4 355.7 390.7 415.0 438.4 475.3 506.4 565.8 631.9

QPB-3 153.2 162.9 173.6 192.0 222.1 261.9 342.4 379.3 404.5 424.9 462.7 491.9 558.8 642.3

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 148.7 156.5 165.2 182.7 209.0 250.8 342.2 378.1 406.3 432.6 483.2 521.1 590.2 655.4

QPB-6 112.7 118.5 126.3 138.0 160.3 196.3 275.0 301.2 322.6 343.0 390.7 431.5 489.8 544.3

Displacement

tqp-1 0.0630 0.0695 0.0782 0.0847 0.0999 0.1064 0.1346 0.1477 0.1564 0.1629 0.1759 0.1911 0.2041 0.2258

tqp-2 0.0752 0.0807 0.0884 0.0951 0.1083 0.1172 0.1448 0.1581 0.1702 0.1791 0.1934 0.2045 0.2222 0.2421

tqp-3 0.0602 0.0667 0.0731 0.0796 0.0925 0.0989 0.1333 0.1462 0.1527 0.1656 0.1785 0.1914 0.2043 0.2258

tqp-4 0.0657 0.0689 0.0764 0.0851 0.0915 0.1034 0.1270 0.1432 0.1497 0.1572 0.1690 0.1787 0.1949 0.2099

mid-span-1 0.1070 0.1182 0.1315 0.1427 0.1583 0.1784 0.2185 0.2475 0.2609 0.2742 0.3010 0.3166 0.3500 0.3790

mid-span-2 0.1196 0.1262 0.1362 0.1528 0.1694 0.1893 0.2358 0.2613 0.2801 0.2978 0.3255 0.3454 0.3809 0.4152

mid-span-3 0.1362 0.1172 0.1518 0.1585 0.1764 0.1797 0.1753 0.1786 0.1875 0.1429 0.1351 0.0480 0.1105 0.0860

mid-span-4 0.1134 0.1212 0.1301 0.1435 0.1601 0.1802 0.2313 0.2569 0.2736 0.2869 0.3125 0.3281 0.3592 0.3914

bqp-1 0.0818 0.0884 0.0951 0.1061 0.1205 0.1393 0.1835 0.2067 0.2233 0.2388 0.2598 0.2752 0.3062 0.3393

BQP-2 0.0867 0.0867 0.1049 0.1095 0.1323 0.1505 0.1962 0.2235 0.2372 0.2555 0.2783 0.3011 0.3330 0.3741

BQP-3 0.0917 0.0917 0.1101 0.1193 0.1376 0.1560 0.2064 0.2294 0.2477 0.2615 0.2844 0.3073 0.3440 0.3807

Page 153: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

141

Slab: WWF Test: Longitudinal Linear Load along middle strip (Figure 5.3-F) Strain Gage Readings are in µin/in. Displacement readings are in inches.

Load in lbs.

Strain Gage 0 1510.6 2101.8 3333.3 4080.4 4950.7 6009.8 7085.3 8045.9 9187.1 10049 10894 11929 12766 13669 14655 15139

QPT-1 0 14.5 21.3 37.8 48.5 63.0 80.5 98.0 114.5 132.9 147.4 162.0 178.5 193.1 207.6 224.1 231.9

QPT-2 0 21.4 33.0 61.2 78.7 100.0 119.5 140.8 160.3 186.5 203.0 219.5 239.0 254.5 269.1 285.6 294.4

QPT-3 0 24.2 37.8 66.9 85.3 103.8 126.1 148.4 167.8 197.9 215.3 232.8 252.2 268.7 283.3 301.7 309.5

QPT-4 0 24.3 36.9 68.0 87.4 106.8 130.1 152.5 172.8 197.1 215.6 233.1 253.5 268.0 283.6 301.1 309.8

QPT-5 0 20.4 32.0 59.2 76.7 95.1 116.5 137.8 157.2 179.6 195.1 210.6 228.1 241.7 255.3 270.8 278.6

QPT-6 0 16.5 25.2 44.6 57.2 72.8 92.2 111.6 129.0 150.4 165.9 180.5 197.9 211.5 226.1 243.6 251.3

MS-1 0 32.1 45.7 74.8 92.3 113.7 140.9 168.1 194.4 223.5 245.9 266.3 291.6 312.0 333.4 360.6 373.2

MS-2 0 35.9 53.4 95.1 122.3 154.4 191.3 227.2 258.3 293.3 319.5 343.8 371.0 394.3 416.6 442.9 455.5

MS-3 0 35.9 53.4 94.2 119.4 147.6 180.6 212.7 240.9 272.9 296.2 319.6 345.8 367.2 388.5 412.8 424.5

MS-4 0 35.9 53.4 95.2 122.4 151.5 185.5 218.5 247.7 280.7 305.9 328.3 356.5 377.8 399.2 424.5 437.1

MS-5 0 35.9 51.5 86.4 108.8 135.0 167.1 198.2 225.4 255.5 277.8 299.2 323.5 343.0 363.4 386.7 398.4

MS-6 0 29.1 42.7 72.8 92.2 114.5 140.8 167.9 191.2 220.4 239.8 258.2 281.5 300.0 319.4 342.7 354.4

QPB-1 0 19.4 27.2 49.5 67.9 92.2 128.1 165.0 199.9 237.8 265.0 290.2 318.4 342.7 366.0 398.0 410.7

QPB-2 0 25.3 37.9 70.9 92.3 115.7 147.7 180.8 210.0 244.0 269.3 293.6 320.8 344.1 367.5 393.7 405.4

QPB-3 0 25.2 38.8 70.8 92.1 117.4 150.4 184.3 214.4 249.3 276.5 300.8 329.9 354.1 377.4 404.6 417.2

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 22.4 32.1 61.2 80.7 106.0 138.0 171.1 200.3 235.3 259.6 284.9 313.1 337.4 358.8 385.1 399.7

QPB-6 0 15.5 24.3 46.6 62.2 82.6 112.7 140.9 168.1 194.3 216.7 238.1 260.4 279.9 301.3 325.6 336.3

Displacement

tqp-1 0 0.0043 0.0065 0.0282 0.0413 0.0565 0.0760 0.0977 0.1194 0.1412 0.1607 0.1759 0.1889 0.2041 0.2237 0.2389 0.2541

tqp-2 0 0.0088 0.0144 0.0332 0.0453 0.0641 0.0884 0.1105 0.1304 0.1559 0.1724 0.1890 0.2078 0.2266 0.2432 0.2653 0.2741

tqp-3 0 0.0000 0.0000 0.0194 0.0344 0.0473 0.0731 0.0925 0.1161 0.1398 0.1591 0.1720 0.1935 0.2064 0.2258 0.2473 0.2602

tqp-4 0 0.0075 0.0108 0.0269 0.0398 0.0560 0.0743 0.0947 0.1130 0.1303 0.1443 0.1572 0.1733 0.1873 0.2013 0.2229 0.2304

mid-span-1 0 0.0067 0.0111 0.0401 0.0535 0.0736 0.1070 0.1360 0.1650 0.1984 0.2185 0.2386 0.2676 0.2876 0.3077 0.3367 0.3500

mid-span-2 0 0.0100 0.0177 0.0421 0.0598 0.0841 0.1185 0.1517 0.1794 0.2137 0.2380 0.2624 0.2890 0.3122 0.3355 0.3665 0.3798

mid-span-3 0 0.0078 0.0022 0.0011 0.0067 0.0067 0.0067 0.0089 0.0067 0.0078 0.0045 0.0045 0.0502 0.0491 0.0614 0.0357 0.0223

mid-span-4 0 0.0122 0.0211 0.0434 0.0601 0.0823 0.1145 0.1468 0.1757 0.2057 0.2291 0.2480 0.2725 0.2936 0.3147 0.3436 0.3536

bqp-1 0 0.0077 0.0133 0.0309 0.0431 0.0619 0.0851 0.1072 0.1293 0.1536 0.1702 0.1868 0.2067 0.2211 0.2376 0.2598 0.2719

BQP-2 0 0.0046 0.0091 0.0228 0.0365 0.0547 0.0867 0.1095 0.1323 0.1551 0.1734 0.1962 0.2144 0.2327 0.2464 0.2737 0.2828

BQP-3 0 0.0092 0.0138 0.0367 0.0459 0.0642 0.0917 0.1193 0.1422 0.1651 0.1881 0.2018 0.2248 0.2431 0.2569 0.2844 0.2936

Page 154: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

142

Slab: WWF Test: Longitudinal Linear Load along Left Third Point Strip (Figure 5.3-G) Strain Gage Readings are in µin/in. Displacement readings are in inches.

Load in lbs.

Strain Gage 0 1330 2003.2 3054.1 4088.6 5180.6 6083.7 7126.4 8193.7 9178.9 10188 11313 12011 12504 13719 14573

QPT-1 0 22.3 36.9 61.1 87.3 112.5 133.9 158.1 181.4 202.8 223.1 245.5 259.0 267.8 291.1 308.5

QPT-2 0 24.3 39.8 68.0 94.2 118.5 137.9 162.2 186.5 207.9 229.3 252.6 267.1 278.8 306.0 326.4

QPT-3 0 24.2 41.7 68.9 95.0 119.3 138.7 161.0 184.3 205.6 228.0 252.2 265.8 277.4 307.5 328.9

QPT-4 0 22.3 36.9 63.1 88.4 111.7 129.1 150.5 172.8 192.3 212.7 235.0 249.6 260.3 284.6 304.0

QPT-5 0 15.5 27.2 48.5 67.9 86.4 101.9 119.4 136.9 152.4 168.9 186.4 197.0 204.8 222.3 236.9

QPT-6 0 3.9 5.8 12.6 22.3 34.9 46.6 60.1 72.8 84.4 96.0 108.7 115.5 121.3 134.9 142.6

MS-1 0 36.0 54.4 86.5 122.4 159.4 190.5 226.4 262.4 294.5 326.6 361.6 383.9 400.5 445.2 488.0

MS-2 0 35.9 58.2 96.1 135.0 172.8 202.9 236.0 269.0 298.1 328.2 359.3 377.8 390.4 422.5 444.8

MS-3 0 35.0 57.3 96.1 134.0 170.9 200.1 232.1 264.2 292.3 321.5 352.6 372.0 384.7 417.7 442.0

MS-4 0 33.0 55.3 92.2 129.2 165.1 194.2 225.3 257.4 286.5 314.7 345.8 365.2 379.8 412.8 439.1

MS-5 0 28.2 45.6 73.8 102.0 131.1 154.4 181.7 207.9 231.2 254.5 278.8 293.4 304.1 330.3 350.7

MS-6 0 21.4 34.9 58.2 83.5 107.7 129.1 152.4 174.7 194.2 213.6 234.9 248.5 258.2 280.6 300.0

QPB-1 0 23.3 38.8 71.8 114.5 155.3 196.1 241.7 284.4 322.3 361.1 400.0 425.2 444.6 481.6 509.7

QPB-2 0 26.2 42.8 73.9 106.9 139.0 167.2 200.2 233.3 263.4 293.6 327.6 348.0 365.5 400.5 432.6

QPB-3 0 25.2 41.7 68.9 99.9 130.9 158.1 190.1 222.1 250.3 279.4 312.4 332.8 350.2 382.3 414.3

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 17.5 29.2 51.5 78.7 106.0 130.3 158.5 186.7 211.9 237.2 263.5 275.1 287.8 315.0 336.4

QPB-6 0 8.7 14.6 25.3 39.8 60.2 77.7 99.1 120.5 136.0 153.5 173.0 183.7 190.5 217.7 234.2

Displacement

tqp-1 0 0.0065 0.0217 0.0413 0.0630 0.0912 0.1129 0.1412 0.1629 0.1824 0.2041 0.2302 0.2476 0.2606 0.2888 0.3171

tqp-2 0 0.0099 0.0144 0.0343 0.0553 0.0774 0.0995 0.1216 0.1437 0.1647 0.1846 0.2056 0.2211 0.2376 0.2587 0.2819

tqp-3 0 0.0000 0.0000 0.0129 0.0323 0.0538 0.0731 0.0925 0.1118 0.1333 0.1527 0.1720 0.1849 0.2000 0.2193 0.2387

tqp-4 0 0.0000 0.0032 0.0140 0.0291 0.0452 0.0624 0.0786 0.0969 0.1087 0.1227 0.1400 0.1475 0.1583 0.1733 0.1884

mid-span-1 0 0.0156 0.0290 0.0557 0.0892 0.1249 0.1516 0.1873 0.2207 0.2564 0.2832 0.3166 0.3389 0.3590 0.3946 0.4348

mid-span-2 0 0.0111 0.0199 0.0432 0.0720 0.1030 0.1340 0.1661 0.1960 0.2270 0.2569 0.2879 0.3067 0.3277 0.3554 0.3919

mid-span-3 0 0.0022 0.0089 0.0134 0.0100 0.0100 0.0134 0.0156 0.0123 0.0167 0.0145 0.0167 0.0179 0.0223 0.0223 0.0904

mid-span-4 0 0.0056 0.0111 0.0289 0.0500 0.0745 0.1001 0.1279 0.1568 0.1813 0.2035 0.2291 0.2435 0.2636 0.2802 0.3058

bqp-1 0 0.0122 0.0243 0.0453 0.0674 0.0917 0.1161 0.1437 0.1713 0.1934 0.2144 0.2399 0.2564 0.2752 0.2995 0.3316

BQP-2 0 0.0091 0.0137 0.0319 0.0502 0.0730 0.0912 0.1186 0.1460 0.1688 0.1870 0.2144 0.2281 0.2464 0.2692 0.2920

BQP-3 0 0.0000 0.0092 0.0229 0.0413 0.0642 0.0826 0.1101 0.1330 0.1560 0.1743 0.1972 0.2110 0.2294 0.2523 0.2706

Page 155: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

143

Slab: WWF Test: Longitudinal Linear Load along Right Third Point Strip (Figure 5.3-H) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1453.2 1986.8 3078.8 4137.9 5073.8 6083.7 7068.9 8152.7 9170.7 10024 11001 12068 13029 14121 15065

QPT-1 0 5.8 7.8 15.5 25.2 34.9 46.6 58.2 70.8 82.4 92.1 102.8 114.5 124.2 136.8 148.4

QPT-2 0 18.5 28.2 48.6 69.0 85.5 102.0 118.5 137.0 153.5 168.0 184.6 203.0 220.5 242.9 264.2

QPT-3 0 24.2 35.9 60.1 83.4 100.9 120.3 138.7 159.1 178.5 195.0 215.3 236.7 255.1 279.4 302.7

QPT-4 0 27.2 38.8 65.1 91.3 109.7 129.1 148.6 170.9 191.3 208.8 228.2 249.6 270.0 296.2 323.4

QPT-5 0 26.2 38.8 67.0 95.1 117.4 141.7 165.0 189.3 210.6 228.1 248.5 269.9 290.3 316.5 344.6

QPT-6 0 30.1 41.7 66.0 92.2 115.5 141.7 164.9 188.2 209.6 227.1 244.5 264.9 284.3 310.5 336.7

MS-1 0 22.3 32.1 54.4 75.8 94.3 116.6 139.0 162.3 184.6 204.1 224.5 245.9 266.3 289.6 313.0

MS-2 0 32.0 48.5 81.6 115.5 145.6 177.7 208.8 241.8 271.9 297.1 324.3 353.5 380.7 411.8 440.0

MS-3 0 34.0 49.5 81.6 114.6 141.8 169.9 197.1 226.3 252.5 274.9 299.2 326.4 351.6 380.8 406.0

MS-4 0 35.9 51.5 86.4 121.4 152.5 184.5 214.6 247.7 276.8 301.1 328.3 357.4 383.7 413.8 440.0

MS-5 0 36.9 52.4 86.4 123.4 155.4 188.4 220.5 255.5 286.6 312.8 341.0 369.2 393.5 420.7 445.0

MS-6 0 18.5 0.0 30.1 53.4 88.4 -327.3 -58.3 20.4 50.5 98.1 129.2 145.8 109.8 145.8 173.0

QPB-1 0 11.6 16.5 31.1 55.3 78.6 109.7 138.8 166.9 194.1 213.5 233.9 255.3 273.7 295.1 314.5

QPB-2 0 24.3 36.9 66.1 97.2 122.5 152.6 179.8 209.9 237.2 259.5 284.8 311.1 335.4 362.6 386.0

QPB-3 0 27.2 40.7 69.8 102.8 130.9 163.0 191.1 226.0 258.1 282.3 308.5 336.7 362.9 393.0 420.1

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 29.2 41.8 73.9 108.9 139.0 174.0 207.1 244.0 275.1 303.4 333.5 366.6 398.7 432.7 461.9

QPB-6 0 26.2 39.8 70.9 105.9 136.0 173.0 207.0 243.9 277.0 303.2 329.5 355.7 380.0 406.3 431.6

Displacement

tqp-1 0 0.0000 0.0065 0.0130 0.0347 0.0499 0.0673 0.0847 0.1064 0.1194 0.1390 0.1542 0.1694 0.1824 0.2020 0.2172

tqp-2 0 0.0088 0.0122 0.0309 0.0497 0.0674 0.0928 0.1127 0.1360 0.1547 0.1735 0.1912 0.2100 0.2299 0.2520 0.2730

tqp-3 0 0.0065 0.0108 0.0280 0.0495 0.0667 0.0925 0.1183 0.1398 0.1656 0.1849 0.2064 0.2258 0.2451 0.2666 0.2924

tqp-4 0 0.0075 0.0183 0.0366 0.0571 0.0764 0.1012 0.1195 0.1443 0.1637 0.1809 0.2003 0.2218 0.2379 0.2627 0.2853

mid-span-1 0 0.0045 0.0111 0.0268 0.0468 0.0669 0.0936 0.1226 0.1516 0.1761 0.1984 0.2163 0.2453 0.2676 0.2876 0.3121

mid-span-2 0 0.0111 0.0177 0.0410 0.0664 0.0930 0.1262 0.1572 0.1871 0.2170 0.2436 0.2735 0.3000 0.3222 0.3521 0.3798

mid-span-3 0 0.0123 0.0112 0.0112 0.0179 0.0078 0.0145 0.0201 0.0234 0.0223 0.0167 0.0045 0.0089 0.0100 0.0145 0.0089

mid-span-4 0 0.0200 0.0300 0.0578 0.0901 0.1179 0.1546 0.1891 0.2235 0.2558 0.2814 0.3092 0.3392 0.3648 0.3992 0.4348

bqp-1 0 0.0044 0.0088 0.0210 0.0398 0.0564 0.0763 0.0962 0.1183 0.1382 0.1536 0.1713 0.1879 0.2045 0.2200 0.2376

BQP-2 0 0.0091 0.0137 0.0274 0.0502 0.0684 0.0958 0.1186 0.1414 0.1688 0.1870 0.2053 0.2281 0.2464 0.2646 0.2920

BQP-3 0 0.0092 0.0183 0.0367 0.0596 0.0780 0.1147 0.1330 0.1606 0.1881 0.2110 0.2294 0.2523 0.2752 0.3028 3.2431

Page 156: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

144

Slab: WWF Test: Transverse Linear Load along Mid-Span (Figure 5.3-I) Strain Gage Readings are in µin/in. Displacement readings are in inches.

Load in lbs.

Strain Gage 0 1256.1 2003.2 3144.4 3973.7 5008.2 6026.2 7085.3 7988.5 9146.1 10221 10804 11814 12627 13735 14926

QPT-1 0 13.6 25.2 48.5 66.0 87.3 109.6 131.9 150.4 173.6 196.0 209.5 236.7 262.9 301.7 345.4

QPT-2 0 23.3 41.8 69.9 89.4 115.6 139.9 166.1 188.4 214.7 239.0 249.7 269.1 287.6 316.7 344.9

QPT-3 0 28.1 47.5 75.7 97.0 124.2 148.4 174.6 195.9 224.1 249.3 261.0 280.4 294.9 314.3 339.6

QPT-4 0 28.2 48.5 75.7 96.1 121.4 145.7 171.9 194.2 223.4 247.6 259.3 276.8 289.4 309.8 330.2

QPT-5 0 24.3 44.6 75.7 98.0 124.2 148.5 174.7 196.1 223.3 247.5 262.1 286.4 308.7 338.8 374.8

QPT-6 0 17.5 30.1 52.4 71.8 95.1 118.4 141.7 163.0 189.2 213.5 229.0 257.1 282.4 316.3 357.1

MS-1 0 39.8 65.1 108.8 139.9 177.8 215.7 253.7 286.7 330.5 376.2 407.3 470.5 544.4 674.8 835.3

MS-2 0 53.4 94.2 158.3 202.0 256.4 304.9 356.4 401.1 461.3 525.5 575.0 681.0 799.6 987.3 1222.7

MS-3 0 48.6 88.4 152.5 196.2 247.7 292.3 340.0 382.7 441.0 510.0 568.3 678.2 795.9 979.7 1223.9

MS-4 0 56.3 99.0 164.1 207.8 260.3 307.9 357.4 402.1 462.4 533.3 596.5 722.9 861.0 1082.8 1383.6

MS-5 0 48.6 81.6 136.0 173.9 217.6 256.5 296.3 332.3 380.9 434.3 471.3 545.1 635.6 784.4 990.7

MS-6 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-1 0 16.5 29.1 63.1 94.1 133.0 170.8 212.6 245.6 288.3 322.3 342.7 374.7 397.0 422.3 455.3

QPB-2 0 25.3 45.7 79.7 108.9 143.8 178.8 215.8 245.9 282.9 315.9 334.4 365.5 390.8 423.9 459.9

QPB-3 0 25.2 43.6 77.6 106.7 143.6 179.5 215.4 246.4 284.3 316.3 334.7 360.9 382.3 408.5 437.6

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 22.4 38.9 74.9 102.1 138.0 171.1 209.0 240.2 275.2 309.2 327.7 359.8 384.1 420.1 460.0

QPB-6 0 19.4 33.0 62.2 89.4 121.5 153.5 187.5 212.8 244.9 273.1 288.6 318.8 345.0 382.9 434.5

Displacement

tqp-1 0 0.0065 0.0217 0.0499 0.0760 0.0999 0.1325 0.1607 0.1846 0.2128 0.2411 0.2541 0.2953 0.3323 0.3974 0.4756

tqp-2 0 0.0077 0.0243 0.0553 0.0807 0.1094 0.1382 0.1680 0.1912 0.2233 0.2531 0.2719 0.3084 0.3471 0.4156 0.5007

tqp-3 0 0.0000 0.0129 0.0452 0.0710 0.0989 0.1247 0.1591 0.1849 0.2129 0.2387 0.2580 0.2989 0.3376 0.3978 0.4838

tqp-4 0 0.0054 0.0194 0.0484 0.0678 0.0904 0.1163 0.1443 0.1626 0.1895 0.2186 0.2347 0.2649 0.3015 0.3575 0.4285

mid-span-1 0 0.0156 0.0357 0.0758 0.1115 0.1516 0.1940 0.2363 0.2676 0.3032 0.3478 0.3746 0.4281 0.4927 0.5819 0.7068

mid-span-2 0 0.0144 0.0354 0.0853 0.1218 0.1650 0.2081 0.2558 0.2945 0.3388 0.3842 0.4163 0.4772 0.5469 0.6599 0.8060

mid-span-3 0 0.0067 0.0022 0.0000 0.0056 0.0022 0.0078 0.0134 0.0100 0.0089 0.0078 0.0011 0.0134 0.0100 0.0123 0.0100

mid-span-4 0 0.0178 0.0356 0.0778 0.1123 0.1524 0.1935 0.2335 0.2647 0.3047 0.3447 0.3714 0.4270 0.4860 0.5783 0.6961

bqp-1 0 0.0111 0.0243 0.0564 0.0796 0.1083 0.1393 0.1691 0.1945 0.2233 0.2520 0.2697 0.3062 0.3449 0.4046 0.4742

BQP-2 0 0.0091 0.0228 0.0502 0.0730 0.1049 0.1323 0.1642 0.1916 0.2281 0.2555 0.2692 0.3102 0.3513 0.4060 0.4881

BQP-3 0 0.0138 0.0275 0.0550 0.0826 0.1147 0.1422 0.1789 0.2064 0.2385 0.2706 0.2890 0.3257 0.3578 0.4220 0.5046

Page 157: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

145

Slab: WWF Test: Transverse Linear Load along Top Quarter Point (Figure 5.3-J) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 2266 3037.7 3949 5016.4 5960.5 7085.3 8234.8 9096.8 10180 11141 12077 12775 13908 14844

QPT-1 0 38.8 55.3 76.6 99.9 122.2 148.4 173.6 193.1 219.3 245.5 273.6 302.7 353.2 397.8

QPT-2 0 68.0 96.2 124.3 159.3 187.5 219.5 252.6 277.8 310.9 343.9 380.8 418.7 494.6 564.6

QPT-3 0 77.6 107.7 142.6 180.4 210.5 245.4 281.3 307.5 344.4 381.3 420.1 463.8 548.2 625.9

QPT-4 0 75.7 105.8 140.8 177.7 208.8 244.7 281.6 309.8 348.6 391.4 437.1 484.7 574.1 660.6

QPT-5 0 55.3 79.6 107.7 137.8 162.1 190.3 218.4 239.8 267.9 297.1 328.1 366.0 445.7 523.4

QPT-6 0 48.5 66.9 89.3 115.5 138.7 165.9 192.1 211.5 237.7 263.0 291.1 325.1 379.4 437.7

MS-1 0 37.9 52.5 71.9 95.3 116.6 144.8 175.0 197.3 226.5 251.8 275.1 294.6 326.7 352.9

MS-2 0 47.6 67.0 90.3 120.5 146.7 180.7 214.7 240.0 274.0 303.2 329.4 350.8 384.8 410.1

MS-3 0 45.7 65.1 88.4 117.6 143.8 175.9 209.9 235.2 266.3 293.5 318.8 338.3 368.4 393.7

MS-4 0 41.8 59.3 81.7 109.8 136.1 169.2 203.2 228.5 260.6 288.8 315.0 334.5 363.6 388.9

MS-5 0 44.7 61.2 81.6 106.9 131.2 160.3 190.5 213.8 243.0 269.2 293.5 312.0 339.2 364.5

MS-6 0 35.0 48.6 66.0 86.4 106.8 133.0 160.2 179.7 205.9 229.2 250.6 266.1 290.4 311.8

QPB-1 0 15.5 20.4 25.2 33.0 41.7 55.3 69.9 81.5 97.1 112.6 125.2 134.9 150.4 163.1

QPB-2 0 22.4 32.1 44.7 57.3 67.1 81.6 97.2 110.8 127.3 142.9 157.5 170.1 189.6 206.1

QPB-3 0 25.2 35.9 49.5 64.0 73.7 88.3 104.8 118.4 135.8 151.3 166.9 178.5 197.9 215.4

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 20.4 29.2 39.9 50.6 61.2 75.8 93.3 106.0 123.5 140.0 155.6 167.2 183.8 200.3

QPB-6 0 15.5 20.4 26.2 34.0 42.8 54.4 66.1 77.7 92.3 104.9 118.6 128.3 142.8 155.5

Displacement

tqp-1 0 0.0195 0.0347 0.0478 0.0695 0.0912 0.1108 0.1412 0.1629 0.1889 0.2106 0.2324 0.2606 0.2975 0.3257

tqp-2 0 0.0254 0.0376 0.0542 0.0774 0.0995 0.1271 0.1581 0.1802 0.2089 0.2343 0.2598 0.2863 0.3382 0.3802

tqp-3 0 0.0129 0.0280 0.0473 0.0667 0.0860 0.1140 0.1462 0.1656 0.1935 0.2193 0.2408 0.2666 0.3118 0.3526

tqp-4 0 0.0194 0.0301 0.0452 0.0581 0.0764 0.1012 0.1227 0.1410 0.1647 0.1863 0.2067 0.2293 0.2670 0.3025

mid-span-1 0 0.0201 0.0357 0.0491 0.0691 0.0892 0.1249 0.1516 0.1806 0.2074 0.2341 0.2631 0.2854 0.3255 0.3590

mid-span-2 0 0.0188 0.0299 0.0454 0.0675 0.0930 0.1273 0.1594 0.1838 0.2148 0.2447 0.2735 0.2989 0.3377 0.3753

mid-span-3 0 0.0011 0.0033 0.0033 0.0011 0.0000 0.0022 0.0045 0.0067 0.0089 0.0067 0.0056 0.0078 0.0078 0.0112

mid-span-4 0 0.0211 0.0345 0.0478 0.0689 0.0901 0.1190 0.1501 0.1724 0.2013 0.2302 0.2547 0.2791 0.3192 0.3536

bqp-1 0 0.0099 0.0166 0.0254 0.0376 0.0531 0.0707 0.0895 0.1061 0.1271 0.1437 0.1603 0.1746 0.1990 0.2189

BQP-2 0 0.0137 0.0137 0.0274 0.0411 0.0547 0.0684 0.0867 0.1095 0.1277 0.1460 0.1597 0.1779 0.1962 0.2190

BQP-3 0 0.0138 0.0229 0.0275 0.0413 0.0550 0.0780 0.0963 0.1101 0.1330 0.1514 0.1651 0.1789 0.2064 0.2248

Page 158: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

146

Slab: WWF Test: Transverse Linear Load along Bottom Quarter Point (Figure 5.3-K) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1330 2175.6 3013.1 4055.8 5180.6 6050.9 7216.7 8004.9 9096.8 9893.2 10788 11756 12889 13883 14770

QPT-1 0 5.8 9.7 12.6 17.5 25.2 32.0 42.7 50.4 61.1 69.8 79.5 90.2 103.8 114.5 124.2

QPT-2 0 11.7 22.3 33.0 43.7 54.4 60.2 69.9 77.7 89.4 97.1 106.8 117.5 130.2 139.9 150.6

QPT-3 0 14.5 28.1 43.6 58.2 70.8 77.6 86.3 94.1 103.8 112.5 123.2 134.8 149.4 161.0 172.6

QPT-4 0 14.6 29.1 42.7 56.3 68.9 76.7 87.4 95.1 106.8 116.5 127.2 139.8 153.4 163.1 173.8

QPT-5 0 9.7 19.4 30.1 42.7 55.3 65.0 77.6 87.4 100.9 110.6 121.3 133.0 147.5 160.2 172.8

QPT-6 0 9.7 16.5 22.3 30.1 39.8 49.5 62.1 68.9 81.5 91.2 101.9 113.5 128.1 139.7 151.4

MS-1 0 19.4 31.1 43.7 61.2 82.6 101.1 128.3 148.7 175.0 197.3 222.6 249.9 282.0 307.2 330.6

MS-2 0 22.3 39.8 59.3 84.5 113.7 135.0 168.1 191.4 222.5 246.8 273.0 301.2 336.2 362.5 387.8

MS-3 0 21.4 38.9 58.3 83.6 111.8 134.1 164.3 184.7 213.8 235.2 258.6 283.8 313.0 335.4 356.8

MS-4 0 22.4 38.9 59.3 84.6 114.7 137.1 167.2 188.6 216.8 238.2 262.5 287.8 316.0 338.4 358.8

MS-5 0 22.3 39.8 56.4 78.7 104.0 123.4 151.6 172.0 201.2 224.5 249.8 278.0 309.1 334.4 359.6

MS-6 0 18.4 31.1 42.7 61.2 84.5 102.9 130.1 148.6 174.8 195.2 217.6 244.8 272.9 297.2 317.6

QPB-1 0 24.3 48.5 77.6 119.4 166.0 206.7 264.0 300.9 348.5 380.5 419.4 463.1 530.1 579.7 633.1

QPB-2 0 38.9 73.9 110.8 156.5 202.2 237.2 282.9 312.0 352.9 385.0 421.9 475.4 562.0 622.3 690.4

QPB-3 0 41.7 80.5 120.3 168.8 218.3 257.1 306.6 339.6 385.2 420.1 465.7 527.9 627.9 700.7 777.4

QPB-4 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 35.0 66.1 101.1 142.9 184.7 218.8 262.5 292.7 333.5 361.7 394.8 435.7 506.7 561.2 623.5

QPB-6 0 30.1 56.4 86.5 127.3 165.2 196.3 235.2 260.4 293.5 319.8 348.9 381.0 439.3 487.0 534.7

Displacement

tqp-1 0 0.00217 0.00217 0.01520 0.02172 0.04126 0.05646 0.07166 0.08469 0.10640 0.12161 0.13464 0.15635 0.18458 0.19979 0.22150

tqp-2 0 0.00774 0.01326 0.02211 0.03537 0.04974 0.06300 0.08401 0.09727 0.11716 0.13043 0.14701 0.16911 0.20006 0.21775 0.23322

tqp-3 0 0.00000 0.00215 0.00860 0.02365 0.03655 0.04946 0.06881 0.09031 0.10321 0.12256 0.13546 0.15481 0.18922 0.20212 0.22147

tqp-4 0 0.00108 0.00861 0.01615 0.02907 0.04199 0.05491 0.07429 0.08506 0.10228 0.11412 0.12919 0.14534 0.17011 0.18518 0.20456

mid-span-1 0 0.01338 0.02007 0.03567 0.05574 0.08250 0.10925 0.13823 0.15830 0.19174 0.21181 0.24302 0.26978 0.31660 0.34336 0.37457

mid-span-2 0 0.00664 0.01661 0.02879 0.04982 0.07861 0.10628 0.14171 0.16607 0.19707 0.22032 0.25132 0.28565 0.33768 0.36869 0.40079

mid-span-3 0 0.00335 0.00447 0.00558 0.00558 0.00558 0.01116 0.00893 0.00670 0.00781 0.01005 0.00893 0.00112 0.00112 0.00112 0.00112

mid-span-4 0 0.01223 0.02224 0.03781 0.06228 0.09119 0.11454 0.14679 0.16680 0.19794 0.22018 0.24798 0.27912 0.32805 0.35585 0.38588

bqp-1 0 0.00774 0.01879 0.03095 0.05306 0.07848 0.09727 0.12711 0.14480 0.17022 0.19122 0.21443 0.24428 0.29512 0.32165 0.34928

BQP-2 0 0.00456 0.02281 0.03193 0.05931 0.08668 0.10492 0.13686 0.15967 0.18704 0.21441 0.23722 0.27828 0.33302 0.36952 0.40602

BQP-3 0 0.01376 0.02294 0.04128 0.06422 0.09174 0.11009 0.14678 0.16972 0.19724 0.21559 0.24311 0.27981 0.33027 0.36238 0.39908

Page 159: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

147

Test Designation: XOREX25- Concentrated Loads Cast Date: 07/17/2001 Test Date: 08/22/2001

Materials and Dimensions

General: Width: 9 ft (3 panels) Span length: 10 ft. Type of Reinforcement: 25 lb/yd3 –1 ½” Xorex Fiber Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 4000 psi Total Depth: 5.5 in

Results

Maximum Applied Load: 13.72 kips Mid-Span Deflection at Maximum Load: 0.12 in

Quarter Point-1 Deflection at Maximum Load: 0.077 in Quarter Point-2 Deflection at Maximum Load: 0.083 in

End Slip at Maximum Load: 0.00 in

Strains Due to Fresh Concrete (µe)

Strain Gage 1 2 3 4 5 6 Quarter Point-1 536.83 N/A 518.81 503.02 578.09 N/A

Mid-Span 746.91 690.20 733.98 757.67 790.95 752.06Quarter Point-2 N/A 575.53 555.49 563.97 552.48 539.39

Page 160: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

148

Table F-2 Non-Distributed Load Tests Data for XOREX-25 Slab Slab: XOREX-25 Test: Concentrated Load at Bottom Quarter Point (Figure 5.3-A) Strain Gage Readings are in µin/in. Deflection Readings are in inches.

Load in lbs.

Strain Gage 0 492.61 1551.7 2126.4 2536.9 3095.2 3760.2 4655.1 4605.9 5270.9 6026.2 6543.5 6954 7495.8

QPT-1 0 1.94 4.85 5.82 6.79 8.72 10.66 13.57 13.57 15.51 17.45 19.39 21.33 22.30

QPT-2 0 0.97 3.88 5.82 7.76 9.70 11.64 14.54 15.51 18.42 21.33 23.27 25.21 27.15

QPT-3 0 0.97 3.88 5.82 7.76 9.70 12.61 14.55 15.52 18.43 21.34 23.28 25.22 27.16

QPT-4 0 0.97 3.88 5.82 7.76 9.70 11.64 14.55 15.52 18.42 21.33 23.27 25.21 27.15

QPT-5 0 1.94 4.85 6.79 8.73 10.67 13.58 16.49 16.49 19.39 23.27 25.21 27.15 29.09

QPT-6 0 0.97 4.85 5.82 6.78 8.72 10.66 13.57 13.57 15.51 18.42 19.39 21.32 22.29

MS-1 0 1.94 7.75 10.66 12.60 15.51 19.39 23.27 24.23 28.11 31.99 34.90 37.81 40.71

MS-2 0 1.94 7.76 10.67 12.61 15.52 19.40 23.28 24.25 27.16 32.01 33.95 36.86 39.77

MS-3 0 -0.59 -2.06 -2.65 -3.24 -4.13 -5.01 -5.90 -5.90 -6.78 -7.67 -8.55 -8.85 -9.73

MS-4 0 1.94 6.80 8.74 10.68 12.62 16.50 19.42 19.42 22.33 25.24 27.18 28.16 31.07

MS-5 0 2.91 8.73 11.64 13.58 17.46 21.34 25.23 26.20 30.08 34.93 37.84 40.75 43.66

MS-6 0 1.94 6.79 9.70 11.64 14.55 17.46 21.34 21.34 25.22 29.10 32.01 33.95 36.86

QPB-1 0 2.91 8.74 11.65 14.57 17.48 21.36 27.19 27.19 31.07 35.93 38.84 41.76 44.67

QPB-2 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 0 5.82 20.37 29.10 34.92 44.62 57.23 70.81 71.78 83.43 97.01 106.70 114.47 124.17

QPB-4 0 5.82 20.37 29.10 35.89 45.59 58.20 71.78 72.75 85.36 99.91 109.61 117.37 127.07

QPB-5 0 4.85 15.53 21.36 26.21 33.01 41.75 51.45 52.42 60.19 69.90 77.67 82.52 89.32

QPB-6 0 2.96 8.89 10.86 13.82 17.77 21.72 25.67 26.66 30.61 35.54 38.51 41.47 44.43

Displacement

TQP-0 0 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0043 0.0065 0.0043 0.0065 0.0065 0.0065 0.0129

tqp-1 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0065 0.0065 0.0065

tqp-2 0 0.0000 0.0011 0.0033 0.0044 0.0055 0.0066 0.0088 0.0088 0.0111 0.0133 0.0144 0.0155 0.0166

tqp-3 0 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0000 0.0000 0.0022 0.0022 0.0022

tqp-4 0 0.0000 0.0000 0.0000 0.0011 0.0032 0.0043 0.0054 0.0054 0.0054 0.0075 0.0086 0.0097 0.0108

TQP-5 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0046 0.0046 0.0046 0.0092 0.0138

Mid-span-0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0064 0.0064 0.0064 0.0086 0.0150 0.0129 0.0129

mid-span-1 0 0.0000 0.0067 0.0067 0.0067 0.0111 0.0156 0.0134 0.0134 0.0201 0.0201 0.0201 0.0201 0.0268

mid-span-2 0 0.0011 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000

mid-span-4 0 0.0000 0.0022 0.0044 0.0067 0.0078 0.0111 0.0133 0.0133 0.0167 0.0189 0.0211 0.0222 0.0245

mid-span-5 0 0.0022 0.0022 0.0043 0.0043 0.0043 0.0130 0.0108 0.0130 0.0108 0.0195 0.0195 0.0173 0.0238

bqp-1 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BQP-2 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0 0.0000 0.0092 0.0092 0.0092 0.0092 0.0138 0.0138 0.0138 0.0183 0.0183 0.0229 0.0275 0.0275

BQP-4 0 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0091 0.0091 0.0137 0.0182 0.0182 0.0182

BQP-5 0 0.0000 0.0000 0.0065 0.0065 0.0065 0.0130 0.0130 0.0130 0.0130 0.0195 0.0216 0.0195 0.0259

Page 161: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

149

Concentrated Load at Bottom Quarter Point Continued. Load in lbs.

Strain Gage 8004.9 8489.3 8990.1 9564.8 10082 10500 11075 11494 11978 12454 12931 13349 13932 14334 14811

QPT-1 24.24 26.17 27.14 29.08 31.02 32.96 34.90 35.87 37.81 39.75 41.69 42.66 44.59 46.53 47.50

QPT-2 30.06 32.00 33.94 36.85 39.75 41.69 44.60 46.54 48.48 51.39 53.33 56.24 58.18 60.12 63.03

QPT-3 30.07 32.01 33.95 36.86 39.77 41.71 43.65 45.59 48.50 51.41 53.36 56.27 58.21 60.15 63.06

QPT-4 30.06 32.00 34.91 37.82 39.76 42.67 44.61 47.52 49.46 52.37 55.28 57.22 60.12 62.06 64.97

QPT-5 32.00 33.94 36.85 39.76 41.70 43.64 46.55 48.49 51.40 53.34 56.25 58.19 61.10 63.03 64.97

QPT-6 24.23 26.17 28.11 30.05 31.99 32.96 34.89 36.83 38.77 40.71 41.68 43.62 45.56 46.53 48.47

MS-1 43.62 46.53 49.44 53.32 57.20 59.13 63.01 65.92 68.83 71.74 75.62 78.52 82.40 85.31 88.22

MS-2 42.68 45.60 48.51 51.42 54.33 57.24 61.12 63.06 65.97 68.88 71.79 74.70 77.61 79.55 82.46

MS-3 -10.32 -10.91 -11.50 -12.39 -13.27 -13.57 -14.45 -14.75 -15.63 -16.22 -16.81 -17.11 -17.99 -18.29 -18.88

MS-4 33.01 34.95 36.89 38.84 41.75 42.72 45.63 46.60 48.54 50.49 52.43 53.40 56.31 57.28 59.22

MS-5 47.54 50.45 54.33 57.24 61.12 64.04 67.92 70.83 73.74 76.65 80.53 83.44 86.35 89.26 92.18

MS-6 39.77 41.71 44.62 48.50 51.41 53.35 56.26 59.17 62.08 64.99 67.90 70.81 73.72 75.66 79.54

QPB-1 48.56 52.44 55.35 59.24 63.12 66.04 70.89 73.81 77.69 80.60 85.46 89.35 94.20 98.09 102.94

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 133.87 142.60 152.31 162.98 173.65 182.39 192.09 196.94 205.68 216.35 226.05 221.20 231.88 240.61 242.55

QPB-4 137.74 147.45 157.15 168.79 179.46 188.20 204.69 215.37 226.04 229.92 236.71 248.36 262.92 273.59 286.21

QPB-5 97.09 103.88 110.68 118.44 126.21 131.07 140.78 146.60 154.37 161.17 168.94 176.71 186.42 194.19 204.87

QPB-6 48.38 51.34 54.31 57.27 61.22 64.18 69.12 72.08 75.04 78.99 82.94 86.89 90.84 94.79 99.73

Displacement

TQP-0 0.0129 0.0129 0.0129 0.0129 0.0194 0.0194 0.0194 0.0194 0.0194 0.0194 0.0259 0.0259 0.0259 0.0259 0.0259

tqp-1 0.0065 0.0065 0.0130 0.0130 0.0152 0.0152 0.0152 0.0152 0.0217 0.0217 0.0217 0.0217 0.0217 0.0282 0.0282

tqp-2 0.0177 0.0188 0.0199 0.0210 0.0221 0.0221 0.0243 0.0254 0.0265 0.0276 0.0298 0.0321 0.0343 0.0354 0.0376

tqp-3 0.0065 0.0086 0.0086 0.0086 0.0086 0.0129 0.0151 0.0151 0.0151 0.0151 0.0215 0.0215 0.0215 0.0215 0.0237

tqp-4 0.0129 0.0151 0.0161 0.0183 0.0194 0.0205 0.0226 0.0237 0.0248 0.0280 0.0291 0.0312 0.0323 0.0334 0.0345

TQP-5 0.0092 0.0138 0.0138 0.0183 0.0183 0.0183 0.0183 0.0183 0.0229 0.0229 0.0229 0.0229 0.0321 0.0321 0.0321

Mid-span-0 0.0129 0.0193 0.0193 0.0193 0.0279 0.0279 0.0258 0.0279 0.0300 0.0343 0.0343 0.0343 0.0408 0.0408 0.0408

mid-span-1 0.0268 0.0268 0.0268 0.0357 0.0334 0.0334 0.0357 0.0424 0.0401 0.0424 0.0468 0.0468 0.0468 0.0468 0.0557

mid-span-2 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

mid-span-4 0.0267 0.0289 0.0311 0.0322 0.0345 0.0356 0.0389 0.0400 0.0423 0.0434 0.0467 0.0489 0.0500 0.0512 0.0545

mid-span-5 0.0238 0.0260 0.0260 0.0325 0.0325 0.0325 0.0346 0.0390 0.0390 0.0390 0.0455 0.0455 0.0455 0.0455 0.0519

bqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0275 0.0367 0.0367 0.0321 0.0413 0.0413 0.0413 0.0413 0.0505 0.0459 0.0505 0.0550 0.0550 0.0550 0.0642

BQP-4 0.0182 0.0228 0.0228 0.0228 0.0319 0.0319 0.0319 0.0319 0.0364 0.0364 0.0364 0.0455 0.0455 0.0455 0.0455

BQP-5 0.0259 0.0259 0.0281 0.0324 0.0346 0.0346 0.0324 0.0411 0.0411 0.0411 0.0411 0.0475 0.0475 0.0475 0.0540

Page 162: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

150

Slab: XOREX-25 Test: Concentrated Load at Mid-Span (Figure 5.3-B) Strain Gage Readings are in µin/in. Deflection readings are in inches.

Load in lbs.

Strain Gage

0 706.07 1321.8 2134.6 2561.5 3013.1 3579.6 4080.4 4688 5123.1 5509 5977

QPT-1 0 3.9 7.8 13.6 16.5 19.4 23.3 27.1 31.0 34.9 36.8 40.7

QPT-2 0 5.8 10.7 18.4 22.3 27.1 33.9 39.8 46.5 50.4 55.3 61.1

QPT-3 0 4.9 10.7 18.4 22.3 27.2 33.0 38.8 46.6 51.4 56.3 62.1

QPT-4 0 4.8 9.7 18.4 22.3 27.2 33.9 39.8 47.5 52.4 58.2 64.0

QPT-5 0 5.8 10.7 19.4 23.3 28.1 33.9 39.8 46.5 51.4 56.2 61.1

QPT-6 0 3.9 7.8 12.6 15.5 19.4 23.3 26.2 31.0 33.9 36.8 40.7

MS-1 0 5.8 10.7 18.4 22.3 26.2 32.0 36.8 41.7 46.5 50.4 54.3

MS-2 0 7.8 14.6 25.2 30.1 35.9 42.7 48.5 56.3 62.1 66.9 71.8

MS-3 0 -2.7 -5.0 -8.3 -10.0 -11.8 -14.2 -16.2 -18.6 -20.4 -22.1 -23.9

MS-4 0 8.7 16.5 27.2 33.0 39.8 47.6 54.4 63.1 68.9 73.8 80.6

MS-5 0 7.8 15.5 26.2 31.0 37.8 45.6 52.4 60.2 66.0 71.8 77.6

MS-6 0 4.8 9.7 16.5 20.4 24.2 29.1 33.9 38.8 42.7 46.6 50.4

QPB-1 0 3.9 6.8 11.7 14.6 17.5 20.4 23.3 27.2 30.1 33.0 35.0

QPB-2 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 0 5.8 10.7 16.5 19.4 23.3 28.1 32.0 35.9 39.8 42.7 46.6

QPB-4 0 4.8 8.7 14.5 17.5 20.4 25.2 28.1 33.0 35.9 38.8 41.7

QPB-5 0 4.9 8.7 15.5 18.4 22.3 26.2 30.1 34.9 38.8 41.7 45.6

QPB-6 0 4.9 7.9 12.8 15.8 19.7 23.7 27.6 31.6 35.5 38.5 41.5

Displacements

TQP-0 0.0022 0.0022 0.0022 0.0022 0.0043 0.0043 0.0043 0.0108 0.0108 0.0108 0.0129 0.0194

tqp-1 0.0000 0.0000 0.0022 0.0000 0.0000 0.0000 0.0065 0.0065 0.0065 0.0130 0.0130 0.0130

tqp-2 0.0000 0.0000 0.0033 0.0066 0.0088 0.0111 0.0144 0.0166 0.0188 0.0199 0.0221 0.0232

tqp-3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0043 0.0108 0.0108 0.0108 0.0129

tqp-4 0.0000 0.0000 0.0000 0.0043 0.0065 0.0065 0.0086 0.0097 0.0129 0.0161 0.0183 0.0205

TQP-5 0.0000 0.0000 0.0000 0.0046 0.0046 0.0046 0.0046 0.0046 0.0138 0.0092 0.0092 0.0183

Mid-span-0

0.0000 0.0000 0.0021 0.0000 0.0000 0.0064 0.0064 0.0064 0.0129 0.0129 0.0129 0.0193

mid-span-1

0.0000 0.0000 0.0000 0.0067 0.0089 0.0134 0.0134 0.0134 0.0201 0.0201 0.0201 0.0268

mid-span-2

0.0000 0.0011 0.0000 0.0011 0.0000 0.0011 0.0000 0.0011 0.0011 0.0011 0.0011 0.0011

mid-span-4

0.0000 0.0011 0.0044 0.0089 0.0111 0.0133 0.0167 0.0189 0.0222 0.0245 0.0278 0.0311

mid-span-5

0.0022 0.0022 0.0022 0.0043 0.0065 0.0108 0.0108 0.0108 0.0173 0.0173 0.0260 0.0260

bqp-1 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0000 0.0011 0.0011 0.0011 0.0011 0.0011

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0000 0.0000 0.0000 0.0092 0.0092 0.0092 0.0092 0.0138 0.0138 0.0229 0.0229 0.0229

BQP-4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0091 0.0091 0.0091 0.0137 0.0137 0.0137 0.0182

BQP-5 0.0000 0.0022 0.0022 0.0043 0.0065 0.0065 0.0130 0.0130 0.0130 0.0195 0.0195 0.0195

Page 163: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

151

Concentrated Load at Mid-Span Continued. Strain Gage 6609.1 7036.1 7520.5 8021.3 8546.7 9269.2 9507.3 9991.7

QPT-1 45.6 48.5 52.4 56.2 60.1 65.0 66.9 70.8

QPT-2 68.8 73.7 79.5 85.3 91.2 99.9 102.8 107.6

QPT-3 69.8 75.7 81.5 88.3 95.1 102.8 105.7 111.6

QPT-4 71.8 78.6 84.4 92.1 98.9 107.6 110.6 117.3

QPT-5 68.9 73.7 79.5 85.3 92.1 99.9 102.8 108.6

QPT-6 44.6 48.5 52.3 56.2 60.1 64.9 66.9 70.8

MS-1 60.1 65.0 69.8 74.6 80.5 88.2 91.1 97.9

MS-2 80.5 85.4 92.2 99.0 105.7 114.5 117.4 125.2

MS-3 -26.2 -28.3 -30.4 -32.7 -34.8 -38.3 -39.5 -41.0

MS-4 89.3 95.2 101.0 107.8 115.5 124.3 127.2 129.1

MS-5 86.4 92.2 99.0 106.7 114.5 129.0 135.8 149.4

MS-6 56.3 60.1 64.0 68.9 73.7 81.5 83.4 89.2

QPB-1 38.8 41.8 44.7 48.6 51.5 57.3 59.2 63.1

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 51.4 54.3 58.2 61.1 65.0 70.8 71.8 73.7

QPB-4 46.6 49.5 53.3 56.3 60.1 65.0 66.0 68.9

QPB-5 50.5 55.3 59.2 63.1 67.0 70.9 71.8 76.7

QPB-6 45.4 49.4 52.3 57.3 61.2 66.1 67.1 71.1

Displacements

TQP-0 0.0172 0.0172 0.0259 0.0259 0.0237 0.0323 0.0323 0.0323

tqp-1 0.0195 0.0195 0.0217 0.0195 0.0282 0.0282 0.0261 0.0347

tqp-2 0.0265 0.0276 0.0309 0.0332 0.0365 0.0409 0.0420 0.0431

tqp-3 0.0172 0.0172 0.0237 0.0237 0.0237 0.0301 0.0301 0.0301

tqp-4 0.0226 0.0248 0.0280 0.0312 0.0334 0.0355 0.0366 0.0388

TQP-5 0.0183 0.0183 0.0229 0.0229 0.0229 0.0275 0.0275 0.0321

Mid-span-0 0.0193 0.0258 0.0258 0.0258 0.0322 0.0322 0.0322 0.0386

mid-span-1 0.0268 0.0334 0.0334 0.0334 0.0401 0.0401 0.0401 0.0491

mid-span-2 0.0011 0.0000 0.0000 0.0011 0.0011 0.0000 0.0000 0.0000

mid-span-4 0.0334 0.0356 0.0378 0.0411 0.0434 0.0478 0.0489 0.0523

mid-span-5 0.0260 0.0325 0.0325 0.0390 0.0390 0.0455 0.0455 0.0455

bqp-1 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0275 0.0275 0.0275 0.0275 0.0367 0.0367 0.0367 0.0413

BQP-4 0.0228 0.0228 0.0273 0.0273 0.0273 0.0364 0.0364 0.0364

BQP-5 0.0281 0.0259 0.0259 0.0259 0.0324 0.0324 0.0324 0.0389

Page 164: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

152

Slab: XOREX-25 Test: Concentrated Load at Top Quarter Point (Figure 5.3-C) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 459.77 1247.9 1970.4 2471.2 3054.1 4088.6 4737.2 4983.5 5467.9 6116.5 6453.2 6945.8

QPT-1 0 1.9 6.8 10.7 13.6 16.5 22.3 26.2 28.1 31.0 34.9 36.8 39.7

QPT-2 0 4.8 12.6 20.4 25.2 31.0 42.7 49.4 52.4 58.2 65.0 68.8 74.7

QPT-3 0 4.8 15.5 25.2 31.0 38.8 53.4 63.1 66.0 73.7 82.5 87.3 95.1

QPT-4 0 4.8 13.6 21.3 27.1 33.9 46.5 55.3 58.2 65.0 72.7 77.6 84.4

QPT-5 0 3.9 10.7 16.5 21.3 26.2 34.9 41.7 43.6 48.5 53.3 57.2 61.1

QPT-6 0 1.9 6.8 10.7 13.6 16.5 23.3 27.1 28.1 31.0 34.9 37.8 40.7

MS-1 0 2.9 6.8 9.7 12.6 15.5 21.3 25.2 26.2 29.1 33.0 34.9 37.8

MS-2 0 2.9 6.8 10.7 13.6 16.5 22.3 25.2 27.2 30.1 33.0 34.9 37.8

MS-3 0 -0.6 -1.5 -2.7 -3.2 -3.8 -5.6 -6.5 -6.8 -7.4 -8.6 -8.8 -9.7

MS-4 0 1.9 4.9 8.7 10.7 13.6 17.5 21.4 22.3 24.3 27.2 29.1 31.1

MS-5 0 1.9 5.8 9.7 12.6 16.5 22.3 26.2 27.2 30.1 33.0 34.9 37.8

MS-6 0 1.9 5.8 9.7 11.6 14.5 19.4 23.3 24.2 27.2 30.1 32.0 34.9

QPB-1 0 1.0 2.9 4.9 6.8 7.8 10.7 12.6 13.6 14.6 16.5 17.5 18.4

QPB-2 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 0 1.0 3.9 5.8 6.8 8.7 12.6 14.5 15.5 17.5 19.4 20.4 22.3

QPB-4 0 1.0 2.9 4.8 5.8 7.8 10.7 12.6 12.6 14.5 16.5 17.5 19.4

QPB-5 0 1.0 3.9 5.8 6.8 8.7 11.6 14.6 14.6 16.5 18.4 19.4 21.4

QPB-6 0 -3.0 -2.0 -3.0 -7.9 -8.9 -9.9 -9.9 -9.9 -7.9 -6.9 -5.9 -4.9

Displacement

TQP-0 0.0000 0.0000 0.0000 0.0000 0.0065 0.0086 0.0065 0.0151 0.0151 0.0151 0.0151 0.0151 0.0216

tqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0087 0.0065 0.0087 0.0130 0.0152 0.0152 0.0152

tqp-2 0.0000 0.0000 0.0022 0.0033 0.0055 0.0088 0.0122 0.0155 0.0166 0.0188 0.0210 0.0221 0.0243

tqp-3 0.0000 0.0000 0.0000 0.0000 0.0022 0.0022 0.0022 0.0000 0.0000 0.0065 0.0065 0.0065 0.0065

tqp-4 0.0000 0.0000 0.0011 0.0000 0.0011 0.0065 0.0108 0.0118 0.0118 0.0129 0.0140 0.0151 0.0172

TQP-5 0.0046 0.0046 0.0046 0.0000 0.0046 0.0046 0.0046 0.0046 0.0046 0.0138 0.0138 0.0138 0.0183

Mid-span-0 0.0021 0.0021 0.0021 0.0043 0.0021 0.0021 0.0043 0.0043 0.0043 0.0021 0.0107 0.0107 0.0086

mid-span-1 0.0000 0.0022 0.0022 0.0067 0.0067 0.0067 0.0156 0.0156 0.0156 0.0134 0.0201 0.0201 0.0223

mid-span-2 0.0000 0.0011 0.0011 0.0000 0.0000 0.0000 0.0011 0.0011 0.0011 0.0022 0.0000 0.0000 0.0011

mid-span-4 0.0000 0.0000 0.0011 0.0033 0.0056 0.0067 0.0111 0.0133 0.0145 0.0156 0.0178 0.0189 0.0211

mid-span-5 0.0022 0.0022 0.0043 0.0043 0.0043 0.0043 0.0108 0.0108 0.0108 0.0108 0.0173 0.0173 0.0195

bqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0138 0.0092 0.0092 0.0092

BQP-4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0091

BQP-5 0.0000 0.0000 0.0022 0.0000 0.0065 0.0065 0.0065 0.0065 0.0130 0.0130 0.0130 0.0130 0.0130

Page 165: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

153

Test: Concentrated Load at Top Quarter Point Continued Load in lbs.

Strain Gage 7463 8111.6 8587.8 9499.1 10106 10607 11231 11683 12151 12643 13029 13448 13883 14351 14934

QPT-1 43.6 47.5 50.4 57.2 62.0 65.9 70.8 74.6 78.5 82.4 87.3 92.1 96.0 101.8 110.5

QPT-2 80.5 87.3 97.9 115.4 129.9 141.6 153.2 163.9 174.5 186.2 197.8 209.5 224.0 242.4 268.6

QPT-3 104.8 115.4 124.2 161.0 191.1 199.9 216.4 233.8 248.4 262.9 258.1 267.8 281.4 286.2 309.5

QPT-4 91.2 98.9 103.8 109.6 111.5 145.5 169.7 223.1 251.2 277.4 302.6 310.4 315.2 342.4 344.3

QPT-5 65.9 72.7 76.6 85.3 98.9 112.5 145.5 162.9 172.6 179.4 186.2 199.8 214.3 236.6 263.8

QPT-6 44.6 48.5 52.3 58.2 64.0 67.9 73.7 77.5 81.4 86.3 91.1 96.0 100.8 105.7 112.4

MS-1 40.7 44.6 47.5 53.3 57.2 60.1 64.0 67.9 70.8 74.6 77.6 81.4 84.3 88.2 93.1

MS-2 40.7 43.7 45.6 49.5 53.4 55.3 58.2 61.1 63.1 65.0 66.9 66.9 68.9 70.8 73.7

MS-3 -10.3 -11.2 -11.8 -13.0 -13.6 -14.2 -15.0 -15.3 -16.2 -16.5 -16.8 -17.4 -17.7 -18.3 -18.6

MS-4 34.0 36.9 38.8 42.7 44.7 46.6 48.5 51.5 52.4 54.4 55.3 56.3 57.3 59.2 60.2

MS-5 39.8 43.7 45.6 49.5 50.4 52.4 55.3 58.2 60.2 63.1 66.0 67.9 71.8 75.7 80.5

MS-6 37.8 40.7 43.6 48.5 52.4 55.3 59.2 62.1 65.0 68.9 70.8 74.7 77.6 80.5 84.4

QPB-1 20.4 22.3 23.3 26.2 28.2 30.1 32.0 33.0 34.0 35.9 36.9 38.8 39.8 41.8 43.7

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 23.3 26.2 27.2 30.1 32.0 33.9 35.9 36.9 38.8 39.8 40.7 41.7 42.7 43.6 45.6

QPB-4 21.3 23.3 24.2 27.2 29.1 30.1 32.0 33.9 34.9 36.9 37.8 38.8 39.8 41.7 42.7

QPB-5 22.3 24.3 25.2 28.2 31.1 32.0 34.0 35.9 36.9 38.8 41.7 43.7 44.7 46.6 48.5

QPB-6 -3.9 -2.0 0.0 3.0 5.9 6.9 9.9 10.9 12.8 14.8 15.8 17.8 18.8 18.8 19.7

Displacement

TQP-0 0.0216 0.0237 0.0237 0.0302 0.0302 0.0302 0.0366 0.0366 0.0366 0.0366 0.0431 0.0431 0.0431 0.0453 0.0517

tqp-1 0.0195 0.0217 0.0217 0.0261 0.0304 0.0304 0.0326 0.0369 0.0369 0.0369 0.0369 0.0456 0.0456 0.0434 0.0521

tqp-2 0.0254 0.0276 0.0298 0.0321 0.0365 0.0387 0.0420 0.0453 0.0475 0.0486 0.0508 0.0542 0.0564 0.0597 0.0630

tqp-3 0.0129 0.0129 0.0129 0.0194 0.0194 0.0258 0.0258 0.0280 0.0323 0.0323 0.0344 0.0387 0.0387 0.0452 0.0452

tqp-4 0.0194 0.0237 0.0248 0.0280 0.0312 0.0334 0.0366 0.0388 0.0398 0.0409 0.0431 0.0441 0.0452 0.0484 0.0506

TQP-5 0.0183 0.0183 0.0183 0.0275 0.0275 0.0321 0.0321 0.0321 0.0321 0.0367 0.0367 0.0367 0.0459 0.0459 0.0459

Mid-span-0 0.0107 0.0172 0.0150 0.0172 0.0236 0.0236 0.0236 0.0300 0.0300 0.0300 0.0300 0.0365 0.0365 0.0365 0.0429

mid-span-1 0.0201 0.0290 0.0290 0.0290 0.0357 0.0334 0.0357 0.0424 0.0424 0.0424 0.0513 0.0491 0.0491 0.0513 0.0557

mid-span-2 0.0022 0.0011 0.0011 0.0011 0.0022 0.0011 0.0011 0.0011 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022

mid-span-4 0.0234 0.0256 0.0278 0.0300 0.0334 0.0356 0.0378 0.0400 0.0411 0.0434 0.0456 0.0478 0.0489 0.0512 0.0545

mid-span-5 0.0173 0.0238 0.0260 0.0260 0.0303 0.0303 0.0368 0.0368 0.0390 0.0411 0.0433 0.0455 0.0455 0.0519 0.0519

bqp-1 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0011 0.0000 0.0011 0.0011 0.0000 0.0011 0.0011

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0092 0.0183 0.0183 0.0183 0.0183 0.0229 0.0275 0.0275 0.0275 0.0275 0.0321 0.0321 0.0321 0.0321 0.0367

BQP-4 0.0091 0.0091 0.0091 0.0137 0.0137 0.0137 0.0137 0.0228 0.0228 0.0228 0.0228 0.0228 0.0273 0.0273 0.0273

BQP-5 0.0130 0.0173 0.0195 0.0195 0.0259 0.0238 0.0238 0.0238 0.0259 0.0324 0.0324 0.0324 0.0303 0.0324 0.0389

Page 166: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

154

Slab: XOREX-25 Test: Concentrated Load at Top Third Point (Figure 5.3-D) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 566.5 1280.7 1502.4 1995 2857.1 3522.1 4121.5 4507.3 5114.9 5615.7 5985.2 6510.6 7068.9

QPT-1 0 3.9 7.8 9.7 13.6 19.4 24.2 28.1 31.0 35.9 38.8 41.7 45.6 50.4

QPT-2 0 5.8 14.5 17.5 24.2 35.9 46.5 56.2 62.1 71.8 79.5 85.3 94.1 102.8

QPT-3 0 6.8 17.5 20.4 28.1 41.7 53.4 64.0 70.8 81.5 90.2 97.0 106.7 117.4

QPT-4 0 6.8 17.5 20.4 29.1 43.6 56.2 67.9 75.6 88.3 97.9 105.7 116.4 128.0

QPT-5 0 5.8 14.5 16.5 23.3 34.9 43.6 53.3 58.2 66.9 74.7 80.5 88.3 96.0

QPT-6 0 2.9 7.8 9.7 12.6 19.4 24.2 28.1 31.0 35.9 39.7 42.6 46.5 50.4

MS-1 0 3.9 8.7 10.7 13.6 19.4 24.2 29.1 31.0 35.9 39.7 42.7 46.5 50.4

MS-2 0 4.9 9.7 11.6 15.5 21.3 26.2 31.0 34.0 38.8 41.7 45.6 49.5 53.4

MS-3 0 -1.2 -2.4 -2.9 -3.8 -5.3 -6.8 -8.0 -8.6 -9.7 -10.9 -11.5 -12.4 -13.6

MS-4 0 2.9 7.8 8.7 12.6 17.5 22.3 26.2 28.2 32.0 35.0 37.9 40.8 43.7

MS-5 0 3.9 9.7 11.6 15.5 21.3 27.2 32.0 34.9 39.8 43.7 46.6 50.4 55.3

MS-6 0 3.9 8.7 9.7 12.6 18.4 22.3 27.2 29.1 33.0 36.9 38.8 42.7 46.6

QPB-1 0 1.9 4.9 5.8 7.8 10.7 12.6 15.5 16.5 18.4 20.4 22.3 24.3 26.2

QPB-2 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 0 2.9 5.8 6.8 8.7 11.6 14.5 17.5 18.4 21.3 23.3 25.2 27.2 29.1

QPB-4 0 1.9 5.8 5.8 8.7 11.6 14.5 16.5 18.4 21.3 23.3 25.2 27.2 29.1

QPB-5 0 1.9 5.8 5.8 7.8 11.6 14.6 16.5 18.4 21.4 23.3 24.3 27.2 29.1

QPB-6 0 3.9 6.9 9.9 11.8 16.8 19.7 23.7 25.7 28.6 30.6 35.5 37.5 41.5

Displacement

TQP-0 0.0022 0.0000 0.0065 0.0065 0.0043 0.0108 0.0129 0.0129 0.0129 0.0172 0.0194 0.0194 0.0194 0.0259

tqp-1 0.0022 0.0022 0.0000 0.0022 0.0022 0.0022 0.0000 0.0065 0.0065 0.0065 0.0109 0.0130 0.0130 0.0130

tqp-2 0.0000 0.0011 0.0033 0.0044 0.0055 0.0099 0.0133 0.0166 0.0177 0.0199 0.0210 0.0221 0.0254 0.0276

tqp-3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0065 0.0065 0.0065 0.0129 0.0129 0.0129 0.0194 0.0194

tqp-4 0.0011 0.0000 0.0000 0.0000 0.0043 0.0075 0.0086 0.0097 0.0108 0.0140 0.0172 0.0194 0.0215 0.0237

TQP-5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0092 0.0092 0.0092 0.0138 0.0138 0.0138 0.0183 0.0229

Mid-span-0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0064 0.0064 0.0064 0.0107 0.0129 0.0150 0.0150

mid-span-1 0.0022 0.0045 0.0067 0.0045 0.0067 0.0134 0.0134 0.0201 0.0201 0.0201 0.0268 0.0268 0.0268 0.0268

mid-span-2 0.0000 0.0000 0.0011 0.0000 0.0000 0.0011 0.0011 0.0011 0.0011 0.0000 0.0011 0.0011 0.0011 0.0000

mid-span-4 0.0000 0.0000 0.0022 0.0033 0.0056 0.0100 0.0122 0.0145 0.0167 0.0189 0.0211 0.0222 0.0256 0.0278

mid-span-5 0.0022 0.0022 0.0022 0.0022 0.0022 0.0065 0.0065 0.0130 0.0108 0.0108 0.0195 0.0173 0.0173 0.0238

bqp-1 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0092 0.0092 0.0092 0.0092 0.0138 0.0138 0.0138 0.0138

BQP-4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0091 0.0091 0.0091 0.0091 0.0137 0.0137

BQP-5 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0086 0.0086 0.0086 0.0086 0.0151 0.0151 0.0151 0.0151

Page 167: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

155

Concentrated Load at Top Third Point Continued. Load in lbs.

Strain Gage 7569.7 8087 8530.3 9113.3 9646.9 10147 10591 11157 11798 12479 13054

QPT-1 53.3 57.2 61.1 65.0 69.8 73.7 76.6 81.4 87.3 93.1 99.9

QPT-2 110.5 119.3 127.0 136.7 145.5 154.2 161.9 170.7 181.3 193.0 205.6

QPT-3 126.1 135.8 144.6 155.2 165.9 174.6 183.4 193.1 203.8 216.4 230.9

QPT-4 137.7 148.4 158.1 169.7 180.4 191.1 200.8 212.4 227.0 241.5 258.0

QPT-5 103.8 111.5 118.3 127.0 134.8 142.6 149.4 159.1 169.7 182.3 195.0

QPT-6 54.3 58.2 62.0 66.9 70.8 74.6 78.5 83.4 88.2 95.0 100.8

MS-1 54.3 57.2 61.1 65.0 69.8 72.7 75.6 80.5 85.3 91.1 97.9

MS-2 57.2 61.1 64.0 68.9 72.8 76.6 79.6 84.4 89.3 94.1 99.0

MS-3 -14.5 -15.6 -16.2 -17.4 -18.3 -19.5 -20.4 -21.2 -21.8 -23.0 -23.3

MS-4 47.6 50.5 53.4 56.3 60.2 63.1 66.0 69.9 73.8 77.7 78.6

MS-5 59.2 63.1 66.9 71.8 76.6 80.5 85.4 91.2 107.7 119.3 129.0

MS-6 49.5 53.4 56.3 60.1 64.0 67.9 70.8 74.7 79.5 85.4 91.2

QPB-1 28.2 30.1 32.0 34.0 35.9 37.9 39.8 41.8 44.7 47.6 50.5

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 32.0 33.9 35.9 37.8 40.7 42.7 44.6 46.6 48.5 51.4 53.3

QPB-4 31.0 33.0 34.9 36.9 39.8 40.7 42.7 45.6 47.5 50.4 52.4

QPB-5 31.1 34.0 35.9 37.9 40.8 42.7 44.7 47.6 51.5 55.3 59.2

QPB-6 44.4 47.4 50.3 53.3 55.3 58.2 61.2 64.2 68.1 72.1 75.0

Displacement

TQP-0 0.0259 0.0259 0.0259 0.0323 0.0323 0.0323 0.0388 0.0388 0.0388 0.0474 0.0474

tqp-1 0.0195 0.0195 0.0217 0.0239 0.0282 0.0282 0.0282 0.0347 0.0347 0.0347 0.0413

tqp-2 0.0298 0.0332 0.0354 0.0387 0.0409 0.0431 0.0442 0.0464 0.0486 0.0531 0.0564

tqp-3 0.0194 0.0258 0.0258 0.0258 0.0323 0.0323 0.0323 0.0387 0.0387 0.0452 0.0452

tqp-4 0.0248 0.0280 0.0301 0.0334 0.0355 0.0366 0.0388 0.0398 0.0420 0.0441 0.0474

TQP-5 0.0229 0.0229 0.0275 0.0275 0.0275 0.0367 0.0367 0.0367 0.0413 0.0413 0.0413

Mid-span-0 0.0193 0.0193 0.0193 0.0258 0.0258 0.0258 0.0343 0.0343 0.0343 0.0408 0.0386

mid-span-1 0.0334 0.0334 0.0334 0.0401 0.0401 0.0401 0.0468 0.0468 0.0491 0.0535 0.0535

mid-span-2 0.0011 0.0011 0.0011 0.0011 0.0011 0.0022 0.0011 0.0011 0.0011 0.0011 0.0000

mid-span-4 0.0300 0.0322 0.0345 0.0367 0.0389 0.0411 0.0434 0.0456 0.0478 0.0512 0.0545

mid-span-5 0.0238 0.0238 0.0281 0.0325 0.0325 0.0390 0.0390 0.0390 0.0455 0.0455 0.0498

bqp-1 0.0011 0.0011 0.0011 0.0000 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0229 0.0229 0.0229 0.0229 0.0275 0.0275 0.0275 0.0275 0.0321 0.0321 0.0367

BQP-4 0.0137 0.0137 0.0182 0.0228 0.0228 0.0228 0.0273 0.0273 0.0273 0.0273 0.0364

BQP-5 0.0216 0.0216 0.0216 0.0216 0.0281 0.0281 0.0281 0.0281 0.0346 0.0346 0.0346

Page 168: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

156

Slab: XOREX-25 Test: Concentrated Load at Bottom Third Point (Figure 5.3-E) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 747.12 1420.3 2175.6 2545.1 3054.1 3653.5 4351.3 5032.8 5509 5985.2 6559.9

QPT-1 0 2.9 4.8 7.8 9.7 11.6 14.5 17.4 19.4 21.3 23.3 26.2

QPT-2 0 2.9 6.8 10.7 12.6 14.5 18.4 22.3 26.2 29.1 31.0 34.9

QPT-3 0 2.9 6.8 10.7 12.6 14.6 18.4 22.3 26.2 28.1 31.0 34.9

QPT-4 0 2.9 5.8 9.7 11.6 14.5 17.5 21.3 25.2 28.1 32.0 34.9

QPT-5 0 3.9 6.8 10.7 12.6 15.5 19.4 23.3 27.2 30.1 33.0 36.9

QPT-6 0 2.9 5.8 8.7 10.7 12.6 14.5 17.4 21.3 23.3 25.2 27.1

MS-1 0 4.8 9.7 14.5 17.4 20.4 25.2 29.1 33.9 37.8 40.7 44.6

MS-2 0 5.8 10.7 16.5 19.4 23.3 28.1 33.0 38.8 42.7 46.6 50.4

MS-3 0 -1.5 -2.9 -4.4 -5.3 -6.2 -7.4 -8.6 -10.0 -10.9 -11.8 -13.0

MS-4 0 4.9 9.7 14.6 16.5 19.4 23.3 28.2 32.0 35.0 37.9 41.7

MS-5 0 5.8 10.7 16.5 19.4 24.3 29.1 34.9 40.7 45.6 49.5 54.3

MS-6 0 3.9 7.8 12.6 15.5 18.4 22.3 26.2 31.0 33.9 36.9 40.7

QPB-1 0 3.9 7.8 12.6 14.6 17.5 21.4 26.2 30.1 33.0 35.9 39.8

QPB-2 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 0 8.7 17.5 26.2 30.1 36.9 43.6 52.4 61.1 66.9 72.7 78.6

QPB-4 0 8.7 16.5 25.2 29.1 34.9 41.7 50.4 58.2 64.0 69.8 76.6

QPB-5 0 6.8 12.6 20.4 24.3 29.1 34.9 41.7 48.5 53.4 58.2 64.1

QPB-6 0 4.9 8.9 12.8 14.8 17.8 21.7 25.7 29.6 32.6 34.6 38.5

Displacement

TQP-0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0086 0.0065 0.0065 0.0129 0.0129

tqp-1 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0065 0.0065 0.0087

tqp-2 0 0.0000 0.0011 0.0044 0.0055 0.0066 0.0088 0.0122 0.0144 0.0155 0.0166 0.0177

tqp-3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0043 0.0065 0.0065 0.0065 0.0065

tqp-4 0 0.0000 0.0000 0.0011 0.0032 0.0054 0.0065 0.0075 0.0086 0.0097 0.0118 0.0129

TQP-5 0 0.0046 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0046 0.0092 0.0092

Mid-span-0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0043 0.0064 0.0086 0.0107 0.0150 0.0150

mid-span-1 0 0.0022 0.0067 0.0067 0.0067 0.0134 0.0134 0.0134 0.0201 0.0201 0.0201 0.0201

mid-span-2 0 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0011

mid-span-4 0 0.0011 0.0033 0.0067 0.0078 0.0111 0.0133 0.0156 0.0189 0.0211 0.0222 0.0256

mid-span-5 0 0.0022 0.0022 0.0043 0.0065 0.0043 0.0108 0.0108 0.0108 0.0195 0.0173 0.0195

bqp-1 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BQP-2 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0 0.0000 0.0000 0.0046 0.0092 0.0046 0.0092 0.0138 0.0138 0.0229 0.0229 0.0229

BQP-4 0 0.0000 0.0000 0.0000 0.0000 0.0046 0.0091 0.0091 0.0137 0.0137 0.0137 0.0182

BQP-5 0 0.0000 0.0000 0.0065 0.0065 0.0065 0.0065 0.0130 0.0130 0.0151 0.0195 0.0216

Page 169: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

157

Concentrated Load at Bottom Third Point Continued. Load in lbs.

Strain Gage 7044.3 7520.5 8087 8776.6 9154.3 9663.3 10623 11075 11592 11584 12175 12676 12972 12922

QPT-1 28.1 31.0 33.0 35.9 37.8 39.7 44.6 46.5 49.4 49.4 52.4 54.3 56.2 56.2

QPT-2 38.8 41.7 44.6 49.5 51.4 55.3 61.1 64.0 67.9 67.9 71.8 74.7 76.6 75.6

QPT-3 37.8 41.7 44.6 49.5 51.4 55.3 61.1 65.0 67.9 67.9 71.8 75.7 76.6 76.6

QPT-4 38.8 41.7 45.6 50.4 52.4 56.2 63.0 66.9 70.8 70.8 74.7 77.6 80.5 79.5

QPT-5 39.8 42.7 46.5 51.4 53.3 57.2 63.0 66.9 69.8 69.8 73.7 77.6 79.5 78.6

QPT-6 30.0 32.0 34.9 37.8 39.7 41.7 46.5 48.5 51.4 51.4 54.3 56.2 58.2 58.2

MS-1 48.5 52.3 56.2 61.1 64.0 68.8 76.6 80.5 85.3 85.3 91.1 96.0 99.9 99.9

MS-2 54.3 58.2 63.1 68.9 70.8 75.7 83.4 87.3 91.2 91.2 96.0 100.9 102.8 102.8

MS-3 -13.9 -14.7 -15.9 -17.4 -18.0 -18.9 -20.4 -21.2 -22.1 -22.1 -23.3 -23.9 -24.5 -24.5

MS-4 44.7 47.6 51.5 55.3 57.3 60.2 65.1 68.0 69.9 70.9 72.8 73.8 74.8 73.8

MS-5 59.2 63.1 67.9 74.7 78.6 83.4 92.2 97.0 101.9 100.9 106.7 111.6 115.5 114.5

MS-6 43.6 47.5 50.4 55.3 58.2 62.1 68.9 72.8 76.6 76.6 81.5 86.3 89.2 88.3

QPB-1 42.7 45.6 49.5 54.4 57.3 62.2 69.9 74.8 79.6 79.6 85.5 91.3 96.1 96.1

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 83.4 98.0 111.6 117.4 169.8 183.3 202.8 219.2 233.8 234.8 250.3 260.0 270.7 270.7

QPB-4 82.4 88.3 97.0 103.8 106.7 105.7 146.5 168.8 250.3 251.3 259.0 269.7 269.7 269.7

QPB-5 68.9 73.8 80.6 89.3 94.2 110.7 137.9 147.6 161.2 162.1 176.7 191.3 201.0 201.0

QPB-6 41.5 44.4 48.4 53.3 56.3 61.2 68.1 71.1 75.0 75.0 80.0 83.9 88.9 88.9

Displacement

TQP-0 0.0129 0.0129 0.0151 0.0216 0.0194 0.0194 0.0280 0.0280 0.0280 0.0280 0.0280 0.0323 0.0345 0.0345

tqp-1 0.0065 0.0152 0.0152 0.0152 0.0152 0.0195 0.0217 0.0217 0.0217 0.0217 0.0282 0.0282 0.0282 0.0282

tqp-2 0.0188 0.0199 0.0210 0.0243 0.0243 0.0265 0.0309 0.0321 0.0343 0.0343 0.0376 0.0398 0.0409 0.0398

tqp-3 0.0129 0.0129 0.0129 0.0194 0.0194 0.0194 0.0215 0.0258 0.0258 0.0258 0.0258 0.0323 0.0323 0.0323

tqp-4 0.0161 0.0183 0.0205 0.0215 0.0226 0.0248 0.0291 0.0312 0.0334 0.0334 0.0345 0.0355 0.0377 0.0377

TQP-5 0.0138 0.0092 0.0183 0.0183 0.0183 0.0183 0.0229 0.0229 0.0229 0.0229 0.0321 0.0321 0.0321 0.0321

Mid-span-0 0.0150 0.0215 0.0215 0.0193 0.0279 0.0279 0.0343 0.0343 0.0343 0.0343 0.0408 0.0408 0.0408 0.0408

mid-span-1 0.0290 0.0268 0.0290 0.0357 0.0334 0.0334 0.0401 0.0424 0.0491 0.0468 0.0468 0.0468 0.0535 0.0535

mid-span-2 0.0011 0.0000 0.0000 0.0000 0.0000 0.0011 0.0011 0.0011 0.0000 0.0000 0.0011 0.0011 0.0000 0.0000

mid-span-4 0.0278 0.0300 0.0322 0.0356 0.0367 0.0389 0.0434 0.0456 0.0478 0.0478 0.0512 0.0534 0.0556 0.0556

mid-span-5 0.0238 0.0238 0.0260 0.0325 0.0325 0.0325 0.0390 0.0390 0.0455 0.0455 0.0476 0.0498 0.0519 0.0519

bqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0229 0.0275 0.0275 0.0367 0.0367 0.0367 0.0413 0.0413 0.0459 0.0505 0.0505 0.0505 0.0550 0.0550

BQP-4 0.0228 0.0228 0.0228 0.0273 0.0273 0.0319 0.0364 0.0364 0.0410 0.0410 0.0410 0.0455 0.0501 0.0501

BQP-5 0.0195 0.0281 0.0281 0.0281 0.0346 0.0346 0.0346 0.0411 0.0411 0.0411 0.0411 0.0475 0.0475 0.0475

Page 170: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

158

Slab: XOREX-25 Test: Longitudinal Linear Load along Middle Strip (Figure 5.3-F) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1346.4 2126.4 3226.6 3981.9 5525.4 6124.7 7709.3 8218.3 9162.5 10139

QPT-1 0 10.7 18.4 32.0 41.7 62.1 71.7 93.1 99.9 113.4 128.0

QPT-2 0 12.6 22.3 38.8 50.4 74.7 84.4 109.6 117.3 132.9 148.4

QPT-3 0 13.6 24.3 40.7 51.4 75.7 85.4 110.6 118.4 133.9 149.4

QPT-4 0 13.6 24.2 41.7 53.3 77.6 87.3 113.5 121.2 135.8 151.3

QPT-5 0 12.6 22.3 36.9 46.6 66.9 74.7 96.0 102.8 115.4 129.0

QPT-6 0 8.7 13.6 21.3 27.1 37.8 42.7 54.3 58.2 64.9 72.7

MS-1 0 15.5 27.1 45.6 59.1 85.3 96.0 124.1 132.8 149.3 166.8

MS-2 0 19.4 32.0 52.4 66.0 94.1 105.8 134.9 144.6 163.0 182.4

MS-3 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-4 0 15.5 27.2 46.6 61.2 91.3 102.9 135.0 144.7 163.2 182.6

MS-5 0 17.5 30.1 50.5 66.0 98.0 110.6 144.6 155.3 175.7 198.0

MS-6 0 11.6 20.4 35.9 47.5 72.8 83.4 111.6 121.3 137.8 156.2

QPB-1 0 7.8 12.6 20.4 25.2 35.9 39.8 51.5 54.4 62.2 69.0

QPB-2 0 1.0 9.9 18.8 10.9 14.8 18.8 28.7 33.6 40.5 33.6

QPB-3 0 13.6 22.3 36.9 47.5 69.9 78.6 101.9 108.7 124.2 137.8

QPB-4 0 12.6 22.3 36.9 47.5 68.9 78.6 100.9 108.7 122.2 136.8

QPB-5 0 12.6 21.4 34.0 43.7 62.1 69.9 89.3 95.2 106.8 118.5

QPB-6 0 7.9 13.8 20.7 26.6 40.4 47.3 60.1 64.0 72.9 79.8

Displacement

TQP-0 0.0000 0.0043 0.0065 0.0129 0.0151 0.0194 0.0280 0.0345 0.0345 0.0409 0.0474

tqp-1 0.0000 0.0000 0.0065 0.0065 0.0130 0.0217 0.0261 0.0347 0.0347 0.0434 0.0478

tqp-2 0.0000 0.0022 0.0055 0.0099 0.0144 0.0243 0.0276 0.0365 0.0398 0.0431 0.0497

tqp-3 0.0000 0.0022 0.0022 0.0065 0.0043 0.0172 0.0194 0.0258 0.0323 0.0387 0.0387

tqp-4 0.0000 0.0000 0.0043 0.0118 0.0151 0.0258 0.0280 0.0345 0.0377 0.0431 0.0474

TQP-5 0.0000 0.0000 0.0000 0.0046 0.0138 0.0183 0.0229 0.0321 0.0321 0.0367 0.0459

Mid-span-0 0.0021 0.0000 0.0021 0.0086 0.0129 0.0258 0.0258 0.0408 0.0408 0.0472 0.0536

mid-span-1 0.0022 0.0045 0.0067 0.0134 0.0201 0.0268 0.0357 0.0468 0.0468 0.0557 0.0624

mid-span-2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000 0.0011 0.0000

mid-span-4 0.0000 0.0044 0.0089 0.0167 0.0211 0.0322 0.0356 0.0478 0.0512 0.0567 0.0634

mid-span-5 0.0022 0.0065 0.0043 0.0130 0.0195 0.0325 0.0325 0.0455 0.0455 0.0541 0.0606

bqp-1 0.0000 0.0000 0.0000 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0000 0.0000

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0046 0.0092 0.0092 0.0183 0.0229 0.0321 0.0321 0.0413 0.0459 0.0505 0.0596

BQP-4 0.0000 0.0000 0.0000 0.0091 0.0091 0.0228 0.0228 0.0319 0.0364 0.0410 0.0455

BQP-5 0.0000 0.0065 0.0065 0.0130 0.0173 0.0259 0.0324 0.0389 0.0389 0.0454 0.0540

Page 171: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

159

Slab: XOREX-25 Test: Longitudinal Linear Load along Left Third Point (Figure 5.3-G) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1256.1 2430.2 3711 4515.5 5114.9 6280.7 6962.2 8341.5 8998.3 10426 11157 12331 13136 13965 14827

QPT-1 0 11.6 19.4 30.1 40.7 46.5 58.2 65.0 79.5 85.3 98.9 105.7 126.0 128.0 209.4 300.6

QPT-2 0 14.5 28.1 44.6 62.1 71.8 90.2 100.9 123.2 132.9 156.1 167.8 187.2 208.5 232.8 249.3

QPT-3 0 11.6 23.3 35.9 51.4 59.2 74.7 84.4 102.8 111.6 131.9 142.6 164.9 182.4 208.6 240.6

QPT-4 0 10.7 20.4 31.0 44.6 51.4 65.9 74.7 92.1 100.9 120.3 130.0 151.3 166.8 190.1 213.4

QPT-5 0 8.7 16.5 26.2 36.9 42.7 54.3 62.1 76.6 82.4 98.9 107.7 125.1 137.7 155.2 171.7

QPT-6 0 4.8 9.7 14.5 20.4 23.3 29.1 33.0 40.7 43.6 52.3 56.2 64.9 71.7 79.5 87.2

MS-1 0 14.5 28.1 41.7 58.2 66.9 83.4 93.1 120.2 131.9 246.3 271.5 289.0 305.4 338.4 381.1

MS-2 0 12.6 24.3 35.9 49.5 57.2 70.8 78.6 95.1 101.9 118.4 130.0 212.5 246.5 262.0 287.2

MS-3 0 -3.5 -6.2 -9.1 -12.4 -14.2 -17.4 -19.5 -23.6 -25.7 -31.0 -33.3 -38.3 -47.2 -63.4 -86.7

MS-4 0 10.7 18.4 26.2 35.0 39.8 48.5 54.4 65.1 70.9 84.5 91.3 106.8 117.5 128.2 135.9

MS-5 0 10.7 19.4 29.1 39.8 45.6 56.3 62.1 75.7 81.5 98.0 106.7 124.2 136.8 154.3 173.7

MS-6 0 5.8 11.6 17.5 24.2 28.1 34.9 38.8 47.5 51.4 61.1 66.0 75.7 83.4 92.2 100.9

QPB-1 0 10.7 21.4 32.0 44.7 50.5 64.1 71.9 87.4 95.2 109.7 114.6 111.7 117.5 125.3 131.1

QPB-2 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 0 13.6 26.2 39.8 55.3 63.1 78.6 88.3 106.7 116.4 137.8 148.4 167.8 181.4 196.0 215.4

QPB-4 0 10.7 21.3 33.0 45.6 53.4 66.9 75.7 92.2 100.9 121.3 131.9 151.3 165.9 182.4 199.9

QPB-5 0 8.7 17.5 27.2 37.9 43.7 55.3 62.1 75.7 82.5 100.0 108.7 126.2 137.9 150.5 163.1

QPB-6 0 5.9 10.9 14.8 20.7 24.7 30.6 34.6 42.5 46.4 55.3 60.2 69.1 75.1 82.0 89.9

Displacement

TQP-0 0.0000 0.0065 0.0194 0.0280 0.0323 0.0388 0.0474 0.0453 0.0603 0.0603 0.0733 0.0776 0.0862 0.0927 0.0991 0.1121

tqp-1 0.0022 0.0022 0.0043 0.0130 0.0217 0.0261 0.0326 0.0347 0.0456 0.0478 0.0565 0.0630 0.0695 0.0760 0.0890 0.0977

tqp-2 0.0011 0.0033 0.0088 0.0133 0.0177 0.0210 0.0287 0.0321 0.0387 0.0409 0.0497 0.0520 0.0619 0.0663 0.0741 0.0840

tqp-3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0086 0.0129 0.0194 0.0194 0.0258 0.0323 0.0323 0.0387 0.0452

tqp-4 0.0000 0.0000 0.0011 0.0000 0.0011 0.0011 0.0032 0.0043 0.0065 0.0086 0.0140 0.0161 0.0205 0.0248 0.0280 0.0301

TQP-5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0046 0.0046 0.0138 0.0138 0.0138 0.0183

Mid-span-0 0.0021 0.0000 0.0129 0.0236 0.0343 0.0322 0.0472 0.0536 0.0601 0.0687 0.0794 0.0858 0.1009 0.1073 0.1223 0.1352

mid-span-1 0.0022 0.0045 0.0111 0.0268 0.0334 0.0334 0.0468 0.0491 0.0602 0.0691 0.0803 0.0803 0.0959 0.1093 0.1249 0.1360

mid-span-2 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0011 0.0000

mid-span-4 0.0000 0.0000 0.0022 0.0056 0.0078 0.0100 0.0133 0.0156 0.0200 0.0222 0.0278 0.0311 0.0356 0.0389 0.0434 0.0478

mid-span-5 0.0000 0.0000 0.0022 0.0000 0.0022 0.0065 0.0043 0.0065 0.0130 0.0130 0.0195 0.0195 0.0195 0.0260 0.0260 0.0325

bqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BQP-2 0.0000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0000 0.0000 0.0000 0.0046 0.0046 0.0138 0.0138 0.0183 0.0183 0.0275 0.0321 0.0367 0.0413 0.0413 0.0459 0.0550

BQP-4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0046 0.0137 0.0137 0.0182 0.0182 0.0273

BQP-5 0.0022 0.0022 0.0022 0.0022 0.0022 0.0000 0.0000 0.0065 0.0043 0.0043 0.0108 0.0108 0.0108 0.0130 0.0195 0.0195

Page 172: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

160

Slab: XOREX-25 Test: Longitudinal linear Load along Right Third Point (Figure 5.3-H) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 1239.7 2110 3185.5 4326.7 4975.3 6338.2 7060.7 8136.2 9022.9 9909.6 11108 11954 12914

QPT-1 5.8 10.7 18.4 26.2 31.0 43.6 50.4 61.1 71.7 82.4 98.9 111.5 127.0

QPT-2 8.7 16.5 27.2 39.8 46.5 64.0 73.7 87.3 99.9 113.5 133.8 148.4 167.8

QPT-3 10.7 19.4 32.0 45.6 53.4 70.8 80.5 95.1 107.7 121.3 139.7 154.3 172.7

QPT-4 12.6 22.3 35.9 51.4 61.1 80.5 91.2 106.7 119.3 132.9 151.3 164.9 181.4

QPT-5 13.6 25.2 39.8 55.3 64.0 83.4 94.1 108.6 121.2 131.9 147.4 158.1 170.7

QPT-6 10.7 19.4 29.1 40.7 47.5 61.1 68.8 80.5 89.2 97.9 108.6 116.3 123.1

MS-1 7.8 15.5 26.2 37.8 45.6 61.1 69.8 83.4 96.0 109.6 129.0 143.5 163.9

MS-2 11.6 22.3 35.9 50.4 59.2 76.6 87.3 101.9 117.4 133.9 159.1 178.5 206.7

MS-3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-4 12.6 21.4 33.0 44.7 51.5 66.0 74.8 88.4 102.9 115.5 297.2 337.0 373.0

MS-5 18.4 33.0 53.4 74.7 87.3 114.5 130.0 155.3 185.3 253.3 334.8 379.5 416.4

MS-6 14.6 25.2 39.8 54.3 63.1 81.5 91.2 110.6 124.2 143.6 265.9 303.7 372.6

QPB-1 4.9 7.8 12.6 17.5 21.4 27.2 30.1 35.0 39.8 45.6 53.4 60.2 68.0

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 10.7 20.4 32.0 44.6 52.4 68.9 75.7 90.2 102.8 115.5 133.9 147.5 166.9

QPB-4 11.6 21.3 34.9 49.5 57.2 75.7 84.4 98.9 112.5 126.1 143.6 157.2 175.6

QPB-5 12.6 22.3 35.9 50.5 59.2 76.7 84.5 98.1 107.8 116.5 127.2 134.0 141.8

QPB-6 1.0 4.9 14.8 26.6 34.5 49.3 53.2 64.0 70.0 77.8 92.6 108.4 125.1

Displacement

TQP-0 0.0000 0.0000 0.0000 0.0022 0.0022 0.0086 0.0108 0.0108 0.0151 0.0172 0.0172 0.0237 0.0237

tqp-1 0.0022 0.0022 0.0022 0.0022 0.0087 0.0087 0.0152 0.0174 0.0195 0.0239 0.0304 0.0304 0.0391

tqp-2 0.0011 0.0044 0.0077 0.0122 0.0144 0.0221 0.0254 0.0298 0.0343 0.0376 0.0453 0.0486 0.0564

tqp-3 0.0022 0.0022 0.0043 0.0065 0.0108 0.0172 0.0237 0.0301 0.0366 0.0387 0.0495 0.0559 0.0624

tqp-4 0.0011 0.0097 0.0172 0.0258 0.0291 0.0377 0.0431 0.0484 0.0560 0.0614 0.0700 0.0775 0.0851

TQP-5 0.0046 0.0092 0.0229 0.0275 0.0321 0.0413 0.0459 0.0550 0.0596 0.0688 0.0826 0.0872 0.1009

Mid-span-0 0.0021 0.0021 0.0021 0.0043 0.0043 0.0043 0.0021 0.0021 0.0107 0.0107 0.0172 0.0215 0.0236

mid-span-1 0.0089 0.0089 0.0089 0.0156 0.0156 0.0223 0.0245 0.0290 0.0357 0.0357 0.0446 0.0491 0.0580

mid-span-2 0.0011 0.0011 0.0011 0.0022 0.0022 0.0022 0.0022 0.0033 0.0022 0.0022 0.0022 0.0022 0.0022

mid-span-4 0.0100 0.0178 0.0278 0.0378 0.0434 0.0545 0.0601 0.0689 0.0767 0.0867 0.1001 0.1101 0.1257

mid-span-5 0.0043 0.0173 0.0260 0.0390 0.0455 0.0584 0.0649 0.0714 0.0844 0.0931 0.1061 0.1212 0.1342

bqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0000 0.0092 0.0183 0.0229 0.0229 0.0367 0.0367 0.0459 0.0505 0.0596 0.0642 0.0734 0.0780

BQP-4 0.0000 0.0091 0.0228 0.0273 0.0364 0.0410 0.0501 0.0546 0.0637 0.0683 0.0774 0.0819 0.0956

BQP-5 0.0086 0.0151 0.0303 0.0367 0.0432 0.0497 0.0562 0.0627 0.0692 0.0778 0.0908 0.0973 0.1037

Page 173: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

161

Slab: XOREX-25 Test: Transverse Linear Load Along Mid-Span (Figure 5.3-I) Strain Gage Readings are in µin/in. Displacement readings are in inches.

Load in lbs.

Strain Gage 0 1305.4 2118.2 3087 4318.5 5714.2 6617.4 7044.3 7931 9269.2 10755 11387 12044 13201 13719 10114

QPT-1 0 10.7 20.4 33.0 50.4 71.7 85.3 92.1 105.7 125.1 148.4 160.0 174.5 195.9 206.5 109.6

QPT-2 0 12.6 23.3 36.8 56.2 79.5 94.1 101.8 115.4 136.7 158.1 166.8 171.7 213.4 242.5 116.4

QPT-3 0 12.6 22.3 35.9 54.3 76.6 90.2 98.0 111.6 132.0 152.3 164.9 178.5 229.0 249.4 154.3

QPT-4 0 12.6 22.3 35.9 54.3 75.6 89.2 96.0 109.6 129.0 149.4 157.1 165.9 202.7 235.7 152.3

QPT-5 0 13.6 23.3 34.9 51.4 70.8 82.4 89.2 100.9 119.3 138.7 146.5 155.2 167.8 178.5 150.3

QPT-6 0 8.7 14.5 22.3 32.0 42.7 49.4 53.3 60.1 70.8 83.4 89.2 96.0 108.6 112.4 128.0

MS-1 0 17.5 32.0 50.4 74.7 103.7 120.2 129.0 146.4 172.6 206.5 225.9 257.0 370.5 462.7 448.1

MS-2 0 23.3 41.7 64.0 92.2 124.2 145.5 155.3 175.6 207.7 258.1 293.1 338.7 365.9 461.1 732.1

MS-3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-4 0 23.3 44.7 71.9 107.8 147.6 172.9 185.5 211.7 252.5 298.2 308.9 341.0 398.3 460.5 646.2

MS-5 0 20.4 36.9 60.2 91.2 127.1 149.5 161.1 184.4 220.3 264.0 292.2 338.8 407.7 498.0 672.9

MS-6 0 13.6 25.2 42.7 66.0 93.1 110.6 119.3 136.8 164.0 197.0 213.5 238.7 299.9 380.4 499.9

QPB-1 0 6.8 12.6 19.4 28.2 37.9 44.7 47.6 54.4 64.1 75.7 80.6 87.4 97.1 101.0 74.8

QPB-2 0 0.0 3.0 13.8 21.7 32.6 32.6 32.6 36.6 48.4 53.4 56.3 68.2 77.1 112.6 56.3

QPB-3 0 11.6 20.4 33.0 49.5 69.9 82.5 88.3 100.9 119.3 138.7 145.5 161.1 172.7 204.7 165.0

QPB-4 0 11.6 20.4 33.0 49.5 68.9 81.5 87.3 99.9 118.4 137.8 144.5 149.4 158.1 184.3 155.2

QPB-5 0 11.7 20.4 31.1 45.6 62.1 72.8 77.7 88.4 103.9 121.4 128.2 135.9 158.3 186.4 170.9

QPB-6 0 8.9 13.8 21.7 31.5 44.3 51.2 54.2 63.1 74.9 88.7 95.6 102.5 118.2 122.2 96.6

Displacements

TQP-0 0.0022 0.0065 0.0065 0.0129 0.0194 0.0259 0.0323 0.0323 0.0388 0.0453 0.0517 0.0582 0.0582 0.0711 0.0776 0.1466

tqp-1 0.0000 0.0000 0.0065 0.0065 0.0152 0.0261 0.0282 0.0347 0.0369 0.0434 0.0565 0.0586 0.0651 0.0717 0.0847 0.1346

tqp-2 0.0000 0.0033 0.0055 0.0099 0.0188 0.0276 0.0321 0.0332 0.0398 0.0453 0.0553 0.0575 0.0630 0.0741 0.0829 0.1371

tqp-3 0.0000 0.0000 0.0000 0.0065 0.0129 0.0194 0.0258 0.0258 0.0344 0.0409 0.0473 0.0538 0.0602 0.0667 0.0796 0.1269

tqp-4 0.0000 0.0000 0.0054 0.0118 0.0205 0.0280 0.0323 0.0345 0.0398 0.0463 0.0549 0.0592 0.0635 0.0732 0.0818 0.1303

TQP-5 0.0000 0.0000 0.0000 0.0046 0.0138 0.0275 0.0275 0.0321 0.0413 0.0459 0.0505 0.0596 0.0596 0.0734 0.0780 0.1239

Mid-span-0 0.0021 0.0021 0.0064 0.0129 0.0193 0.0279 0.0322 0.0408 0.0451 0.0536 0.0665 0.0687 0.0730 0.0944 0.1073 0.2146

mid-span-1 0.0022 0.0045 0.0067 0.0111 0.0268 0.0312 0.0379 0.0468 0.0513 0.0602 0.0736 0.0736 0.0892 0.1026 0.1226 0.2319

mid-span-2 0.0000 0.0011 0.0011 0.0011 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000

mid-span-4 0.0000 0.0056 0.0111 0.0189 0.0278 0.0389 0.0456 0.0478 0.0545 0.0645 0.0756 0.0812 0.0879 0.1034 0.1212 0.2269

mid-span-5 0.0022 0.0043 0.0043 0.0152 0.0260 0.0325 0.0411 0.0476 0.0541 0.0606 0.0736 0.0801 0.0866 0.0996 0.1125 0.2099

bqp-1 0.0011 0.0011 0.0011 0.0000 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0000 0.0046 0.0046 0.0138 0.0229 0.0229 0.0321 0.0367 0.0367 0.0459 0.0596 0.0596 0.0642 0.0780 0.0872 0.1376

BQP-4 0.0046 0.0000 0.0046 0.0046 0.0091 0.0182 0.0228 0.0228 0.0319 0.0364 0.0501 0.0501 0.0546 0.0683 0.0774 0.1184

BQP-5 0.0000 0.0065 0.0108 0.0151 0.0195 0.0346 0.0411 0.0411 0.0475 0.0540 0.0605 0.0670 0.0670 0.0800 0.0886 0.1297

Page 174: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

162

Slab: XOERX-25 Test: Transverse Linear Load Along Top Quarter Point (Figure 5.3-J) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1379.3 2159.2 3349.7 4105 5492.6 6272.5 7274.2 8078.8 9507.3 10057 10706 12052 12848 13965 15188

QPT-1 0 8.7 14.5 23.3 29.1 39.7 45.6 53.3 59.1 70.8 74.7 80.5 91.1 97.9 103.7 117.3

QPT-2 0 18.4 31.0 51.4 64.0 88.2 101.8 120.2 134.8 160.0 170.7 183.3 208.5 228.9 261.9 307.5

QPT-3 0 20.4 34.0 56.3 70.8 97.0 112.5 132.9 148.4 176.6 187.3 200.8 228.0 239.7 264.9 294.0

QPT-4 0 21.3 36.9 61.1 77.6 107.6 125.1 148.4 165.8 198.8 212.4 225.0 249.3 260.9 290.0 316.2

QPT-5 0 17.5 29.1 47.5 59.2 81.5 94.1 110.6 123.2 146.4 157.1 167.8 192.0 209.5 236.7 269.7

QPT-6 0 8.7 14.5 23.3 29.1 39.7 46.5 54.3 60.1 71.7 76.6 81.4 93.1 100.8 115.4 128.9

MS-1 0 7.8 12.6 19.4 24.2 33.0 38.8 44.6 50.4 60.1 64.0 67.9 77.6 83.4 91.1 99.9

MS-2 0 6.8 11.6 17.5 22.3 30.1 34.9 40.7 44.6 53.4 57.2 60.1 67.9 72.8 79.6 86.3

MS-3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-4 0 5.8 9.7 14.6 17.5 23.3 26.2 30.1 33.0 37.9 40.8 43.7 48.5 51.5 55.3 59.2

MS-5 0 7.8 12.6 20.4 26.2 34.9 40.7 47.5 52.4 62.1 66.9 70.8 80.5 86.4 94.1 101.9

MS-6 0 6.8 11.6 18.4 22.3 30.1 34.9 40.7 45.6 54.3 57.2 61.1 69.8 74.7 82.5 90.2

QPB-1 0 3.9 6.8 9.7 12.6 17.5 19.4 23.3 26.2 31.1 33.0 35.9 40.8 44.7 48.6 53.4

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 0 5.8 8.7 12.6 15.5 21.3 25.2 29.1 33.0 39.8 42.7 45.6 52.4 56.3 62.1 67.9

QPB-4 0 4.8 7.8 11.6 14.5 20.4 23.3 28.1 31.0 37.8 40.7 44.6 50.4 54.3 60.1 66.0

QPB-5 0 4.9 7.8 11.7 15.5 21.4 24.3 29.1 33.0 39.8 42.7 45.6 52.4 57.3 62.1 68.0

QPB-6 0 4.0 8.9 12.8 14.8 19.8 21.7 25.7 29.6 33.6 36.5 39.5 44.4 47.4 52.3 57.3

Displacement

TQP-0 0.0000 0.0000 0.0000 0.0065 0.0065 0.0151 0.0194 0.0216 0.0216 0.0280 0.0280 0.0345 0.0409 0.0409 0.0409 0.0474

tqp-1 0.0022 0.0022 0.0022 0.0043 0.0043 0.0130 0.0130 0.0195 0.0195 0.0282 0.0282 0.0347 0.0347 0.0413 0.0434 0.0478

tqp-2 0.0000 0.0033 0.0066 0.0133 0.0155 0.0210 0.0243 0.0298 0.0332 0.0398 0.0420 0.0453 0.0520 0.0553 0.0586 0.0674

tqp-3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0129 0.0194 0.0194 0.0258 0.0323 0.0323 0.0387 0.0452 0.0452 0.0602

tqp-4 0.0000 0.0000 0.0032 0.0054 0.0086 0.0161 0.0194 0.0237 0.0280 0.0334 0.0355 0.0377 0.0431 0.0463 0.0506 0.0560

TQP-5 0.0000 0.0000 0.0000 0.0046 0.0046 0.0138 0.0183 0.0183 0.0229 0.0321 0.0321 0.0321 0.0367 0.0459 0.0459 0.0505

Mid-span-0 0.0000 0.0000 0.0000 0.0064 0.0064 0.0129 0.0129 0.0193 0.0193 0.0258 0.0279 0.0322 0.0386 0.0386 0.0472 0.0472

mid-span-1 0.0022 0.0000 0.0022 0.0067 0.0134 0.0134 0.0201 0.0201 0.0268 0.0334 0.0334 0.0379 0.0424 0.0468 0.0468 0.0557

mid-span-2 0.0011 0.0011 0.0000 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0022 0.0011 0.0011 0.0011 0.0011 0.0011

mid-span-4 0.0000 0.0022 0.0056 0.0111 0.0133 0.0189 0.0234 0.0278 0.0311 0.0367 0.0389 0.0423 0.0478 0.0512 0.0556 0.0623

mid-span-5 0.0022 0.0022 0.0065 0.0108 0.0130 0.0195 0.0173 0.0260 0.0281 0.0325 0.0390 0.0390 0.0455 0.0519 0.0541 0.0584

bqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0046 0.0046 0.0046 0.0046 0.0092 0.0092 0.0138 0.0183 0.0183 0.0229 0.0229 0.0321 0.0321 0.0367 0.0367 0.0413

BQP-4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0137 0.0137 0.0182 0.0182 0.0228 0.0273 0.0273 0.0319

BQP-5 0.0000 0.0000 0.0065 0.0065 0.0086 0.0130 0.0151 0.0216 0.0195 0.0281 0.0281 0.0259 0.0346 0.0346 0.0411 0.0432

Page 175: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

163

Slab: XOREX-25 Test: Transverse Linear Load Along Bottom Quarter Point (Figure 5.3-K) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1001.6 2274.2 3119.8 4220 4934.3 6231.5 7052.5 7906.4 8924.4 10090 10952 12077 13472 13924 14811

QPT-1 0 2.9 6.8 9.7 13.6 16.5 20.4 23.3 26.2 30.1 34.9 37.8 42.7 47.5 49.4 53.3

QPT-2 0 3.9 8.7 12.6 17.5 21.3 27.1 31.0 35.9 41.7 47.5 52.4 58.2 65.9 67.9 72.7

QPT-3 0 2.9 7.8 11.6 16.5 19.4 26.2 30.1 34.0 39.8 46.6 50.4 57.2 65.0 67.9 72.8

QPT-4 0 2.9 8.7 12.6 16.5 20.4 27.2 31.0 35.9 40.7 47.5 52.4 59.2 67.9 70.8 75.6

QPT-5 0 2.9 8.7 12.6 17.5 20.4 27.2 31.0 35.9 41.7 47.5 52.4 58.2 65.9 67.9 72.7

QPT-6 0 2.9 6.8 9.7 13.6 16.5 21.3 24.2 27.1 31.0 35.9 38.8 43.6 48.5 50.4 54.3

MS-1 0 5.8 12.6 18.4 25.2 30.1 38.8 44.6 50.4 57.2 65.0 71.7 79.5 90.2 94.0 101.8

MS-2 0 4.9 12.6 18.4 24.3 28.1 36.9 41.7 46.6 53.4 61.1 66.0 73.7 82.5 85.4 91.2

MS-3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-4 0 3.9 10.7 14.6 19.4 23.3 29.1 33.0 35.9 40.8 46.6 50.5 55.3 62.1 64.1 68.0

MS-5 0 5.8 14.6 19.4 27.2 32.0 40.7 46.6 52.4 60.2 68.9 74.7 82.5 92.2 95.1 101.9

MS-6 0 4.8 11.6 16.5 23.3 27.2 34.9 39.8 44.6 50.4 58.2 63.1 70.8 79.5 81.5 88.3

QPB-1 0 5.8 14.6 20.4 29.1 35.0 44.7 51.5 58.3 67.0 75.7 83.5 93.2 108.8 114.6 136.0

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-3 0 13.6 34.0 49.5 69.8 82.5 106.7 121.3 136.8 156.2 177.5 193.1 215.4 249.3 263.9 299.8

QPB-4 0 12.6 34.9 50.4 72.8 87.3 113.5 130.0 147.5 168.8 192.1 210.5 235.8 275.5 293.0 318.2

QPB-5 0 10.7 28.2 41.7 58.3 69.9 90.3 102.9 116.5 133.0 152.4 166.0 185.5 216.5 233.0 258.3

QPB-6 0 5.9 13.8 19.7 27.6 33.6 43.4 50.4 57.3 65.2 73.1 81.0 89.9 106.7 116.5 141.2

Displacement

TQP-0 0.0000 0.0000 0.0022 0.0000 0.0065 0.0065 0.0129 0.0129 0.0129 0.0194 0.0194 0.0194 0.0259 0.0323 0.0323 0.0323

tqp-1 0.0022 0.0022 0.0022 0.0022 0.0000 0.0022 0.0065 0.0065 0.0130 0.0130 0.0130 0.0195 0.0195 0.0261 0.0261 0.0326

tqp-2 0.0000 0.0000 0.0033 0.0055 0.0099 0.0122 0.0155 0.0166 0.0199 0.0221 0.0243 0.0265 0.0309 0.0365 0.0387 0.0420

tqp-3 0.0022 0.0022 0.0000 0.0022 0.0000 0.0022 0.0022 0.0086 0.0086 0.0086 0.0151 0.0151 0.0215 0.0237 0.0280 0.0280

tqp-4 0.0011 0.0011 0.0011 0.0043 0.0054 0.0065 0.0108 0.0140 0.0172 0.0194 0.0226 0.0269 0.0312 0.0345 0.0355 0.0388

TQP-5 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0138 0.0138 0.0138 0.0183 0.0183 0.0229 0.0229 0.0321 0.0321 0.0367

Mid-span-0 0.0000 0.0000 0.0000 0.0000 0.0064 0.0086 0.0129 0.0193 0.0193 0.0258 0.0300 0.0343 0.0408 0.0472 0.0472 0.0536

mid-span-1 0.0000 0.0067 0.0045 0.0111 0.0111 0.0201 0.0268 0.0268 0.0334 0.0334 0.0401 0.0401 0.0468 0.0557 0.0557 0.0602

mid-span-2 0.0011 0.0000 0.0000 0.0011 0.0000 0.0011 0.0011 0.0000 0.0000 0.0000 0.0000 0.0011 0.0011 0.0000 0.0011 0.0011

mid-span-4 0.0011 0.0011 0.0067 0.0100 0.0156 0.0189 0.0245 0.0278 0.0311 0.0356 0.0400 0.0434 0.0478 0.0556 0.0578 0.0623

mid-span-5 0.0022 0.0022 0.0043 0.0043 0.0108 0.0195 0.0195 0.0260 0.0303 0.0325 0.0390 0.0390 0.0455 0.0541 0.0519 0.0584

bqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BQP-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BQP-3 0.0000 0.0000 0.0000 0.0046 0.0138 0.0138 0.0183 0.0275 0.0275 0.0321 0.0367 0.0367 0.0459 0.0505 0.0505 0.0596

BQP-4 0.0000 0.0000 0.0000 0.0046 0.0091 0.0091 0.0182 0.0228 0.0228 0.0319 0.0364 0.0364 0.0455 0.0501 0.0501 0.0592

BQP-5 0.0000 0.0000 0.0086 0.0151 0.0151 0.0216 0.0281 0.0281 0.0346 0.0346 0.0411 0.0432 0.0475 0.0562 0.0540 0.0627

Page 176: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

164

Test Designation: XOREX50- Concentrated Loads Cast Date: 07/16/2001 Test Date: 08/24/2001

Materials and Dimensions

General: Width: 9 ft (3 panels) Span length: 10 ft. Type of Reinforcement: 50 lb/yd3 –1 ½” Xorex Fiber Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 4200 psi Total Depth: 5.5 in

Results

Maximum Applied Load: 13.70 kips Mid-Span Deflection at Maximum Load: 0.48 in

Quarter Point-1 Deflection at Maximum Load: 0.29 in Quarter Point-2 Deflection at Maximum Load: 0.27 in

End Slip at Maximum Load: 0.00 in

Strains Due to Fresh Concrete (µe)

Strain Gage 1 2 3 4 5 6 Quarter Point-1 592.65 567.19 527.82 483.86 626.86 534.45

Mid-Span 857.73 862.03 826.51 748.37 N/A 817.92Quarter Point-2 566.68 589.87 568.88 629.22 611.35 528.19

Page 177: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

165

Table F-3 Non-Distributed Load Tests Data on XOREX-50 Slab Slab: XOREX-50 Test: Concentrated Load at Bottom Quarter Point (Figure 5.3-A) Strain Gage Readings are in µin/in. Displacements Readings are in inches.

Load in lbs.

Strain Gage

0 541.87 1256.1 1592.7 2183.9 2528.7 3029.5 3620.6 4064 4548.4 5065.6 5574.7 5993.4 6527 7151 7791.4

QPT-1 0 3.9 8.7 10.7 14.6 17.5 21.4 25.2 28.1 32.0 35.9 39.8 42.7 47.6 52.4 58.2

QPT-2 0 6.8 15.5 19.4 26.2 31.1 36.9 44.6 50.5 56.3 63.1 69.9 75.7 83.5 92.2 100.9

QPT-3 0 6.8 15.5 19.4 27.2 32.0 37.9 45.6 52.4 58.3 65.1 71.9 77.7 86.4 95.2 104.9

QPT-4 0 4.9 10.7 13.6 19.4 23.3 27.2 33.0 37.9 42.7 47.6 53.4 57.3 63.1 69.9 77.7

QPT-5 0 1.9 3.9 4.8 6.8 7.8 9.7 11.6 12.6 14.5 16.5 17.5 19.4 22.3 24.2 26.2

QPT-6 0 1.9 3.9 4.9 6.8 7.8 8.7 10.7 11.6 13.6 14.6 16.5 17.5 19.4 21.4 23.3

MS-1 0 2.9 6.8 8.7 11.7 13.6 16.5 19.4 22.3 25.3 28.2 31.1 34.0 36.9 40.8 44.7

MS-2 0 2.9 5.8 7.8 10.7 12.6 15.5 18.5 21.4 23.3 26.2 29.2 31.1 34.0 37.9 41.8

MS-3 0 -0.9 -1.8 -2.4 -3.2 -3.8 -4.4 -5.3 -6.2 -6.8 -7.7 -8.6 -9.1 -10.0 -10.9 -11.8

MS-4 0 2.9 6.8 7.8 10.7 13.6 15.5 18.5 21.4 23.3 26.2 29.1 31.1 34.0 37.9 41.8

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0 2.9 6.8 7.8 10.7 12.6 14.6 17.5 20.4 22.3 25.2 27.2 30.1 32.0 35.9 39.8

QPB-1 0 1.9 3.9 4.9 6.8 7.8 8.7 10.7 11.7 13.6 14.6 16.5 17.5 19.4 21.4 23.3

QPB-2 0 1.0 2.9 4.9 6.8 7.8 8.7 10.7 12.6 13.6 15.5 17.5 18.4 20.4 22.3 24.3

QPB-3 0 1.0 2.9 3.9 5.8 6.8 8.7 9.7 11.6 12.6 14.5 16.5 17.5 19.4 21.3 23.3

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0.0 3.9 10.7 13.6 19.4 23.3 27.2 33.0 37.8 42.7 48.5 54.3 61.1 73.7 83.4 94.1

QPB-6 0.0 2.9 6.8 8.7 11.6 13.6 16.5 19.4 22.3 25.2 28.1 31.0 33.9 36.9 40.7 45.6

Displacement

TQP-0 0.0000 0.0000 0.0043 0.0043 0.0065 0.0065 0.0065 0.0065 0.0065 0.0129 0.0151 0.0129 0.0129 0.0151 0.0216 0.0216

tqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0087 0.0087 0.0087 0.0087 0.0152

tqp-2 0.0000 0.0000 0.0022 0.0022 0.0033 0.0055 0.0066 0.0077 0.0099 0.0099 0.0122 0.0133 0.0144 0.0166 0.0177 0.0188

tqp-3 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0000 0.0022 0.0000 0.0022 0.0022 0.0022 0.0022 0.0086 0.0086

tqp-4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0022 0.0043 0.0054 0.0075 0.0097 0.0118 0.0129 0.0151 0.0161

TQP-5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0092 0.0092 0.0092 0.0092 0.0138 0.0138 0.0138 0.0138 0.0183

Mid-span-0

0.0000 0.0000 0.0000 0.0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0086 0.0086 0.0086 0.0086 0.0172 0.0150 0.0150

mid-span-1

0.0000 0.0000 0.0067 0.0067 0.0067 0.0067 0.0134 0.0156 0.0134 0.0156 0.0201 0.0223 0.0201 0.0268 0.0268 0.0268

mid-span-2

0.0000 0.0011 0.0022 0.0033 0.0055 0.0066 0.0100 0.0122 0.0144 0.0155 0.0177 0.0199 0.0210 0.0244 0.0266 0.0299

mid-span-4

0.0000 0.0011 0.0033 0.0044 0.0056 0.0078 0.0111 0.0133 0.0156 0.0167 0.0189 0.0211 0.0222 0.0245 0.0278 0.0311

mid-span-5

0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0108 0.0108 0.0087 0.0108 0.0173 0.0173 0.0173 0.0238 0.0216

bqp-1 0.0022 0.0011 0.0011 0.0022 0.0044 0.0055 0.0077 0.0099 0.0111 0.0122 0.0144 0.0155 0.0177 0.0188 0.0221 0.0254

BQP-2 0.0000 0.0000 0.0000 0.0000 0.0091 0.0091 0.0091 0.0137 0.0137 0.0137 0.0228 0.0228 0.0228 0.0274 0.0274 0.0365

BQP-3 0.0000 0.0046 0.0000 0.0046 0.0092 0.0092 0.0092 0.0183 0.0183 0.0138 0.0229 0.0229 0.0229 0.0321 0.0321 0.0367

BQP-4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0046 0.0137 0.0137 0.0137 0.0182 0.0182 0.0182 0.0273 0.0273

BQP-5 0.0000 0.0000 0.0065 0.0086 0.0065 0.0065 0.0151 0.0130 0.0130 0.0216 0.0216 0.0216 0.0216 0.0281 0.0281 0.0346

Page 178: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

166

Concentrated Load at Bottom Quarter Point Continued. Load in lbs.

Strain Gage 8193.7 8752 9088.6 9466.3 10073 10484 11100 11724 12093 12380 12922 13382 14187 14770 15197

QPT-1 61.2 66.0 68.0 71.8 76.7 80.6 87.4 94.2 99.0 102.9 109.7 116.5 125.2 132.0 139.8

QPT-2 107.7 115.5 120.3 126.2 134.9 139.7 148.5 156.2 159.2 160.1 170.8 185.4 203.8 220.3 236.8

QPT-3 111.7 119.4 124.3 131.1 144.7 153.4 170.9 168.0 170.0 192.3 212.7 228.2 242.8 274.9 294.3

QPT-4 82.5 88.3 92.2 97.1 107.8 114.6 127.2 145.6 157.3 169.9 190.3 211.7 216.5 238.8 251.5

QPT-5 28.1 30.1 32.0 33.0 34.9 35.9 37.8 40.7 41.7 42.7 45.6 47.5 50.4 52.4 53.3

QPT-6 24.3 26.2 27.2 28.1 30.1 31.1 33.0 34.9 36.9 37.9 38.8 40.8 43.7 45.6 46.6

MS-1 47.6 50.5 52.5 55.4 58.3 61.2 65.1 69.0 71.9 73.8 76.7 80.6 85.5 89.4 92.3

MS-2 44.7 48.6 50.5 53.5 58.3 60.3 64.1 67.1 69.0 70.0 72.9 73.9 76.8 78.7 79.7

MS-3 -12.7 -13.6 -13.9 -14.7 -15.3 -16.2 -16.8 -17.7 -18.3 -18.6 -19.2 -19.8 -20.6 -21.2 -21.8

MS-4 43.7 46.6 48.6 50.5 53.4 55.4 59.3 61.2 63.2 65.1 68.0 70.0 73.8 76.8 78.7

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 41.7 44.7 46.6 48.5 52.4 54.4 57.3 62.1 64.1 66.0 68.9 72.8 77.7 81.6 84.5

QPB-1 25.3 26.2 28.2 29.1 31.1 32.1 34.0 35.9 37.9 38.9 40.8 41.8 44.7 46.6 48.6

QPB-2 26.2 27.2 29.1 30.1 32.0 33.0 35.0 36.9 37.9 38.8 40.8 41.8 43.7 45.6 46.6

QPB-3 24.2 26.2 27.2 28.1 30.1 31.0 33.0 34.9 35.9 36.9 37.8 38.8 41.7 42.7 43.6

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 100.9 107.6 112.5 119.3 131.9 132.9 139.7 152.3 160.0 166.8 176.5 187.2 206.6 222.1 234.7

QPB-6 48.5 51.4 54.3 56.3 61.1 64.0 67.9 73.7 77.6 80.5 85.4 91.2 98.0 103.8 109.6

Displacement TQP-0

0.0216 0.0216 0.0280 0.0280 0.0280 0.0280 0.0280 0.0345 0.0366 0.0345 0.0345 0.0366 0.0409 0.0431 0.0431tqp-1

0.0152 0.0152 0.0152 0.0152 0.0217 0.0239 0.0217 0.0217 0.0239 0.0304 0.0304 0.0304 0.0282 0.0369 0.0369tqp-2

0.0199 0.0210 0.0221 0.0232 0.0254 0.0265 0.0287 0.0309 0.0321 0.0332 0.0354 0.0376 0.0398 0.0420 0.0431tqp-3

0.0086 0.0065 0.0065 0.0151 0.0151 0.0151 0.0151 0.0215 0.0215 0.0194 0.0215 0.0258 0.0280 0.0280 0.0280tqp-4

0.0172 0.0194 0.0194 0.0215 0.0226 0.0237 0.0248 0.0269 0.0280 0.0291 0.0301 0.0323 0.0355 0.0388 0.0409TQP-5

0.0229 0.0229 0.0229 0.0275 0.0275 0.0275 0.0275 0.0321 0.0321 0.0367 0.0367 0.0413 0.0413 0.0413 0.0505Mid-span-0

0.0236 0.0215 0.0215 0.0215 0.0279 0.0300 0.0300 0.0365 0.0365 0.0343 0.0386 0.0429 0.0429 0.0494 0.0494mid-span-1

0.0334 0.0357 0.0357 0.0334 0.0424 0.0424 0.0424 0.0491 0.0491 0.0491 0.0557 0.0557 0.0624 0.0624 0.0624mid-span-2

0.0321 0.0343 0.0365 0.0376 0.0399 0.0410 0.0443 0.0476 0.0509 0.0520 0.0543 0.0576 0.0598 0.0631 0.0653mid-span-4

0.0322 0.0345 0.0356 0.0367 0.0400 0.0411 0.0434 0.0478 0.0512 0.0523 0.0534 0.0556 0.0601 0.0634 0.0656mid-span-5

0.0238 0.0303 0.0303 0.0303 0.0368 0.0368 0.0368 0.0433 0.0433 0.0455 0.0433 0.0519 0.0519 0.0584 0.0584bqp-1

0.0276 0.0298 0.0309 0.0321 0.0343 0.0365 0.0387 0.0420 0.0442 0.0453 0.0475 0.0497 0.0542 0.0564 0.0586BQP-2

0.0319 0.0319 0.0411 0.0411 0.0411 0.0456 0.0456 0.0547 0.0547 0.0547 0.0593 0.0593 0.0684 0.0684 0.0730BQP-3

0.0367 0.0367 0.0459 0.0459 0.0459 0.0459 0.0505 0.0505 0.0596 0.0596 0.0642 0.0642 0.0734 0.0734 0.0780BQP-4

0.0228 0.0319 0.0319 0.0319 0.0319 0.0364 0.0410 0.0455 0.0455 0.0455 0.0455 0.0501 0.0501 0.0592 0.0592BQP-5

0.0346 0.0346 0.0346 0.0411 0.0411 0.0411 0.0475 0.0475 0.0475 0.0540 0.0562 0.0540 0.0605 0.0627 0.0605

Page 179: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

167

Slab: XOREX-50 Test: Concentrated Load at Mid-Span (Figure 5.3-B) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1215.1 2126.4 2594.4 3940.8 4548.4 5254.5 5771.7 6338.2 6543.5 7142.8 7594.4 8637.1 9146.1 9540.2 10008

QPT-1 0 6.8 11.6 14.6 24.3 28.2 32.0 35.9 39.8 40.8 45.6 48.5 56.3 60.2 63.1 66.0

QPT-2 0 7.8 13.6 17.5 28.1 32.0 37.8 41.7 46.6 48.5 53.4 57.3 66.0 69.9 73.8 77.6

QPT-3 0 7.8 13.6 17.5 28.2 33.0 38.8 42.7 47.6 49.5 55.4 59.2 69.0 72.8 76.7 80.6

QPT-4 0 7.8 13.6 17.5 30.1 34.9 40.8 45.6 50.5 53.4 58.2 62.1 72.8 77.7 80.6 85.4

QPT-5 0 6.8 12.6 15.5 24.2 28.1 33.0 35.9 39.8 41.7 45.6 48.5 56.2 60.1 63.0 66.9

QPT-6 0 5.8 10.7 13.6 21.4 25.2 29.1 32.0 34.9 35.9 39.8 41.7 48.5 51.4 54.4 57.3

MS-1 0 9.7 17.5 21.4 34.0 39.8 45.7 50.5 56.3 58.3 64.1 68.0 78.7 84.5 88.4 93.3

MS-2 0 14.6 25.3 31.1 46.7 54.4 63.2 70.0 76.8 79.7 87.5 93.3 107.9 114.7 120.5 127.3

MS-3 0 -4.4 -8.3 -10.3 -15.9 -18.3 -21.5 -23.9 -26.2 -27.4 -30.1 -32.4 -37.7 -40.1 -42.5 -46.0

MS-4 0 11.7 20.4 25.3 38.9 45.7 53.4 58.3 65.1 67.0 73.8 78.7 91.3 97.2 102.0 108.8

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0 7.8 15.5 22.3 33.0 37.9 41.8 45.6 49.5 51.5 56.3 60.2 68.9 72.8 75.7 79.6

QPB-1 0 6.8 11.7 13.6 22.3 25.3 30.1 33.0 36.9 37.9 41.8 44.7 51.5 55.4 58.3 61.2

QPB-2 0 6.8 12.6 15.5 23.3 28.2 33.0 35.9 39.8 40.8 44.7 47.6 54.4 58.3 60.2 63.1

QPB-3 0 6.8 11.6 14.5 22.3 26.2 31.0 33.9 37.8 38.8 42.7 45.6 51.4 55.3 57.2 60.1

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 8.7 15.5 18.4 31.0 36.9 42.7 47.5 53.3 55.3 61.1 65.0 75.6 80.5 84.4 88.3

QPB-6 0 5.8 10.7 13.6 21.3 24.2 29.1 32.0 34.9 36.9 40.7 43.6 50.4 53.3 56.3 59.2

Displacement

TQP-0 0.0000 0.0000 0.0000 0.0065 0.0065 0.0129 0.0129 0.0151 0.0194 0.0194 0.0216 0.0216 0.0280 0.0280 0.0345 0.0345

tqp-1 0.0000 0.0000 0.0000 0.0000 0.0065 0.0065 0.0130 0.0152 0.0152 0.0195 0.0217 0.0217 0.0282 0.0282 0.0282 0.0347

tqp-2 0.0011 0.0011 0.0044 0.0066 0.0122 0.0144 0.0155 0.0177 0.0210 0.0221 0.0243 0.0265 0.0309 0.0343 0.0354 0.0376

tqp-3 0.0000 0.0000 0.0000 0.0000 0.0022 0.0065 0.0065 0.0129 0.0129 0.0129 0.0129 0.0194 0.0194 0.0258 0.0258 0.0258

tqp-4 0.0000 0.0000 0.0022 0.0043 0.0118 0.0129 0.0161 0.0183 0.0205 0.0205 0.0226 0.0258 0.0280 0.0312 0.0323 0.0366

TQP-5 0.0000 0.0000 0.0000 0.0000 0.0046 0.0138 0.0092 0.0183 0.0183 0.0183 0.0183 0.0229 0.0275 0.0321 0.0321 0.0321

Mid-span-0 0.0021 0.0000 0.0021 0.0021 0.0064 0.0129 0.0107 0.0129 0.0193 0.0193 0.0193 0.0258 0.0279 0.0322 0.0322 0.0343

mid-span-1 0.0000 0.0022 0.0067 0.0045 0.0134 0.0201 0.0201 0.0268 0.0268 0.0290 0.0334 0.0334 0.0401 0.0401 0.0424 0.0468

mid-span-2 0.0000 0.0033 0.0089 0.0100 0.0188 0.0199 0.0255 0.0288 0.0310 0.0332 0.0365 0.0376 0.0443 0.0476 0.0509 0.0531

mid-span-4 0.0000 0.0033 0.0078 0.0100 0.0178 0.0211 0.0245 0.0278 0.0300 0.0311 0.0334 0.0367 0.0434 0.0478 0.0489 0.0500

mid-span-5 0.0022 0.0022 0.0065 0.0065 0.0130 0.0130 0.0216 0.0195 0.0260 0.0260 0.0260 0.0325 0.0368 0.0411 0.0411 0.0476

bqp-1 0.0000 0.0022 0.0066 0.0077 0.0133 0.0155 0.0188 0.0199 0.0232 0.0243 0.0265 0.0287 0.0332 0.0354 0.0365 0.0387

BQP-2 0.0000 0.0000 0.0046 0.0091 0.0137 0.0137 0.0228 0.0228 0.0228 0.0274 0.0274 0.0274 0.0319 0.0319 0.0411 0.0411

BQP-3 0.0000 0.0000 0.0092 0.0092 0.0138 0.0138 0.0229 0.0229 0.0229 0.0275 0.0275 0.0321 0.0367 0.0367 0.0459 0.0459

BQP-4 0.0046 0.0046 0.0046 0.0046 0.0046 0.0091 0.0091 0.0137 0.0182 0.0182 0.0182 0.0228 0.0273 0.0319 0.0273 0.0319

BQP-5 0.0022 0.0022 0.0065 0.0043 0.0130 0.0130 0.0195 0.0195 0.0259 0.0259 0.0259 0.0259 0.0324 0.0324 0.0411 0.0389

Page 180: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

168

Slab: XOREX-50 Test: Concentrated Load at Top Quarter Point (Figure 5.3-C) Strain Gage Readings are in µin/in. Displacement readings are in inches.

Load in lbs.

Strain Gage 0 607.55 1346.4 1986.8 2536.9 3029.5 3620.6 4162.5 4802.9 5385.8 6338.2 7044.3 7487.6

QPT-1 0 2.9 4.9 6.8 8.7 9.7 11.6 13.6 15.5 17.5 20.4 23.3 24.3

QPT-2 0 1.9 4.9 6.8 8.7 9.7 11.6 13.6 15.5 17.5 20.4 23.3 24.3

QPT-3 0 2.9 4.9 7.8 9.7 10.7 13.6 14.6 16.5 19.4 22.3 25.2 27.2

QPT-4 0 1.9 4.9 6.8 8.7 10.7 13.6 15.5 17.5 20.4 24.3 27.2 29.1

QPT-5 0 6.8 14.5 21.3 27.2 32.0 38.8 44.6 51.4 57.2 67.9 75.6 80.5

QPT-6 0 3.9 8.7 12.6 16.5 19.4 23.3 27.2 31.1 35.9 41.7 46.6 50.5

MS-1 0 3.9 7.8 11.7 14.6 17.5 20.4 23.3 27.2 30.1 35.9 39.8 42.7

MS-2 0 3.9 6.8 10.7 13.6 15.6 18.5 20.4 23.3 26.2 30.1 33.0 35.0

MS-3 0 -0.9 -2.1 -2.9 -3.8 -4.4 -5.3 -6.2 -7.1 -8.0 -9.1 -10.0 -10.6

MS-4 0 3.9 7.8 10.7 14.6 16.5 19.4 22.3 25.3 28.2 33.0 36.9 38.9

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0 3.9 6.8 10.7 13.6 15.5 19.4 21.4 24.3 28.2 32.0 36.9 38.8

QPB-1 0 5.8 11.7 16.5 21.4 25.3 31.1 35.0 40.8 46.6 54.4 61.2 66.1

QPB-2 0 7.8 17.5 27.2 35.0 42.7 51.5 59.2 68.9 78.7 92.3 103.9 111.7

QPB-3 0 6.8 17.5 27.2 35.9 43.7 53.4 62.1 72.8 82.5 97.0 109.6 116.4

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 2.9 5.8 7.8 9.7 11.6 14.5 16.5 18.4 21.3 25.2 28.1 30.1

QPB-6 0 1.9 3.9 5.8 7.8 8.7 10.7 12.6 14.5 16.5 19.4 21.3 22.3

Displacement

TQP-0 0.0022 0.0022 0.0022 0.0043 0.0043 0.0043 0.0043 0.0108 0.0108 0.0108 0.0172 0.0172 0.0172

tqp-1 0.0000 0.0000 0.0000 0.0043 0.0065 0.0065 0.0065 0.0152 0.0130 0.0152 0.0217 0.0217 0.0217

tqp-2 0.0000 0.0011 0.0033 0.0066 0.0077 0.0111 0.0122 0.0144 0.0166 0.0199 0.0243 0.0276 0.0287

tqp-3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0065 0.0129 0.0129 0.0194

tqp-4 0.0000 0.0000 0.0000 0.0032 0.0065 0.0086 0.0097 0.0118 0.0140 0.0161 0.0194 0.0226 0.0237

TQP-5 0.0000 0.0000 0.0000 0.0046 0.0046 0.0092 0.0138 0.0138 0.0138 0.0183 0.0183 0.0275 0.0275

Mid-span-0 0.0000 0.0000 0.0000 0.0000 0.0021 0.0043 0.0064 0.0064 0.0064 0.0129 0.0129 0.0193 0.0193

mid-span-1 0.0022 0.0022 0.0045 0.0045 0.0045 0.0111 0.0111 0.0111 0.0201 0.0201 0.0245 0.0268 0.0245

mid-span-2 0.0000 0.0000 0.0044 0.0055 0.0089 0.0100 0.0133 0.0155 0.0188 0.0210 0.0255 0.0288 0.0310

mid-span-4 0.0000 0.0011 0.0044 0.0067 0.0089 0.0111 0.0133 0.0156 0.0189 0.0222 0.0256 0.0278 0.0289

mid-span-5 0.0000 0.0000 0.0022 0.0065 0.0065 0.0065 0.0130 0.0130 0.0130 0.0195 0.0195 0.0260 0.0260

bqp-1 0.0011 0.0011 0.0022 0.0033 0.0055 0.0055 0.0066 0.0077 0.0099 0.0122 0.0144 0.0166 0.0177

BQP-2 0.0046 0.0000 0.0000 0.0046 0.0091 0.0091 0.0091 0.0091 0.0137 0.0137 0.0137 0.0228 0.0228

BQP-3 0.0046 0.0000 0.0000 0.0092 0.0092 0.0092 0.0092 0.0138 0.0183 0.0138 0.0183 0.0229 0.0229

BQP-4 0.0046 0.0046 0.0046 0.0046 0.0046 0.0000 0.0046 0.0046 0.0046 0.0046 0.0091 0.0091 0.0137

BQP-5 0.0022 0.0000 0.0000 0.0043 0.0043 0.0043 0.0043 0.0108 0.0108 0.0108 0.0195 0.0195 0.0195

Page 181: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

169

Concentrated Load at Top Quarter Point Continued Load in lbs.

Strain Gage 7963.8 8546.7 8957.3 9729 10065 10566 11288 11625 12307 12643 13284 13612 14326 15016

QPT-1 26.2 27.2 29.1 31.1 33.0 34.0 36.9 37.9 39.8 40.8 43.7 44.7 46.6 49.5

QPT-2 26.2 28.1 31.1 33.0 34.9 35.9 38.8 40.8 42.7 43.7 45.6 47.6 49.5 53.4

QPT-3 29.1 30.1 32.0 34.0 35.9 37.9 40.8 41.8 44.7 45.6 48.6 49.5 51.5 54.4

QPT-4 31.1 33.0 34.9 37.9 39.8 41.7 44.7 46.6 48.5 50.5 53.4 55.3 57.3 61.2

QPT-5 85.3 92.1 96.0 104.7 109.6 116.4 126.1 130.9 139.7 144.5 154.2 160.0 174.6 193.0

QPT-6 53.4 57.3 61.2 66.0 68.9 73.8 79.6 82.5 87.4 90.3 96.1 100.0 107.8 117.5

MS-1 45.7 48.6 50.5 55.4 57.3 60.2 65.1 67.0 70.9 72.9 76.7 78.7 83.5 88.4

MS-2 36.9 39.8 41.8 44.7 45.7 48.6 51.5 53.5 55.4 57.3 60.3 61.2 64.1 67.1

MS-3 -11.2 -12.1 -12.7 -13.3 -13.9 -14.7 -15.6 -15.9 -16.8 -17.1 -18.0 -18.6 -19.2 -19.8

MS-4 41.8 43.7 46.6 50.5 52.5 54.4 58.3 60.2 64.1 66.1 69.0 70.9 73.8 77.7

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 41.8 44.7 52.4 57.3 58.3 63.1 66.0 67.0 70.9 72.8 76.7 78.7 84.5 98.1

QPB-1 69.9 75.8 79.7 86.5 90.3 95.2 103.9 106.9 114.6 118.5 126.3 132.1 141.8 156.4

QPB-2 119.5 128.2 135.0 147.6 154.4 165.1 174.8 180.6 192.3 199.1 211.7 216.6 229.2 242.8

QPB-3 125.1 134.8 142.6 155.2 162.0 170.7 185.3 191.1 205.7 212.5 227.0 236.7 242.6 248.4

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 32.0 33.9 35.9 38.8 39.8 42.7 45.6 47.5 50.4 51.4 54.3 56.2 58.2 61.1

QPB-6 24.2 26.2 27.2 29.1 30.1 32.0 34.9 35.9 37.8 38.8 40.7 42.7 44.6 47.5

Displacement

TQP-0 0.0237 0.0237 0.0237 0.0259 0.0323 0.0323 0.0323 0.0323 0.0388 0.0388 0.0366 0.0388 0.0453 0.0453

tqp-1 0.0282 0.0282 0.0282 0.0347 0.0347 0.0347 0.0347 0.0434 0.0434 0.0434 0.0478 0.0499 0.0499 0.0565

tqp-2 0.0321 0.0343 0.0365 0.0398 0.0409 0.0420 0.0453 0.0475 0.0520 0.0531 0.0553 0.0575 0.0619 0.0652

tqp-3 0.0194 0.0194 0.0258 0.0258 0.0258 0.0323 0.0323 0.0323 0.0387 0.0387 0.0452 0.0452 0.0495 0.0516

tqp-4 0.0248 0.0280 0.0312 0.0355 0.0377 0.0388 0.0409 0.0420 0.0441 0.0463 0.0484 0.0495 0.0517 0.0592

TQP-5 0.0275 0.0321 0.0321 0.0367 0.0367 0.0367 0.0459 0.0459 0.0459 0.0459 0.0505 0.0505 0.0505 0.0550

Mid-span-0 0.0193 0.0193 0.0279 0.0258 0.0279 0.0300 0.0322 0.0343 0.0343 0.0408 0.0408 0.0386 0.0451 0.0472

mid-span-1 0.0268 0.0334 0.0334 0.0379 0.0401 0.0401 0.0401 0.0468 0.0468 0.0468 0.0557 0.0535 0.0535 0.0602

mid-span-2 0.0321 0.0343 0.0365 0.0399 0.0410 0.0432 0.0476 0.0487 0.0520 0.0531 0.0554 0.0576 0.0609 0.0642

mid-span-4 0.0311 0.0345 0.0356 0.0411 0.0445 0.0456 0.0467 0.0478 0.0523 0.0545 0.0578 0.0589 0.0623 0.0645

mid-span-5 0.0260 0.0325 0.0325 0.0390 0.0411 0.0390 0.0455 0.0455 0.0455 0.0455 0.0519 0.0541 0.0563 0.0606

bqp-1 0.0188 0.0210 0.0221 0.0243 0.0254 0.0265 0.0287 0.0298 0.0309 0.0321 0.0343 0.0354 0.0376 0.0398

BQP-2 0.0182 0.0228 0.0228 0.0274 0.0274 0.0274 0.0319 0.0365 0.0365 0.0365 0.0411 0.0411 0.0411 0.0456

BQP-3 0.0229 0.0229 0.0321 0.0321 0.0321 0.0367 0.0367 0.0367 0.0367 0.0367 0.0413 0.0459 0.0459 0.0505

BQP-4 0.0182 0.0182 0.0182 0.0228 0.0228 0.0228 0.0228 0.0273 0.0319 0.0273 0.0319 0.0319 0.0364 0.0364

BQP-5 0.0195 0.0259 0.0238 0.0259 0.0259 0.0324 0.0324 0.0324 0.0346 0.0389 0.0389 0.0389 0.0389 0.0454

Page 182: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

170

Slab: XOREX-50 Test: Concentrated Load at Top Third Point (Figure 5.3-D) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 517.24 1387.5 1707.7 2101.8 2504.1 2996.7 3497.5 4146.1 4794.7 5139.5 5747.1

QPT-1 0.0 1.9 5.8 6.8 8.7 10.7 12.6 15.5 18.4 21.4 23.3 26.2

QPT-2 0.0 2.9 6.8 7.8 9.7 11.6 14.6 17.5 21.3 25.2 26.2 30.1

QPT-3 0.0 2.9 7.8 8.7 10.7 12.6 14.6 17.5 21.4 24.3 26.2 30.1

QPT-4 0.0 2.9 7.8 8.7 10.7 12.6 15.5 18.4 22.3 26.2 28.2 33.0

QPT-5 0.0 5.8 14.5 17.5 21.3 25.2 30.1 35.9 42.7 49.5 53.3 60.1

QPT-6 0.0 3.9 9.7 11.6 13.6 16.5 19.4 23.3 28.2 33.0 34.9 39.8

MS-1 0.0 4.9 10.7 12.6 16.5 19.4 23.3 27.2 32.1 36.9 39.8 44.7

MS-2 0.0 3.9 10.7 12.6 15.6 18.5 22.4 25.3 31.1 36.0 37.9 42.8

MS-3 0.0 -1.2 -2.9 -3.8 -4.7 -5.6 -6.8 -8.0 -9.4 -11.2 -12.1 -13.3

MS-4 0.0 3.9 10.7 12.6 15.5 19.4 23.3 27.2 32.1 36.9 39.8 44.7

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0.0 4.9 10.7 17.5 17.5 20.4 24.3 32.0 34.0 37.9 39.8 43.7

QPB-1 0.0 4.9 11.7 14.6 17.5 20.4 25.3 29.1 35.0 39.8 42.7 48.6

QPB-4 0.0 5.8 16.5 20.4 25.2 31.1 36.9 43.7 52.4 61.2 66.0 74.8

QPB-3 0.0 4.8 14.5 18.4 23.3 28.1 33.9 39.8 48.5 56.3 60.1 67.9

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0.0 2.9 7.8 8.7 11.6 13.6 16.5 19.4 23.3 27.2 30.1 33.9

QPB-6 0.0 1.9 5.8 5.8 7.8 9.7 11.6 14.5 16.5 19.4 21.3 24.2

Displacement

TQP-0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0065 0.0065 0.0129 0.0129 0.0129 0.0216

tqp-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0065 0.0087 0.0152 0.0152 0.0130

tqp-2 0.0000 0.0011 0.0044 0.0055 0.0066 0.0088 0.0111 0.0133 0.0155 0.0177 0.0188 0.0232

tqp-3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0065 0.0129 0.0129

tqp-4 0.0000 0.0011 0.0000 0.0000 0.0011 0.0032 0.0075 0.0108 0.0129 0.0151 0.0161 0.0194

TQP-5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0138 0.0138 0.0138 0.0183

Mid-span-0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0064 0.0064 0.0129 0.0129 0.0129

mid-span-1 0.0022 0.0000 0.0022 0.0045 0.0045 0.0067 0.0067 0.0134 0.0134 0.0201 0.0201 0.0178

mid-span-2 0.0000 0.0000 0.0033 0.0055 0.0089 0.0089 0.0122 0.0155 0.0177 0.0210 0.0221 0.0277

mid-span-4 0.0000 0.0000 0.0033 0.0056 0.0067 0.0089 0.0111 0.0145 0.0167 0.0211 0.0234 0.0267

mid-span-5 0.0000 0.0022 0.0000 0.0022 0.0022 0.0043 0.0065 0.0065 0.0130 0.0130 0.0195 0.0195

bqp-1 0.0000 0.0000 0.0022 0.0033 0.0055 0.0066 0.0077 0.0088 0.0111 0.0133 0.0144 0.0177

BQP-2 0.0046 0.0000 0.0000 0.0000 0.0046 0.0046 0.0091 0.0091 0.0091 0.0137 0.0137 0.0137

BQP-3 0.0000 0.0000 0.0000 0.0046 0.0000 0.0092 0.0092 0.0092 0.0183 0.0138 0.0138 0.0229

BQP-4 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0091 0.0091 0.0091 0.0137 0.0137

BQP-5 0.0022 0.0022 0.0022 0.0022 0.0043 0.0043 0.0043 0.0065 0.0108 0.0130 0.0130 0.0195

Page 183: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

171

Concentrated Load at Top Third Point Continued. Load in lbs.

Strain Gage 6330 7224.9 7775 8177.3 8694.5 8957.3 9597.7 10197 10484 11034 11494 12323 12602 13144

QPT-1 29.1 33.0 35.9 38.8 40.8 42.7 45.6 48.5 49.5 52.4 55.3 59.2 60.2 63.1

QPT-2 33.0 37.8 40.8 42.7 45.6 47.6 50.5 53.4 55.3 58.2 60.2 64.1 65.0 67.9

QPT-3 34.0 38.8 41.8 44.7 47.6 48.6 52.4 56.3 57.3 60.2 62.2 67.0 68.0 70.9

QPT-4 35.9 41.7 45.6 47.6 51.5 53.4 57.3 61.2 63.1 66.0 68.0 72.8 74.8 77.7

QPT-5 67.9 79.5 86.3 91.2 98.9 101.8 111.5 118.3 122.2 131.9 139.7 154.2 161.0 175.6

QPT-6 43.7 51.4 56.3 59.2 64.1 67.0 74.7 81.5 84.5 91.3 98.0 109.7 115.5 123.3

MS-1 49.5 57.3 62.2 66.1 70.9 73.8 78.7 84.5 87.4 92.3 97.1 104.9 106.9 110.7

MS-2 46.7 53.5 57.3 60.3 63.2 64.1 68.0 71.9 73.9 77.8 80.7 86.5 87.5 92.3

MS-3 -14.7 -16.8 -18.0 -18.6 -19.8 -20.1 -21.2 -22.4 -22.7 -23.9 -24.2 -25.4 -25.7 -26.2

MS-4 49.6 57.3 62.2 65.1 69.0 71.9 76.8 81.6 83.6 87.5 90.4 96.2 98.1 102.0

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 46.6 53.4 57.3 61.2 65.1 68.0 72.8 78.7 80.6 85.5 89.3 96.1 101.0 105.8

QPB-1 53.4 62.2 68.0 72.9 82.6 86.5 95.2 103.0 106.9 113.7 120.5 134.1 138.9 158.3

QPB-4 83.5 97.1 102.9 106.8 114.6 119.4 142.8 161.2 168.0 182.6 200.1 230.2 244.7 265.1

QPB-3 74.7 85.4 91.2 96.0 99.9 102.8 109.6 121.3 126.1 138.7 173.6 236.7 252.2 270.7

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 37.8 43.6 46.6 49.5 53.3 55.3 59.2 63.0 65.0 67.9 70.8 75.6 77.6 80.5

QPB-6 27.2 31.0 33.9 35.9 37.8 39.8 42.7 45.6 47.5 49.5 51.4 56.3 57.2 60.1

Displacement TQP-0

0.0194 0.0194 0.0259 0.0259 0.0259 0.0280 0.0323 0.0323 0.0323 0.0409 0.0388 0.0474 0.0453 0.0453tqp-1

0.0217 0.0217 0.0282 0.0282 0.0282 0.0282 0.0369 0.0347 0.0347 0.0434 0.0434 0.0499 0.0499 0.0565tqp-2

0.0254 0.0309 0.0332 0.0354 0.0387 0.0398 0.0442 0.0464 0.0475 0.0508 0.0542 0.0608 0.0630 0.0674tqp-3

0.0172 0.0194 0.0237 0.0258 0.0258 0.0301 0.0323 0.0409 0.0409 0.0409 0.0473 0.0538 0.0538 0.0602tqp-4

0.0215 0.0248 0.0269 0.0291 0.0323 0.0355 0.0398 0.0420 0.0431 0.0452 0.0484 0.0528 0.0538 0.0603TQP-5

0.0183 0.0275 0.0275 0.0275 0.0321 0.0321 0.0413 0.0413 0.0413 0.0459 0.0459 0.0550 0.0505 0.0596Mid-span-0

0.0193 0.0215 0.0279 0.0258 0.0279 0.0300 0.0322 0.0343 0.0408 0.0408 0.0408 0.0472 0.0472 0.0558mid-span-1

0.0268 0.0245 0.0334 0.0334 0.0401 0.0401 0.0401 0.0468 0.0468 0.0468 0.0535 0.0602 0.0624 0.0602mid-span-2

0.0310 0.0343 0.0376 0.0399 0.0432 0.0443 0.0498 0.0520 0.0531 0.0565 0.0598 0.0653 0.0675 0.0709mid-span-4

0.0289 0.0322 0.0356 0.0378 0.0411 0.0456 0.0478 0.0489 0.0512 0.0556 0.0589 0.0645 0.0667 0.0712mid-span-5

0.0260 0.0260 0.0325 0.0325 0.0325 0.0390 0.0390 0.0455 0.0476 0.0455 0.0541 0.0606 0.0584 0.0606bqp-1

0.0188 0.0232 0.0243 0.0265 0.0276 0.0287 0.0309 0.0332 0.0343 0.0365 0.0387 0.0431 0.0442 0.0464BQP-2

0.0228 0.0228 0.0274 0.0274 0.0274 0.0274 0.0319 0.0319 0.0319 0.0411 0.0411 0.0456 0.0456 0.0456BQP-3

0.0229 0.0229 0.0321 0.0275 0.0321 0.0367 0.0367 0.0367 0.0367 0.0459 0.0413 0.0505 0.0505 0.0505BQP-4

0.0137 0.0228 0.0228 0.0228 0.0273 0.0273 0.0273 0.0364 0.0364 0.0319 0.0364 0.0410 0.0410 0.0455BQP-5

0.0195 0.0259 0.0259 0.0259 0.0259 0.0324 0.0324 0.0324 0.0389 0.0389 0.0389 0.0454 0.0454 0.0454

Page 184: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

172

Slab: XOREX-50 Test: Concentrated Load at Bottom Third Point (Figure 5.3-E) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1510.6 2003.2 2536.9 3128 3645.3 4072.2 4778.3 5615.7 6346.4

QPT-1 0 10.7 14.6 19.4 24.3 28.2 32.0 37.9 45.6 51.4

QPT-2 0 16.5 22.3 28.1 35.9 42.7 47.6 56.3 67.9 77.6

QPT-3 0 17.5 24.3 31.1 39.8 47.6 53.4 63.1 75.7 87.4

QPT-4 0 15.5 21.4 28.2 35.9 42.7 49.5 58.2 69.9 80.6

QPT-5 0 5.8 7.8 9.7 12.6 14.5 16.5 19.4 23.3 26.2

QPT-6 0 5.8 7.8 9.7 11.6 13.6 15.5 18.4 21.4 25.2

MS-1 0 9.7 13.6 17.5 22.3 26.2 30.1 35.0 40.8 46.6

MS-2 0 9.7 12.6 16.5 21.4 25.3 28.2 33.0 39.8 44.7

MS-3 0 -3.2 -4.1 -5.3 -6.8 -8.0 -8.8 -10.3 -12.1 -13.6

MS-4 0 9.7 12.6 17.5 21.4 25.3 28.2 34.0 39.8 45.7

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0 9.7 12.6 15.5 19.4 22.3 25.2 30.1 35.9 40.8

QPB-1 0 5.8 7.8 9.7 11.7 13.6 15.5 18.5 22.3 25.3

QPB-4 0 5.8 7.8 9.7 12.6 14.6 16.5 19.4 23.3 26.2

QPB-3 0 5.8 7.8 9.7 12.6 14.5 16.5 19.4 22.3 25.2

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 15.5 21.3 28.1 35.9 42.7 47.5 57.2 67.9 77.6

QPB-6 0 8.7 11.6 14.5 19.4 22.3 25.2 30.1 35.9 41.7

Displacement

TQP-0 0 0.0022 0.0000 0.0022 0.0086 0.0086 0.0086 0.0086 0.0151 0.0151

tqp-1 0 0.0000 0.0000 0.0000 0.0022 0.0065 0.0065 0.0065 0.0109 0.0130

tqp-2 0 0.0033 0.0044 0.0055 0.0077 0.0099 0.0111 0.0133 0.0155 0.0177

tqp-3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0065

tqp-4 0 0.0000 0.0000 0.0011 0.0043 0.0075 0.0086 0.0118 0.0140 0.0172

TQP-5 0 0.0000 0.0046 0.0046 0.0046 0.0092 0.0092 0.0092 0.0183 0.0183

Mid-span-0 0 0.0000 0.0000 0.0000 0.0064 0.0043 0.0064 0.0129 0.0129 0.0193

mid-span-1 0 0.0067 0.0134 0.0134 0.0134 0.0223 0.0223 0.0290 0.0290 0.0334

mid-span-2 0 0.0044 0.0066 0.0100 0.0133 0.0155 0.0166 0.0199 0.0255 0.0288

mid-span-4 0 0.0044 0.0078 0.0100 0.0133 0.0156 0.0178 0.0211 0.0256 0.0289

mid-span-5 0 0.0022 0.0000 0.0065 0.0065 0.0065 0.0130 0.0130 0.0216 0.0195

bqp-1 0 0.0033 0.0066 0.0077 0.0088 0.0111 0.0144 0.0177 0.0199 0.0232

BQP-2 0 0.0000 0.0000 0.0046 0.0046 0.0137 0.0137 0.0182 0.0182 0.0274

BQP-3 0 0.0000 0.0092 0.0092 0.0092 0.0138 0.0138 0.0229 0.0229 0.0275

BQP-4 0 0.0000 0.0000 0.0046 0.0091 0.0091 0.0137 0.0137 0.0228 0.0228

BQP-5 0 0.0000 0.0065 0.0065 0.0108 0.0130 0.0130 0.0195 0.0195 0.0259

Page 185: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

173

Concentrated Load at Bottom Third Point Continued. Load in lbs.

Strain Gage 6970.4 7750.4 8300.4 9072.2 9589.4 10311 10648 11288 11814 12093 12619 13177

QPT-1 57.3 64.1 68.9 76.7 81.5 88.3 91.3 98.0 103.9 106.8 111.6 118.4

QPT-2 86.4 97.0 104.8 115.5 122.3 133.0 137.8 147.5 155.3 159.2 167.9 174.7

QPT-3 97.1 109.7 118.5 130.1 138.9 148.6 151.5 159.3 167.1 170.9 179.7 186.5

QPT-4 89.3 101.0 108.7 119.4 127.2 137.9 142.7 152.4 160.2 165.1 171.9 182.5

QPT-5 29.1 33.0 34.9 37.8 40.7 43.6 44.6 47.5 50.4 51.4 53.3 56.2

QPT-6 27.2 30.1 32.0 35.9 39.8 43.7 44.7 47.6 50.5 51.4 54.4 56.3

MS-1 51.5 58.3 62.2 69.0 72.9 78.7 82.6 88.4 93.3 96.2 101.0 107.8

MS-2 48.6 54.4 58.3 63.2 67.1 70.9 72.9 75.8 78.7 80.7 84.6 93.3

MS-3 -15.0 -16.5 -17.7 -19.5 -20.6 -21.8 -22.1 -23.0 -24.2 -24.8 -25.7 -26.5

MS-4 50.5 55.4 60.2 66.1 70.0 75.8 77.7 83.6 87.5 90.4 94.3 99.1

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 44.7 49.5 53.4 63.1 70.9 79.6 82.5 87.4 91.3 93.2 97.1 101.0

QPB-1 28.2 31.1 34.0 36.9 38.9 42.7 43.7 46.6 49.5 50.5 53.4 55.4

QPB-4 29.1 32.0 35.0 37.9 39.8 42.7 43.7 46.6 48.6 49.5 51.5 53.4

QPB-3 28.1 31.0 33.0 36.9 38.8 41.7 42.7 44.6 46.6 47.5 49.5 51.4

QPB-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 86.3 97.0 104.7 115.4 123.2 133.8 138.7 149.4 157.1 161.0 168.8 179.4

QPB-6 45.6 51.4 55.3 61.1 65.0 70.8 73.7 79.5 83.4 86.3 91.2 96.0

Displacement

TQP-0 0.0151 0.0216 0.0216 0.0216 0.0280 0.0280 0.0280 0.0345 0.0345 0.0345 0.0345 0.0431

tqp-1 0.0130 0.0195 0.0217 0.0217 0.0217 0.0282 0.0282 0.0282 0.0347 0.0347 0.0347 0.0347

tqp-2 0.0188 0.0232 0.0243 0.0276 0.0298 0.0332 0.0343 0.0365 0.0387 0.0398 0.0420 0.0442

tqp-3 0.0129 0.0129 0.0129 0.0194 0.0194 0.0194 0.0237 0.0258 0.0258 0.0258 0.0344 0.0323

tqp-4 0.0183 0.0215 0.0226 0.0258 0.0269 0.0291 0.0301 0.0334 0.0366 0.0388 0.0409 0.0420

TQP-5 0.0229 0.0229 0.0229 0.0275 0.0275 0.0367 0.0367 0.0367 0.0367 0.0413 0.0413 0.0413

Mid-span-0 0.0193 0.0258 0.0258 0.0258 0.0322 0.0343 0.0322 0.0386 0.0408 0.0408 0.0472 0.0472

mid-span-1 0.0357 0.0424 0.0424 0.0468 0.0491 0.0513 0.0557 0.0557 0.0624 0.0624 0.0624 0.0691

mid-span-2 0.0321 0.0354 0.0388 0.0421 0.0454 0.0487 0.0509 0.0543 0.0565 0.0587 0.0609 0.0642

mid-span-4 0.0311 0.0345 0.0378 0.0423 0.0478 0.0489 0.0500 0.0545 0.0578 0.0589 0.0623 0.0656

mid-span-5 0.0281 0.0260 0.0325 0.0325 0.0390 0.0390 0.0411 0.0476 0.0476 0.0541 0.0541 0.0541

bqp-1 0.0265 0.0298 0.0321 0.0354 0.0376 0.0409 0.0420 0.0453 0.0475 0.0497 0.0520 0.0553

BQP-2 0.0274 0.0319 0.0319 0.0411 0.0411 0.0456 0.0456 0.0547 0.0547 0.0547 0.0593 0.0593

BQP-3 0.0275 0.0367 0.0367 0.0459 0.0459 0.0505 0.0505 0.0596 0.0596 0.0596 0.0642 0.0642

BQP-4 0.0273 0.0273 0.0273 0.0319 0.0364 0.0410 0.0410 0.0455 0.0455 0.0455 0.0501 0.0546

BQP-5 0.0259 0.0346 0.0346 0.0411 0.0411 0.0389 0.0475 0.0475 0.0475 0.0540 0.0540 0.0562

Page 186: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

174

Slab: XOREX-50 Test: Longitudinal Linear Load Along Middle Strip (Figure 5.3-F) Strain Gage Readings are in µin/in. Displacement readings are in inches.

Load in lbs.

Strain Gage 0 1215.1 2011.4 3136.2 4211.8 4991.7 6157.6 7019.7 8308.7 9154.3 9983.5 11338 12060

QPT-1 0 7.8 13.6 21.4 29.1 34.9 43.7 50.5 60.2 67.0 72.8 84.5 91.3

QPT-2 0 8.7 15.5 24.3 34.0 40.8 51.4 59.2 69.9 76.7 83.5 94.1 99.0

QPT-3 0 9.7 16.5 27.2 36.9 44.7 56.3 64.1 77.7 84.5 92.3 102.9 108.8

QPT-4 0 9.7 17.5 28.2 38.8 46.6 58.3 67.0 80.6 88.4 97.1 109.7 115.5

QPT-5 0 11.6 21.3 38.8 55.3 67.9 86.3 98.9 117.3 128.0 138.7 155.2 163.9

QPT-6 0 8.7 14.6 25.2 35.9 43.7 56.3 65.0 78.6 87.4 96.1 112.6 123.3

MS-1 0 19.4 35.0 62.2 87.4 105.9 134.1 155.5 189.5 212.8 238.1 286.7 320.7

MS-2 0 20.4 36.9 65.1 94.3 115.7 146.8 170.1 203.2 225.5 248.9 293.6 329.6

MS-3 0 -6.5 -11.8 -20.3 -28.6 -34.8 -44.2 -51.0 -61.9 -69.6 -78.4 -89.6 -93.8

MS-4 0 21.4 39.8 68.0 97.2 118.6 152.6 177.9 218.7 245.9 275.1 324.7 350.9

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0 14.6 27.2 48.6 69.0 84.5 105.9 122.4 146.7 162.2 178.7 212.7 238.0

QPB-1 0 10.7 19.4 35.0 49.5 61.2 78.7 92.3 114.6 129.2 145.7 174.9 195.3

QPB-2 0 12.6 23.3 39.8 57.3 68.9 87.4 101.0 122.4 136.9 152.5 180.6 195.2

QPB-3 0 11.6 22.3 38.8 57.2 69.8 90.2 104.8 127.1 140.7 155.2 181.4 196.9

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 11.6 18.4 30.1 41.7 49.5 62.1 70.8 84.4 93.1 101.8 115.4 121.2

QPB-6 0 7.8 12.6 19.4 26.2 31.0 38.8 43.6 52.4 57.2 63.0 71.8 74.7

Displacement

TQP-0 0 0.0065 0.0065 0.0129 0.0194 0.0259 0.0323 0.0345 0.0409 0.0474 0.0539 0.0603 0.0668

tqp-1 0 0.0000 0.0000 0.0087 0.0152 0.0217 0.0282 0.0369 0.0434 0.0499 0.0499 0.0651 0.0717

tqp-2 0 0.0055 0.0099 0.0177 0.0243 0.0287 0.0376 0.0442 0.0497 0.0564 0.0641 0.0741 0.0807

tqp-3 0 0.0000 0.0000 0.0065 0.0129 0.0194 0.0258 0.0344 0.0409 0.0473 0.0538 0.0667 0.0731

tqp-4 0 0.0000 0.0043 0.0108 0.0215 0.0248 0.0334 0.0409 0.0484 0.0549 0.0624 0.0754 0.0818

TQP-5 0 0.0046 0.0046 0.0183 0.0229 0.0321 0.0367 0.0459 0.0596 0.0642 0.0688 0.0826 0.0872

Mid-span-0 0 0.0000 0.0064 0.0129 0.0193 0.0258 0.0343 0.0408 0.0558 0.0622 0.0687 0.0751 0.0880

mid-span-1 0 0.0067 0.0156 0.0223 0.0290 0.0357 0.0491 0.0557 0.0624 0.0691 0.0803 0.0936 0.1026

mid-span-2 0 0.0055 0.0111 0.0221 0.0299 0.0365 0.0454 0.0543 0.0653 0.0731 0.0853 0.0996 0.1118

mid-span-4 0 0.0056 0.0100 0.0234 0.0334 0.0400 0.0512 0.0589 0.0712 0.0790 0.0879 0.1034 0.1157

mid-span-5 0 0.0043 0.0043 0.0173 0.0238 0.0303 0.0455 0.0519 0.0649 0.0714 0.0844 0.0996 0.1125

bqp-1 0 0.0033 0.0077 0.0144 0.0199 0.0243 0.0321 0.0376 0.0453 0.0497 0.0553 0.0652 0.0718

BQP-2 0 0.0046 0.0046 0.0137 0.0228 0.0228 0.0365 0.0411 0.0502 0.0547 0.0639 0.0684 0.0776

BQP-3 0 0.0000 0.0092 0.0138 0.0229 0.0275 0.0367 0.0413 0.0505 0.0596 0.0642 0.0734 0.0872

BQP-4 0 0.0000 0.0046 0.0137 0.0182 0.0228 0.0319 0.0364 0.0455 0.0546 0.0592 0.0683 0.0728

BQP-5 0 0.0043 0.0086 0.0173 0.0238 0.0303 0.0367 0.0432 0.0519 0.0584 0.0648 0.0713 0.0843

Page 187: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

175

Slab: XOREX-50 Test: Longitudinal Linear Load along Left Third Strip (Figure 5.3-G) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1338.2 1986.8 2561.5 3087 3645.3 4236.4 4638.7 5270.9 6149.4 7159.2 8070.6 8924.4 10049 11141 11855 12545

QPT-1 0 10.7 16.5 21.4 27.2 32.0 37.9 41.7 47.6 55.3 65.0 72.8 80.6 89.3 96.1 99.0 99.0

QPT-2 0 10.7 15.5 20.4 25.2 30.1 34.9 37.8 43.7 51.4 60.2 67.9 75.7 85.4 95.1 100.9 102.9

QPT-3 0 9.7 15.5 20.4 24.3 29.1 34.0 37.9 43.7 51.5 60.2 68.0 75.7 88.4 101.0 109.7 121.4

QPT-4 0 8.7 13.6 17.5 22.3 26.2 31.1 34.9 39.8 46.6 54.4 62.1 69.9 81.6 94.2 102.9 117.5

QPT-5 0 7.8 11.6 15.5 18.4 23.3 27.2 30.1 34.9 40.7 48.5 54.3 61.1 68.9 79.5 87.3 95.0

QPT-6 0 4.9 7.8 10.7 12.6 15.5 19.4 21.4 24.3 29.1 34.9 40.8 46.6 54.4 65.0 70.9 44.7

MS-1 0 18.5 29.1 37.9 45.7 54.4 64.1 70.9 81.6 95.2 111.7 131.1 228.3 306.1 393.5 444.1 492.7

MS-2 0 17.5 25.3 33.0 38.9 46.7 54.4 59.3 68.0 78.7 92.3 105.9 125.4 162.3 221.6 231.4 285.8

MS-3 0 -4.4 -6.5 -8.3 -9.7 -11.5 -13.3 -14.7 -16.5 -19.2 -22.4 -25.4 -28.9 -34.2 -42.8 -56.3 -66.9

MS-4 0 9.7 15.5 20.4 24.3 29.1 34.0 36.9 41.8 49.6 57.3 65.1 73.8 86.5 104.0 119.5 141.9

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0 7.8 10.7 13.6 16.5 20.4 23.3 25.2 29.1 34.0 39.8 45.6 51.5 59.2 68.9 76.7 94.2

QPB-1 0 13.6 20.4 28.2 35.0 42.7 51.5 57.3 67.0 79.7 95.2 107.8 119.5 133.1 141.8 145.7 217.6

QPB-2 0 11.7 18.4 24.3 29.1 35.0 40.8 45.6 52.4 59.2 68.9 77.7 87.4 100.0 124.3 144.7 186.5

QPB-3 0 9.7 15.5 20.4 25.2 30.1 34.9 38.8 45.6 53.4 63.1 72.8 82.5 95.1 108.6 120.3 145.5

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 8.7 13.6 17.5 22.3 26.2 31.0 33.9 39.8 46.6 54.3 62.1 70.8 82.4 95.0 105.7 123.2

QPB-6 0 4.8 7.8 9.7 11.6 14.5 17.5 18.4 21.3 25.2 30.1 33.9 38.8 44.6 51.4 57.2 66.0

Displacement

TQP-0 0.0000 0.0043 0.0129 0.0194 0.0237 0.0259 0.0323 0.0323 0.0409 0.0453 0.0539 0.0603 0.0668 0.0733 0.0862 0.0927 0.1056

tqp-1 0.0022 0.0000 0.0065 0.0065 0.0152 0.0152 0.0217 0.0217 0.0282 0.0347 0.0434 0.0478 0.0499 0.0630 0.0717 0.0782 0.0934

tqp-2 0.0000 0.0033 0.0066 0.0099 0.0133 0.0166 0.0210 0.0232 0.0276 0.0309 0.0376 0.0431 0.0475 0.0564 0.0619 0.0718 0.0829

tqp-3 0.0000 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0065 0.0065 0.0151 0.0129 0.0215 0.0280 0.0323 0.0409 0.0452 0.0538

tqp-4 0.0000 0.0000 0.0000 0.0000 0.0011 0.0022 0.0043 0.0054 0.0075 0.0097 0.0129 0.0151 0.0172 0.0215 0.0291 0.0334 0.0366

TQP-5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0092 0.0046 0.0092 0.0138 0.0138 0.0138 0.0183 0.0275 0.0275 0.0321

Mid-span-0 0.0021 0.0043 0.0043 0.0107 0.0172 0.0258 0.0300 0.0322 0.0386 0.0451 0.0515 0.0665 0.0730 0.0858 0.0987 0.1137 0.1395

mid-span-1 0.0000 0.0134 0.0201 0.0201 0.0268 0.0334 0.0424 0.0401 0.0491 0.0535 0.0624 0.0691 0.0758 0.0892 0.1026 0.1159 0.1449

mid-span-2 0.0011 0.0066 0.0111 0.0155 0.0188 0.0221 0.0266 0.0288 0.0343 0.0410 0.0465 0.0531 0.0587 0.0686 0.0819 0.0908 0.1151

mid-span-4 0.0000 0.0011 0.0033 0.0056 0.0067 0.0089 0.0111 0.0133 0.0156 0.0189 0.0222 0.0256 0.0300 0.0389 0.0423 0.0467 0.0556

mid-span-5 0.0022 0.0000 0.0022 0.0043 0.0065 0.0065 0.0065 0.0065 0.0130 0.0130 0.0195 0.0195 0.0238 0.0260 0.0325 0.0325 0.0390

bqp-1 0.0000 0.0066 0.0111 0.0166 0.0199 0.0232 0.0276 0.0298 0.0343 0.0398 0.0464 0.0520 0.0586 0.0663 0.0774 0.0851 0.0984

BQP-2 0.0000 0.0046 0.0091 0.0091 0.0137 0.0137 0.0228 0.0228 0.0274 0.0274 0.0365 0.0411 0.0456 0.0547 0.0593 0.0684 0.0821

BQP-3 0.0000 0.0046 0.0092 0.0092 0.0092 0.0183 0.0183 0.0183 0.0229 0.0229 0.0321 0.0367 0.0367 0.0459 0.0505 0.0596 0.0688

BQP-4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0091 0.0137 0.0182 0.0273 0.0228 0.0319

BQP-5 0.0000 0.0000 0.0000 0.0022 0.0065 0.0065 0.0065 0.0065 0.0065 0.0130 0.0151 0.0151 0.0216 0.0216 0.0281 0.0281 0.0346

Page 188: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

176

Slab: XOREX-50 Test: Longitudinal Linear Load along Right Third Strip (Figure 5.3-H) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1091.9 2077.1 3144.4 4228.2 5000 6124.7 7003.2 8119.8 8957.3 10106 10640

QPT-1 0 4.9 10.7 16.5 22.3 26.2 32.0 36.9 43.7 48.5 56.3 64.1

QPT-2 0 7.8 16.5 24.3 34.0 39.8 49.5 56.3 66.0 73.8 85.4 94.1

QPT-3 0 9.7 18.5 29.1 38.8 46.6 57.3 66.0 76.7 85.5 96.1 101.0

QPT-4 0 11.6 22.3 35.0 47.6 56.3 69.9 79.6 92.2 101.9 112.6 114.6

QPT-5 0 9.7 20.4 32.0 45.6 55.3 69.8 80.5 95.0 103.8 113.5 170.7

QPT-6 0 14.6 29.1 45.6 60.2 70.9 86.4 98.1 111.6 121.4 133.0 169.9

MS-1 0 9.7 19.4 31.1 45.7 55.4 71.9 84.5 103.0 119.5 147.7 179.8

MS-2 0 12.6 25.3 40.8 57.3 69.0 87.5 102.1 122.5 142.9 179.8 220.7

MS-3 0 -4.7 -9.1 -14.2 -19.5 -23.0 -28.6 -33.3 -39.8 -46.9 -59.0 -82.3

MS-4 0 17.5 34.0 51.5 70.0 83.6 103.0 118.6 139.9 288.7 406.3 446.2

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0 13.6 26.2 39.8 55.4 66.0 81.6 95.2 132.1 191.3 251.6 307.9

QPB-1 0 5.8 11.7 19.4 28.2 34.0 44.7 53.4 66.1 75.8 94.2 111.7

QPB-2 0 9.7 18.4 30.1 41.8 50.5 64.1 74.8 88.4 101.0 121.4 139.8

QPB-3 0 10.7 21.3 33.9 47.5 57.2 70.8 81.5 96.0 108.6 134.8 155.2

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 11.6 22.3 34.9 47.5 57.2 70.8 80.5 94.1 102.8 113.5 114.4

QPB-6 0 9.7 17.5 28.1 38.8 46.6 57.2 66.9 77.6 83.4 92.1 91.2

Displacement

TQP-0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0065 0.0065 0.0129 0.0129 0.0194

tqp-1 0 0.0000 0.0000 0.0022 0.0065 0.0087 0.0152 0.0130 0.0217 0.0217 0.0282 0.0347

tqp-2 0 0.0033 0.0066 0.0122 0.0177 0.0221 0.0265 0.0309 0.0365 0.0420 0.0497 0.0542

tqp-3 0 0.0000 0.0000 0.0065 0.0129 0.0215 0.0280 0.0301 0.0409 0.0473 0.0538 0.0667

tqp-4 0 0.0043 0.0118 0.0205 0.0312 0.0355 0.0431 0.0538 0.0581 0.0678 0.0807 0.0915

TQP-5 0 0.0138 0.0183 0.0321 0.0459 0.0505 0.0596 0.0642 0.0780 0.0826 0.0963 0.1101

Mid-span-0 0 0.0000 0.0000 0.0021 0.0000 0.0000 0.0000 0.0064 0.0064 0.0129 0.0193 0.0258

mid-span-1 0 0.0067 0.0067 0.0134 0.0134 0.0223 0.0201 0.0268 0.0357 0.0424 0.0468 0.0557

mid-span-2 0 0.0022 0.0078 0.0133 0.0199 0.0255 0.0310 0.0365 0.0432 0.0487 0.0587 0.0709

mid-span-4 0 0.0100 0.0200 0.0311 0.0400 0.0500 0.0601 0.0689 0.0790 0.0901 0.1056 0.1257

mid-span-5 0 0.0065 0.0195 0.0325 0.0390 0.0519 0.0606 0.0736 0.0801 0.0931 0.1104 0.1342

bqp-1 0 0.0000 0.0011 0.0033 0.0066 0.0099 0.0133 0.0155 0.0199 0.0232 0.0287 0.0332

BQP-2 0 0.0000 0.0000 0.0046 0.0137 0.0137 0.0182 0.0274 0.0319 0.0411 0.0456 0.0547

BQP-3 0 0.0000 0.0092 0.0138 0.0229 0.0275 0.0367 0.0459 0.0505 0.0596 0.0642 0.0734

BQP-4 0 0.0000 0.0137 0.0182 0.0273 0.0319 0.0410 0.0455 0.0546 0.0592 0.0728 0.0865

BQP-5 0 0.0108 0.0195 0.0324 0.0389 0.0475 0.0540 0.0648 0.0735 0.0800 0.0929 0.1059

Page 189: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

177

Slab: XOREX-50 Test: Transverse Linear Load Across Mid-Span (Figure 5.3-I) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs. Fail

Strain Gage 1206.8 1945.8 3021.3 4006.5 5016.4 6272.5 7307 7298.8 7963.8 9252.8 10911 12027 12857 13029 13193 13341 13423 13538

QPT-1 7.8 13.6 21.4 28.2 36.9 46.6 54.4 54.4 59.2 69.9 83.5 93.2 100.0 85.4 84.5 131.1 151.4 232.0

QPT-2 8.7 14.6 24.3 33.0 41.7 52.4 62.1 62.1 67.9 78.6 92.2 100.9 105.8 204.8 212.6 243.6 245.6 253.3

QPT-3 9.7 16.5 26.2 35.9 45.6 58.3 68.0 68.0 74.8 86.4 102.0 110.7 115.6 169.0 175.8 213.7 218.5 228.3

QPT-4 9.7 16.5 27.2 36.9 47.6 60.2 69.9 69.9 77.7 90.3 106.8 116.5 123.3 130.1 130.1 125.2 150.5 167.0

QPT-5 13.6 25.2 44.6 61.1 75.6 94.1 108.6 108.6 116.4 132.9 155.2 171.7 186.2 261.9 270.6 281.3 283.2 290.0

QPT-6 9.7 17.5 29.1 38.8 49.5 62.1 72.8 72.8 79.6 93.2 111.6 128.1 146.6 212.6 215.5 224.3 231.1 246.6

MS-1 21.4 38.9 68.0 95.2 122.4 157.4 186.6 186.6 205.1 242.0 292.5 338.2 394.6 616.4 661.1 782.8 826.6 898.6

MS-2 22.4 40.8 71.9 101.1 131.2 168.2 198.3 198.3 217.8 255.7 308.2 359.8 453.1 778.2 812.3 925.2 968.1 1041.1

MS-3 -6.8 -12.4 -21.5 -30.4 -39.5 -50.7 -59.9 -59.9 -65.8 -77.3 -93.5 -108.5 -131.8 -234.4 -250.3 -289.2 -302.2 -326.9

MS-4 23.3 43.7 74.8 105.0 137.0 177.9 211.9 211.9 233.3 276.1 333.4 389.8 489.1 785.8 842.3 963.0 1002.9 1075.0

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 16.5 30.1 51.5 70.9 90.3 114.6 134.0 134.0 146.7 171.9 207.9 246.7 296.3 593.7 633.6 720.2 760.0 804.8

QPB-1 11.7 21.4 38.9 54.4 70.9 95.2 113.7 113.7 125.3 146.7 176.8 207.0 210.8 130.2 136.0 157.4 163.2 177.8

QPB-2 12.6 24.3 41.8 59.2 76.7 99.1 117.5 117.5 129.2 151.5 179.7 201.0 228.2 252.5 258.4 272.9 279.7 289.5

QPB-3 13.6 24.2 42.7 59.2 76.6 99.9 118.3 118.3 130.0 152.3 181.4 205.7 231.9 267.8 275.5 286.2 289.1 294.0

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 10.7 17.5 29.1 38.8 49.5 62.1 73.7 73.7 80.5 94.1 110.6 120.3 129.0 141.6 143.5 195.0 215.3 225.0

QPB-6 7.8 12.6 19.4 25.2 31.0 38.8 45.6 45.6 49.5 58.2 68.9 74.7 80.5 89.2 90.2 87.3 86.3 83.4

Displacement

TQP-0 0.0043 0.0108 0.0129 0.0194 0.0259 0.0323 0.0388 0.0388 0.0453 0.0517 0.0647 0.0733 0.0841 0.1918 0.2047 0.2522 0.2672 0.2996

tqp-1 0.0022 0.0065 0.0130 0.0195 0.0261 0.0347 0.0413 0.0413 0.0413 0.0521 0.0630 0.0695 0.0847 0.1911 0.2041 0.2476 0.2606 0.2888

tqp-2 0.0044 0.0099 0.0177 0.0243 0.0309 0.0409 0.0453 0.0453 0.0497 0.0608 0.0718 0.0818 0.0951 0.2023 0.2166 0.2587 0.2730 0.3029

tqp-3 0.0000 0.0000 0.0065 0.0129 0.0194 0.0344 0.0409 0.0409 0.0473 0.0538 0.0667 0.0796 0.0925 0.1935 0.2064 0.2516 0.2666 0.2924

tqp-4 0.0011 0.0054 0.0161 0.0226 0.0291 0.0409 0.0463 0.0463 0.0495 0.0614 0.0743 0.0840 0.0991 0.1970 0.2099 0.2519 0.2659 0.2961

TQP-5 0.0046 0.0046 0.0183 0.0229 0.0275 0.0413 0.0505 0.0505 0.0550 0.0642 0.0780 0.0872 0.1009 0.2064 0.2202 0.2661 0.2752 0.3073

Mid-span-0 0.0000 0.0043 0.0172 0.0279 0.0343 0.0408 0.0536 0.0536 0.0579 0.0665 0.0815 0.0966 0.1094 0.2790 0.3004 0.3691 0.3949 0.4421

mid-span-1 0.0111 0.0134 0.0268 0.0334 0.0401 0.0535 0.0602 0.0602 0.0691 0.0803 0.0959 0.1070 0.1293 0.3166 0.3367 0.4058 0.4303 0.4749

mid-span-2 0.0066 0.0144 0.0233 0.0321 0.0399 0.0520 0.0631 0.0631 0.0698 0.0841 0.1030 0.1174 0.1417 0.3211 0.3410 0.4119 0.4351 0.4805

mid-span-4 0.0056 0.0145 0.0256 0.0356 0.0456 0.0589 0.0701 0.0701 0.0756 0.0890 0.1056 0.1201 0.1435 0.3158 0.3370 0.4081 0.4326 0.4793

mid-span-5 0.0000 0.0065 0.0195 0.0260 0.0411 0.0541 0.0649 0.0649 0.0714 0.0822 0.1017 0.1147 0.1407 0.3052 0.3268 0.3961 0.4134 0.4610

bqp-1 0.0044 0.0088 0.0144 0.0210 0.0276 0.0365 0.0431 0.0420 0.0464 0.0542 0.0652 0.0741 0.0862 0.1735 0.1857 0.2189 0.2310 0.2520

BQP-2 0.0046 0.0046 0.0137 0.0182 0.0228 0.0319 0.0456 0.0411 0.0456 0.0547 0.0684 0.0776 0.0912 0.1779 0.1870 0.2235 0.2372 0.2555

BQP-3 0.0000 0.0092 0.0138 0.0183 0.0275 0.0413 0.0505 0.0505 0.0505 0.0642 0.0780 0.0826 0.1009 0.1881 0.1927 0.2294 0.2431 0.2661

BQP-4 0.0046 0.0046 0.0091 0.0182 0.0228 0.0319 0.0410 0.0410 0.0410 0.0546 0.0637 0.0774 0.0910 0.1684 0.1730 0.2094 0.2140 0.2413

BQP-5 0.0043 0.0065 0.0151 0.0281 0.0346 0.0411 0.0475 0.0475 0.0540 0.0605 0.0756 0.0821 0.0951 0.1772 0.1837 0.2183 0.2248 0.2464

Page 190: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

178

Slab: XOREX-50 Test: Transverse Linear Load Across Top Quarter Point (Figure 5.3-J) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1371.1 2027.9 2487.6 3103.4 3530.3 4064 4688 5221.6 5771.7 6330 6691.2 7101.8 7668.3

QPT-1 0 3.9 5.8 7.8 9.7 10.7 12.6 14.6 16.5 18.4 20.4 21.4 22.3 25.2

QPT-2 0 3.9 6.8 7.8 9.7 11.6 13.6 15.5 17.5 19.4 21.3 22.3 24.3 26.2

QPT-3 0 3.9 5.8 7.8 9.7 11.7 13.6 15.5 17.5 19.4 21.4 23.3 25.2 27.2

QPT-4 0 4.9 6.8 8.7 10.7 12.6 15.5 17.5 20.4 22.3 25.2 26.2 28.2 31.1

QPT-5 0 14.5 23.3 29.1 37.8 43.6 51.4 60.1 67.9 75.7 83.4 88.3 95.1 102.8

QPT-6 0 8.7 13.6 17.5 22.3 25.2 30.1 34.9 39.8 43.7 48.5 52.4 55.3 60.2

MS-1 0 7.8 10.7 13.6 17.5 19.4 23.3 26.2 30.1 33.0 36.9 38.9 41.8 44.7

MS-2 0 6.8 9.7 11.7 14.6 16.5 19.4 22.4 25.3 27.2 30.1 32.1 34.0 36.0

MS-3 0 -2.1 -3.2 -3.8 -4.7 -5.3 -6.2 -7.1 -8.0 -8.6 -9.4 -10.0 -10.6 -11.5

MS-4 0 6.8 9.7 12.6 15.5 18.5 20.4 24.3 27.2 30.1 33.0 35.0 36.9 39.8

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0 6.8 10.7 12.6 16.5 18.5 21.4 25.2 28.2 31.1 35.0 36.9 38.8 42.7

QPB-1 0 10.7 16.5 21.4 28.2 32.1 37.9 44.7 50.5 56.3 63.1 67.0 71.9 78.7

QPB-2 0 17.5 27.2 35.0 44.7 52.4 61.2 71.9 80.6 90.3 99.1 105.9 112.7 122.4

QPB-3 0 17.5 28.1 35.9 45.6 53.4 63.1 74.7 84.4 93.1 102.8 109.6 116.4 127.1

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 4.8 7.8 9.7 11.6 13.6 16.5 18.4 21.3 23.3 26.2 28.1 30.1 32.0

QPB-6 0 3.9 5.8 6.8 8.7 10.7 11.6 13.6 15.5 17.5 19.4 20.4 22.3 24.2

Displacement

TQP-0 0.0000 0.0022 0.0086 0.0086 0.0086 0.0151 0.0151 0.0151 0.0151 0.0237 0.0237 0.0216 0.0237 0.0302

tqp-1 0.0022 0.0022 0.0022 0.0022 0.0109 0.0109 0.0109 0.0152 0.0174 0.0174 0.0174 0.0239 0.0261 0.0239

tqp-2 0.0011 0.0055 0.0077 0.0088 0.0111 0.0144 0.0166 0.0210 0.0232 0.0265 0.0298 0.0309 0.0332 0.0365

tqp-3 0.0022 0.0022 0.0022 0.0000 0.0065 0.0043 0.0065 0.0129 0.0108 0.0194 0.0172 0.0172 0.0237 0.0237

tqp-4 0.0011 0.0000 0.0032 0.0043 0.0075 0.0097 0.0118 0.0140 0.0172 0.0194 0.0215 0.0226 0.0258 0.0301

TQP-5 0.0000 0.0046 0.0092 0.0092 0.0138 0.0138 0.0229 0.0229 0.0229 0.0275 0.0275 0.0367 0.0367 0.0367

Mid-span-0 0.0021 0.0021 0.0021 0.0021 0.0021 0.0064 0.0043 0.0043 0.0107 0.0107 0.0107 0.0107 0.0172 0.0193

mid-span-1 0.0134 0.0134 0.0201 0.0201 0.0201 0.0268 0.0290 0.0290 0.0357 0.0357 0.0357 0.0379 0.0424 0.0446

mid-span-2 0.0000 0.0033 0.0055 0.0078 0.0111 0.0133 0.0155 0.0199 0.0221 0.0244 0.0277 0.0277 0.0299 0.0332

mid-span-4 0.0011 0.0044 0.0067 0.0089 0.0111 0.0145 0.0167 0.0211 0.0234 0.0256 0.0278 0.0289 0.0311 0.0356

mid-span-5 0.0022 0.0065 0.0065 0.0130 0.0130 0.0130 0.0195 0.0195 0.0260 0.0260 0.0260 0.0325 0.0325 0.0325

bqp-1 0.0011 0.0011 0.0022 0.0022 0.0033 0.0044 0.0066 0.0088 0.0099 0.0111 0.0133 0.0144 0.0166 0.0177

BQP-2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0091 0.0091 0.0091 0.0137 0.0137 0.0137 0.0137 0.0228

BQP-3 0.0046 0.0046 0.0046 0.0046 0.0092 0.0092 0.0092 0.0183 0.0183 0.0183 0.0183 0.0229 0.0229 0.0275

BQP-4 0.0000 0.0000 0.0046 0.0000 0.0046 0.0046 0.0046 0.0091 0.0091 0.0091 0.0137 0.0137 0.0182 0.0182

BQP-5 0.0000 0.0065 0.0065 0.0043 0.0130 0.0130 0.0130 0.0195 0.0195 0.0173 0.0195 0.0259 0.0259 0.0259

Page 191: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

179

Load in lbs.

Strain Gage 8136.2 8637.1 9146.1 9499.1 10000 10492 10853 10919 11190 11330 11839 12512 13201 13169 13719 14376 15049

QPT-1 26.2 28.2 30.1 31.1 33.0 34.0 35.9 35.9 36.9 37.9 38.8 41.7 44.7 43.7 45.6 48.5 51.4

QPT-2 28.1 30.1 32.0 33.0 34.9 36.9 37.8 38.8 39.8 39.8 41.7 44.6 46.6 47.6 48.5 51.4 52.4

QPT-3 29.1 31.1 33.0 35.0 36.9 38.8 40.8 40.8 41.8 42.7 44.7 47.6 50.5 49.5 52.4 54.4 56.3

QPT-4 33.0 34.9 37.9 38.8 41.7 43.7 44.7 45.6 46.6 47.6 49.5 52.4 55.3 55.3 58.3 60.2 62.1

QPT-5 109.6 116.4 124.2 129.0 136.8 143.6 149.4 150.3 155.2 157.1 163.9 174.6 186.2 186.2 197.9 211.5 183.3

QPT-6 64.1 68.9 73.8 76.7 81.5 85.4 89.3 89.3 92.2 93.2 98.1 104.9 111.6 111.6 119.4 129.1 182.5

MS-1 47.6 51.5 54.4 56.3 59.3 63.1 65.1 66.1 68.0 69.0 71.9 75.8 80.6 80.6 83.5 88.4 95.2

MS-2 38.9 40.8 42.8 44.7 46.7 49.6 51.5 51.5 52.5 53.5 56.4 59.3 62.2 62.2 64.1 66.1 67.1

MS-3 -12.1 -12.7 -13.6 -13.9 -14.7 -15.3 -15.9 -15.9 -16.2 -16.5 -17.4 -18.3 -19.2 -19.2 -19.5 -20.1 -19.8

MS-4 42.8 45.7 47.6 50.5 52.5 55.4 57.3 58.3 59.3 60.2 63.2 67.0 70.0 70.0 72.9 75.8 75.8

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 44.7 48.6 51.5 53.4 56.3 59.2 61.2 62.2 64.1 65.1 68.0 71.9 75.7 75.7 79.6 83.5 89.3

QPB-1 84.5 90.3 96.2 101.0 106.9 112.7 117.5 118.5 123.4 125.3 131.1 142.8 163.2 164.2 182.6 195.3 242.9

QPB-2 130.1 138.9 147.6 153.5 162.2 170.9 177.7 179.7 184.5 187.4 196.2 207.8 221.5 221.5 220.5 230.2 217.6

QPB-3 134.8 143.6 152.3 159.1 167.8 175.6 183.4 184.3 189.2 192.1 200.8 213.4 226.1 223.1 221.2 228.0 238.7

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 33.9 36.9 38.8 40.7 42.7 44.6 46.6 47.5 48.5 49.5 51.4 54.3 57.2 57.2 60.1 62.1 64.0

QPB-6 25.2 27.2 29.1 30.1 32.0 33.9 34.9 34.9 35.9 36.9 38.8 40.7 42.7 42.7 44.6 47.5 49.5

Displacement

TQP-0 0.0280 0.0302 0.0302 0.0366 0.0366 0.0366 0.0366 0.0366 0.0431 0.0431 0.0431 0.0431 0.0517 0.0517 0.0496 0.0496 0.0582

tqp-1 0.0282 0.0304 0.0326 0.0326 0.0391 0.0391 0.0391 0.0391 0.0413 0.0413 0.0478 0.0478 0.0499 0.0499 0.0543 0.0543 0.0608

tqp-2 0.0387 0.0409 0.0431 0.0442 0.0475 0.0508 0.0520 0.0531 0.0553 0.0553 0.0575 0.0619 0.0641 0.0641 0.0652 0.0685 0.0829

tqp-3 0.0237 0.0301 0.0301 0.0301 0.0387 0.0366 0.0387 0.0430 0.0452 0.0430 0.0430 0.0495 0.0495 0.0495 0.0581 0.0559 0.0710

tqp-4 0.0334 0.0345 0.0355 0.0377 0.0398 0.0420 0.0441 0.0441 0.0463 0.0463 0.0474 0.0517 0.0571 0.0571 0.0581 0.0603 0.0711

TQP-5 0.0413 0.0413 0.0413 0.0505 0.0505 0.0459 0.0550 0.0550 0.0550 0.0550 0.0550 0.0642 0.0596 0.0642 0.0688 0.0688 0.0734

Mid-span-0 0.0172 0.0258 0.0236 0.0258 0.0236 0.0300 0.0322 0.0322 0.0322 0.0300 0.0300 0.0365 0.0386 0.0386 0.0429 0.0451 0.0515

mid-span-1 0.0424 0.0491 0.0491 0.0513 0.0580 0.0602 0.0580 0.0580 0.0647 0.0647 0.0647 0.0647 0.0736 0.0736 0.0713 0.0780 0.0780

mid-span-2 0.0354 0.0376 0.0410 0.0432 0.0454 0.0465 0.0487 0.0498 0.0520 0.0520 0.0531 0.0565 0.0598 0.0598 0.0620 0.0653 0.0731

mid-span-4 0.0400 0.0411 0.0423 0.0434 0.0467 0.0500 0.0523 0.0523 0.0556 0.0556 0.0567 0.0589 0.0634 0.0634 0.0656 0.0701 0.0767

mid-span-5 0.0390 0.0390 0.0390 0.0476 0.0476 0.0476 0.0519 0.0541 0.0519 0.0541 0.0519 0.0584 0.0606 0.0606 0.0671 0.0671 0.0736

bqp-1 0.0188 0.0210 0.0221 0.0232 0.0243 0.0265 0.0276 0.0276 0.0287 0.0287 0.0298 0.0321 0.0343 0.0343 0.0365 0.0387 0.0420

BQP-2 0.0228 0.0228 0.0182 0.0228 0.0274 0.0274 0.0274 0.0274 0.0319 0.0365 0.0365 0.0365 0.0365 0.0319 0.0411 0.0411 0.0456

BQP-3 0.0229 0.0321 0.0321 0.0321 0.0321 0.0367 0.0367 0.0413 0.0367 0.0413 0.0367 0.0459 0.0459 0.0459 0.0459 0.0505 0.0505

BQP-4 0.0228 0.0228 0.0228 0.0228 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0364 0.0364 0.0364 0.0364 0.0410 0.0410 0.0410

BQP-5 0.0259 0.0324 0.0324 0.0324 0.0324 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389 0.0454 0.0475 0.0454 0.0454 0.0540 0.0540

Page 192: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

180

Slab: XOREX-50 Test: Transverse Linear Load Across Bottom Quarter Point (Figure 5.3-K) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 500.82 1428.5 2036.1 2504.1 3029.5 3620.6 4285.7 4704.4 5221.6 5730.7 6223.3 6642 7233.1

QPT-1 0 3.9 11.6 16.5 20.4 24.3 30.1 34.9 38.8 43.7 48.5 52.4 56.3 61.2

QPT-2 0 5.8 18.4 27.2 34.9 42.7 51.4 62.1 67.9 75.7 83.5 91.2 98.0 105.8

QPT-3 0 7.8 22.3 32.0 39.8 48.6 59.2 70.9 77.7 87.4 97.1 105.9 113.6 123.3

QPT-4 0 5.8 18.4 27.2 34.0 41.7 50.5 60.2 67.0 74.8 82.5 90.3 97.1 105.8

QPT-5 0 1.9 4.8 6.8 7.8 9.7 11.6 14.5 15.5 17.5 19.4 21.3 23.3 25.2

QPT-6 0 1.9 4.9 6.8 7.8 9.7 11.6 13.6 15.5 16.5 18.4 20.4 22.3 23.3

MS-1 0 2.9 8.7 11.7 14.6 17.5 21.4 25.3 28.2 31.1 34.0 37.9 40.8 43.7

MS-2 0 1.9 6.8 9.7 11.7 14.6 17.5 20.4 22.4 24.3 27.2 29.2 31.1 34.0

MS-3 0 -0.9 -2.4 -3.2 -3.8 -4.4 -5.3 -6.5 -7.1 -7.7 -8.6 -9.1 -9.7 -10.6

MS-4 0 1.9 6.8 10.7 12.6 15.5 18.5 22.3 24.3 27.2 30.1 32.1 35.0 37.9

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 0 9.7 12.6 15.5 14.6 18.4 21.4 23.3 25.2 27.2 30.1 33.0 39.8 35.0

QPB-1 0 1.9 4.9 6.8 8.7 10.7 12.6 14.6 16.5 18.5 21.4 22.3 24.3 27.2

QPB-2 0 1.9 4.9 6.8 7.8 9.7 11.7 14.6 16.5 18.5 20.4 22.3 24.3 26.2

QPB-3 0 1.0 3.9 5.8 7.8 8.7 11.6 13.6 15.5 17.5 19.4 21.3 23.3 26.2

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 0 5.8 17.5 25.2 32.0 38.8 47.5 57.2 63.0 69.8 77.6 84.4 91.2 98.9

QPB-6 0 2.9 8.7 12.6 15.5 19.4 23.3 28.1 30.1 33.9 37.8 40.7 43.6 47.5

Displacement

TQP-0 0 0.0022 0.0000 0.0000 0.0065 0.0065 0.0065 0.0065 0.0129 0.0129 0.0129 0.0129 0.0108 0.0194

tqp-1 0 0.0022 0.0043 0.0043 0.0087 0.0087 0.0087 0.0087 0.0130 0.0152 0.0152 0.0152 0.0152 0.0217

tqp-2 0 0.0000 0.0022 0.0033 0.0055 0.0066 0.0088 0.0099 0.0111 0.0111 0.0133 0.0155 0.0166 0.0188

tqp-3 0 0.0022 0.0022 0.0000 0.0000 0.0000 0.0022 0.0022 0.0022 0.0065 0.0086 0.0086 0.0086 0.0108

tqp-4 0 0.0011 0.0000 0.0011 0.0022 0.0054 0.0065 0.0086 0.0097 0.0108 0.0129 0.0140 0.0140 0.0161

TQP-5 0 0.0000 0.0000 0.0092 0.0046 0.0046 0.0092 0.0138 0.0138 0.0138 0.0183 0.0183 0.0183 0.0183

Mid-span-0 0 0.0021 0.0000 0.0000 0.0021 0.0064 0.0064 0.0043 0.0129 0.0107 0.0129 0.0172 0.0193 0.0193

mid-span-1 0 0.0022 0.0089 0.0089 0.0156 0.0156 0.0156 0.0223 0.0223 0.0223 0.0290 0.0290 0.0290 0.0357

mid-span-2 0 0.0044 0.0044 0.0066 0.0089 0.0111 0.0144 0.0166 0.0188 0.0221 0.0244 0.0266 0.0277 0.0299

mid-span-4 0 0.0000 0.0044 0.0067 0.0078 0.0111 0.0133 0.0167 0.0189 0.0211 0.0234 0.0256 0.0267 0.0289

mid-span-5 0 0.0022 0.0022 0.0043 0.0043 0.0043 0.0043 0.0108 0.0108 0.0108 0.0173 0.0195 0.0195 0.0238

bqp-1 0 0.0011 0.0033 0.0055 0.0066 0.0088 0.0122 0.0144 0.0166 0.0188 0.0210 0.0232 0.0254 0.0276

BQP-2 0 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0137 0.0137 0.0182 0.0182 0.0182 0.0228 0.0274

BQP-3 0 0.0000 0.0000 0.0000 0.0046 0.0092 0.0138 0.0138 0.0138 0.0229 0.0229 0.0275 0.0275 0.0275

BQP-4 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0137 0.0137 0.0137 0.0182 0.0182 0.0182

BQP-5 0 0.0065 0.0086 0.0086 0.0130 0.0151 0.0195 0.0195 0.0195 0.0259 0.0281 0.0281 0.0281 0.0346

Page 193: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

181

Load in lbs.

Strain Gage 7873.5 8555 9080.4 9638.7 10139 10640 11272 11707 12101 12676 13218

QPT-1 68.0 73.8 77.7 83.5 88.3 92.2 98.0 101.9 106.8 112.6 117.5

QPT-2 116.5 126.2 133.9 143.6 151.4 158.2 167.9 174.7 180.5 190.2 199.9

QPT-3 136.0 148.6 157.3 169.0 177.7 186.5 198.1 206.9 214.7 226.3 238.0

QPT-4 115.5 126.2 134.0 143.7 151.5 159.2 168.9 176.7 183.5 194.2 204.9

QPT-5 28.1 31.0 33.0 35.9 37.8 40.7 43.6 45.6 47.5 50.4 52.4

QPT-6 26.2 29.1 30.1 33.0 34.9 36.9 38.8 39.8 41.7 43.7 46.6

MS-1 47.6 52.5 55.4 59.3 62.2 65.1 69.0 71.9 74.8 78.7 81.6

MS-2 36.0 39.8 41.8 44.7 47.6 49.6 52.5 54.4 56.4 59.3 61.2

MS-3 -11.5 -12.4 -13.0 -13.9 -14.4 -15.0 -15.9 -16.5 -17.1 -18.0 -18.6

MS-4 40.8 44.7 47.6 50.5 52.5 55.4 59.3 61.2 63.2 67.0 70.0

MS-5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MS-6 42.7 46.6 45.6 48.6 63.1 69.9 59.2 59.2 64.1 61.2 70.9

QPB-1 29.1 33.0 35.0 36.9 39.8 41.8 43.7 46.6 47.6 50.5 53.4

QPB-2 29.1 32.0 34.0 35.9 37.9 40.8 42.7 44.7 46.6 49.5 52.4

QPB-3 28.1 31.0 33.0 35.9 37.8 39.8 42.7 44.6 46.6 48.5 50.4

QPB-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

QPB-5 107.7 118.3 126.1 133.8 141.6 148.4 157.1 164.9 170.7 180.4 190.1

QPB-6 52.4 57.2 60.1 65.0 68.9 71.8 76.6 79.5 82.4 87.3 92.1

Displacement

TQP-0 0.0194 0.0194 0.0194 0.0259 0.0259 0.0259 0.0259 0.0323 0.0323 0.0323 0.0323

tqp-1 0.0217 0.0217 0.0217 0.0282 0.0304 0.0282 0.0282 0.0347 0.0347 0.0347 0.0369

tqp-2 0.0210 0.0232 0.0254 0.0276 0.0287 0.0309 0.0321 0.0343 0.0354 0.0376 0.0387

tqp-3 0.0151 0.0151 0.0151 0.0215 0.0215 0.0215 0.0215 0.0280 0.0280 0.0280 0.0280

tqp-4 0.0183 0.0205 0.0215 0.0226 0.0248 0.0258 0.0291 0.0323 0.0334 0.0355 0.0366

TQP-5 0.0275 0.0275 0.0229 0.0321 0.0321 0.0321 0.0321 0.0321 0.0367 0.0367 0.0367

Mid-span-0 0.0236 0.0258 0.0258 0.0322 0.0343 0.0322 0.0386 0.0408 0.0408 0.0408 0.0472

mid-span-1 0.0357 0.0424 0.0424 0.0424 0.0513 0.0491 0.0513 0.0580 0.0557 0.0557 0.0624

mid-span-2 0.0332 0.0365 0.0388 0.0421 0.0443 0.0465 0.0498 0.0509 0.0531 0.0565 0.0576

mid-span-4 0.0322 0.0356 0.0411 0.0423 0.0434 0.0445 0.0489 0.0512 0.0523 0.0556 0.0567

mid-span-5 0.0260 0.0281 0.0303 0.0325 0.0346 0.0390 0.0390 0.0411 0.0455 0.0455 0.0476

bqp-1 0.0298 0.0332 0.0354 0.0376 0.0398 0.0420 0.0453 0.0475 0.0486 0.0508 0.0531

BQP-2 0.0319 0.0319 0.0365 0.0411 0.0411 0.0456 0.0456 0.0456 0.0502 0.0502 0.0593

BQP-3 0.0367 0.0321 0.0413 0.0413 0.0413 0.0505 0.0505 0.0550 0.0550 0.0550 0.0642

BQP-4 0.0273 0.0273 0.0273 0.0319 0.0319 0.0364 0.0364 0.0364 0.0364 0.0455 0.0455

BQP-5 0.0346 0.0411 0.0411 0.0411 0.0475 0.0497 0.0475 0.0540 0.0540 0.0562 0.0540

Page 194: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

182

Test Designation: Microfiber-MD- Concentrated Loads Cast Date: 07/17/2001 Test Date: 08/17/2001

Materials and Dimensions

General: Width: 9 ft (3 panels) Span length: 10 ft. Type of Reinforcement: 25 lb/yd3 –1 ½” Xorex Fiber Deck: Deck type: 2VLI-20 Design Thickness: 0.0358 in Height: 2 in Area: 0.519 in2/ft Yield Stress: 50 ksi Ultimate Strength: 60 ksi Concrete: Test Strength: 3800 psi Total Depth: 5.5 in

Results

Maximum Applied Load: 13.27 kips Mid-Span Deflection at Maximum Load: 0.110 in

Quarter Point-1 Deflection at Maximum Load: 0.075 in Quarter Point-2 Deflection at Maximum Load: 0.073 in

End Slip at Maximum Load: 0.0007 in

Strains Due to Fresh Concrete (µe)

Strain Gage 1 2 3 4 5 6 Quarter Point-1 512.22 510.99 563.87 559.38 509.69 502.59

Mid-Span 683.78 707.37 793.05 797.25 730.77 756.11Quarter Point-2 493.89 624.12 553.43 542.31 464.21 541.34

Page 195: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

183

Table F-4 Non-Distributed Load Tests Data on Microfiber-MD Slab Slab: Microfiber-MD Test: Concentrated Load at Bottom Quarter Point (Figure 5.3-A)

Strain Gage Readings are in µin/in

Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 558.29 1091.9 1551.7 2068.9 2709.3 3062.3 3497.5 4088.6 4532 5131.3 6133 6625.6 7142.8 7701.1

QPT-1 0 1.9 3.9 4.9 6.8 8.7 9.7 11.6 13.6 14.6 16.5 20.4 22.3 24.3 26.2

QPT-2 0 1.9 3.9 4.9 7.8 9.7 11.6 12.6 14.6 16.5 19.4 23.3 25.2 27.2 29.1

QPT-3 0 1.9 3.9 5.8 7.8 10.7 12.6 14.6 16.5 18.5 21.4 26.2 28.2 30.1 33.0

QPT-4 0 1.9 2.9 4.9 6.8 8.7 10.7 11.7 13.6 15.6 17.5 21.4 22.4 24.3 26.2

QPT-5 0 2.9 3.9 5.8 7.8 11.6 13.6 14.5 16.5 18.4 20.4 24.2 27.1 29.1 31.0

QPT-6 0 1.9 3.9 4.9 6.8 8.7 10.7 11.7 13.6 15.5 17.5 20.4 22.3 24.3 26.2

MS-1 0 2.9 5.8 7.8 10.7 15.5 17.5 20.4 23.3 26.2 30.1 36.9 39.8 43.7 47.6

MS-2 0 2.9 6.8 9.7 12.6 17.5 19.4 22.3 26.2 29.1 33.0 39.8 42.7 46.6 49.5

MS-3 0 -1.2 -2.1 -3.0 -4.1 -5.6 -6.2 -7.1 -8.3 -9.2 -10.3 -12.7 -13.6 -14.8 -16.0

MS-4 0 -1.0 2.9 5.8 30.1 -1.9 -24.3 -26.2 -22.4 -18.5 -14.6 -8.7 -11.7 -7.8 -3.9

MS-5 0 3.9 6.8 10.7 13.6 19.4 22.3 25.2 29.1 33.0 36.9 44.6 48.5 52.4 57.2

MS-6 0 3.9 6.8 9.7 12.6 19.4 20.4 23.3 26.2 29.2 33.0 39.8 41.8 45.7 49.6

QPB-1 0 3.9 6.8 9.7 12.6 17.5 19.4 22.3 26.2 29.1 33.0 39.8 43.7 47.6 51.5

QPB-2 0 5.8 12.6 18.4 26.2 35.9 40.7 47.5 55.3 62.1 70.8 87.3 96.0 106.7 117.4

QPB-3 0 7.8 14.5 20.4 28.1 38.8 43.7 50.4 59.2 66.0 75.7 91.2 98.9 103.8 110.6

QPB-4 0 6.8 13.6 19.4 26.2 35.0 40.8 46.6 54.4 61.2 68.9 83.5 90.3 97.1 103.9

QPB-5 0 9.7 15.5 20.4 28.2 50.5 52.5 57.3 64.1 69.0 76.8 89.4 99.1 105.9 112.7

QPB-6 0 2.9 6.8 9.7 12.6 17.5 19.4 22.3 25.2 28.2 32.0 38.8 42.7 46.6 50.5

Displacement

TQP-0 0 0.0000 0.0022 0.0022 0.0022 0.0022 0.0022 0.0086 0.0086 0.0086 0.0086 0.0151 0.0151 0.0151 0.0151

tqp-1 0 0.0000 0.0000 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0087 0.0087 0.0087 0.0130 0.0174 0.0174

tqp-2 0 0.0000 0.0000 0.0022 0.0033 0.0044 0.0055 0.0066 0.0077 0.0099 0.0122 0.0166 0.0188 0.0199 0.0221

tqp-3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0000 0.0065 0.0065 0.0086 0.0151

tqp-4 0 0.0000 0.0000 0.0000 0.0000 0.0022 0.0032 0.0043 0.0065 0.0075 0.0097 0.0129 0.0151 0.0161 0.0194

TQP-5 0 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0092 0.0046 0.0138 0.0138 0.0138 0.0183 0.0183 0.0229

Mid-span-0 0 0.0021 0.0021 0.0021 0.0000 0.0021 0.0064 0.0064 0.0064 0.0064 0.0129 0.0129 0.0193 0.0193 0.0193

mid-span-1 0 0.0067 0.0067 0.0067 0.0134 0.0111 0.0111 0.0201 0.0201 0.0201 0.0201 0.0268 0.0268 0.0334 0.0334

mid-span-2 0 0.0011 0.0011 0.0022 0.0055 0.0078 0.0078 0.0100 0.0133 0.0144 0.0188 0.0233 0.0255 0.0277 0.0299

mid-span-4 0 0.0000 0.0011 0.0022 0.0056 0.0089 0.0111 0.0133 0.0156 0.0167 0.0200 0.0245 0.0267 0.0289 0.0322

mid-span-5 0 0.0022 0.0022 0.0022 0.0043 0.0108 0.0022 0.0043 0.0108 0.0108 0.0130 0.0195 0.0173 0.0238 0.0260

bqp-1 0 0.0000 0.0011 0.0011 0.0033 0.0055 0.0066 0.0077 0.0111 0.0133 0.0155 0.0199 0.0210 0.0232 0.0254

BQP-2 0 0.0000 0.0000 0.0000 0.0000 0.0091 0.0046 0.0046 0.0046 0.0137 0.0137 0.0182 0.0228 0.0274 0.0274

BQP-3 0 0.0000 0.0000 0.0000 0.0092 0.0092 0.0046 0.0138 0.0138 0.0138 0.0183 0.0183 0.0275 0.0275 0.0275

BQP-4 0 0.0000 0.0000 0.0000 0.0000 0.0046 0.0046 0.0091 0.0091 0.0137 0.0137 0.0182 0.0182 0.0182 0.0273

BQP-5 0 0.0000 0.0065 0.0086 0.0130 0.0151 0.0130 0.0151 0.0130 0.0216 0.0216 0.0281 0.0281 0.0281 0.0346

Page 196: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

184

Concentrated Load at Bottom Quarter Point Continued. Strain Gage 8045.9 8546.7 9211.8 9564.8 10295 10599 11157 11650 12003 12471 13119 13686 14014 14548 15041

QPT-1 28.2 29.1 32.0 33.0 35.9 37.9 39.8 41.7 43.7 44.7 47.6 49.5 51.5 53.4 55.3

QPT-2 31.0 33.0 35.9 37.8 40.8 41.7 43.7 45.6 46.6 49.5 51.4 53.4 54.3 56.3 57.2

QPT-3 35.0 36.9 40.8 42.7 45.7 47.6 50.5 52.5 54.4 56.3 59.3 62.2 64.1 67.0 69.0

QPT-4 28.2 29.2 31.1 33.0 36.0 36.0 37.9 39.9 40.8 41.8 42.8 44.7 45.7 46.7 47.6

QPT-5 33.0 34.9 37.8 39.8 42.7 43.6 45.6 47.5 48.5 50.4 53.3 54.3 56.2 58.2 60.1

QPT-6 28.2 30.1 33.0 34.0 36.9 37.9 39.8 41.8 43.7 45.6 47.6 50.5 51.5 54.4 56.3

MS-1 50.5 53.4 58.2 61.2 67.0 68.9 73.8 78.6 81.5 84.5 90.3 96.1 99.0 103.9 109.7

MS-2 52.4 55.4 60.2 63.1 67.0 69.0 72.8 75.8 77.7 81.6 85.5 89.4 92.3 96.2 99.1

MS-3 -16.5 -17.4 -18.6 -19.5 -20.7 -21.0 -21.9 -22.7 -23.3 -24.2 -24.8 -25.7 -26.3 -27.5 -28.1

MS-4 -1.0 2.9 4.9 6.8 8.7 11.7 15.6 19.4 21.4 24.3 34.0 36.9 41.8 50.6 57.4

MS-5 60.2 64.0 68.9 72.8 77.6 79.6 84.4 88.3 91.2 96.1 101.9 106.7 110.6 115.5 121.3

MS-6 52.5 55.4 61.2 66.1 73.9 77.8 83.6 89.4 93.3 99.1 107.9 115.7 123.4 136.1 148.7

QPB-1 54.4 59.2 65.1 68.0 75.7 78.7 85.5 90.3 95.2 102.0 116.5 126.2 134.0 145.7 169.9

QPB-2 124.2 136.8 153.3 163.9 183.3 193.0 211.5 230.9 245.4 263.9 298.8 324.0 341.5 375.5 431.8

QPB-3 129.0 153.3 193.1 208.6 237.7 245.5 260.0 284.3 292.0 308.5 324.1 337.7 347.4 367.8 379.4

QPB-4 108.7 116.5 132.1 141.8 263.2 285.5 330.2 330.2 335.1 350.6 385.6 404.0 417.6 425.4 435.1

QPB-5 117.6 125.4 137.0 143.9 157.5 164.3 177.9 192.5 203.2 216.8 238.2 253.7 265.4 282.9 302.3

QPB-6 53.4 58.2 64.1 67.0 73.8 77.7 84.5 97.1 103.9 114.6 143.7 163.1 173.8 189.3 211.7

Displacement

TQP-0 0.0216 0.0216 0.0216 0.0216 0.0280 0.0280 0.0302 0.0302 0.0302 0.0345 0.0345 0.0345 0.0431 0.0431 0.0431

tqp-1 0.0174 0.0174 0.0239 0.0239 0.0239 0.0239 0.0282 0.0304 0.0304 0.0304 0.0369 0.0369 0.0369 0.0369 0.0434

tqp-2 0.0232 0.0243 0.0265 0.0276 0.0298 0.0309 0.0332 0.0354 0.0365 0.0376 0.0409 0.0431 0.0442 0.0464 0.0508

tqp-3 0.0129 0.0129 0.0129 0.0194 0.0215 0.0215 0.0215 0.0258 0.0258 0.0258 0.0344 0.0344 0.0323 0.0409 0.0409

tqp-4 0.0205 0.0226 0.0258 0.0269 0.0301 0.0301 0.0312 0.0323 0.0334 0.0345 0.0377 0.0409 0.0420 0.0452 0.0495

TQP-5 0.0229 0.0275 0.0275 0.0275 0.0321 0.0321 0.0321 0.0413 0.0413 0.0413 0.0413 0.0459 0.0459 0.0550 0.0550

Mid-span-0 0.0193 0.0258 0.0258 0.0258 0.0343 0.0343 0.0343 0.0408 0.0386 0.0408 0.0472 0.0472 0.0494 0.0536 0.0579

mid-span-1 0.0334 0.0401 0.0401 0.0401 0.0491 0.0468 0.0468 0.0535 0.0557 0.0602 0.0624 0.0691 0.0691 0.0691 0.0736

mid-span-2 0.0310 0.0343 0.0388 0.0399 0.0432 0.0454 0.0476 0.0509 0.0531 0.0565 0.0620 0.0642 0.0675 0.0720 0.0764

mid-span-4 0.0334 0.0356 0.0389 0.0400 0.0445 0.0456 0.0489 0.0523 0.0545 0.0567 0.0612 0.0645 0.0667 0.0701 0.0745

mid-span-5 0.0260 0.0303 0.0325 0.0368 0.0390 0.0390 0.0455 0.0455 0.0455 0.0519 0.0519 0.0606 0.0584 0.0671 0.0649

bqp-1 0.0276 0.0298 0.0332 0.0343 0.0376 0.0387 0.0409 0.0431 0.0453 0.0475 0.0497 0.0542 0.0575 0.0608 0.0652

BQP-2 0.0274 0.0319 0.0365 0.0319 0.0411 0.0411 0.0456 0.0456 0.0456 0.0547 0.0593 0.0593 0.0639 0.0639 0.0730

BQP-3 0.0321 0.0367 0.0367 0.0413 0.0413 0.0459 0.0459 0.0459 0.0550 0.0550 0.0642 0.0688 0.0688 0.0734 0.0780

BQP-4 0.0273 0.0273 0.0364 0.0364 0.0410 0.0410 0.0364 0.0455 0.0455 0.0501 0.0546 0.0546 0.0592 0.0592 0.0683

BQP-5 0.0346 0.0346 0.0432 0.0411 0.0411 0.0411 0.0475 0.0497 0.0497 0.0540 0.0540 0.0605 0.0627 0.0692 0.0692

Page 197: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

185

Slab: Microfiber-MD Test: Concentrated Load at Mid-Span (Figure 5.3-B) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 665.02 1420.3 1527 2044.3 2569.7 2980.2 3637.1 4072.2 4490.9 5147.7 5681.4 5993.4 6494.2 7044.3 7791.4

QPT-1 0 2.9 7.8 8.7 12.6 15.5 17.5 21.4 24.3 27.2 31.1 34.9 36.9 39.8 43.7 48.5

QPT-2 0 4.9 10.7 12.6 16.5 20.4 23.3 28.1 32.0 34.9 40.8 44.6 47.5 51.4 55.3 61.1

QPT-3 0 6.8 12.6 12.6 16.5 21.4 25.3 31.1 35.0 37.9 44.7 48.6 50.5 55.4 60.2 67.0

QPT-4 0 4.9 9.7 11.7 15.6 17.5 21.4 25.3 28.2 31.1 36.0 38.9 41.8 44.7 47.6 51.5

QPT-5 0 4.8 11.6 13.6 17.5 20.4 24.2 29.1 32.0 34.9 40.7 44.6 46.5 50.4 54.3 61.1

QPT-6 0 4.9 8.7 9.7 12.6 16.5 18.4 22.3 25.2 28.2 32.0 35.0 36.9 40.8 44.7 49.5

MS-1 0 5.8 12.6 13.6 18.4 22.3 26.2 32.0 35.9 39.8 45.6 50.5 53.4 59.2 64.1 72.8

MS-2 0 7.8 17.5 19.4 26.2 33.0 37.9 46.6 52.4 57.3 66.0 74.8 78.7 86.4 96.2 112.7

MS-3 0 -3.2 -7.4 -8.0 -10.6 -13.3 -15.4 -18.6 -21.0 -23.0 -26.9 -30.1 -32.2 -35.1 -42.2 -60.3

MS-4 0 15.6 30.1 24.3 36.0 45.7 57.4 71.9 93.3 92.4 140.0 179.9 182.8 179.9 194.5 203.2

MS-5 0 7.8 17.5 19.4 26.2 33.0 38.8 47.5 53.4 58.2 66.9 74.7 79.6 87.3 96.1 108.7

MS-6 0 6.8 13.6 13.6 19.4 25.3 29.2 36.0 41.8 45.7 53.5 59.3 63.2 70.0 76.8 87.5

QPB-1 0 3.9 8.7 9.7 12.6 15.5 19.4 23.3 27.2 29.1 35.0 38.8 41.8 45.6 50.5 56.3

QPB-2 0 4.8 11.6 12.6 18.4 23.3 28.1 35.9 40.7 45.6 54.3 62.1 66.9 73.7 81.5 93.1

QPB-3 0 4.9 10.7 11.6 16.5 21.3 25.2 32.0 36.9 41.7 49.5 55.3 59.2 66.0 72.8 81.5

QPB-4 0 4.9 10.7 12.6 16.5 22.3 26.2 34.0 39.8 44.7 52.4 59.2 63.1 69.9 77.7 86.4

QPB-5 0 2.9 7.8 7.8 12.6 16.5 20.4 27.2 31.1 35.0 41.8 48.6 49.6 54.4 61.2 69.0

QPB-6 0 3.9 9.7 10.7 14.6 18.4 22.3 28.2 32.0 35.9 41.7 46.6 49.5 55.3 61.2 68.9

Displacement

TQP-0 0 0.0022 0.0000 0.0022 0.0043 0.0043 0.0043 0.0108 0.0108 0.0108 0.0172 0.0151 0.0151 0.0237 0.0237 0.0302

tqp-1 0 0.0022 0.0000 0.0022 0.0022 0.0043 0.0043 0.0043 0.0130 0.0109 0.0109 0.0195 0.0195 0.0195 0.0261 0.0261

tqp-2 0 0.0011 0.0044 0.0055 0.0077 0.0111 0.0133 0.0166 0.0188 0.0210 0.0243 0.0265 0.0276 0.0298 0.0332 0.0376

tqp-3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0043 0.0043 0.0043 0.0108 0.0108 0.0172 0.0172 0.0172 0.0237 0.0237

tqp-4 0 0.0000 0.0000 0.0011 0.0022 0.0054 0.0075 0.0097 0.0118 0.0140 0.0183 0.0226 0.0248 0.0269 0.0280 0.0312

tqp-5 0 0.0000 0.0000 0.0046 0.0000 0.0092 0.0092 0.0092 0.0138 0.0138 0.0229 0.0229 0.0229 0.0275 0.0275 0.0367

Mid-span-0 0 0.0000 0.0021 0.0000 0.0000 0.0043 0.0064 0.0064 0.0129 0.0129 0.0129 0.0193 0.0193 0.0258 0.0279 0.0343

mid-span-1 0 0.0067 0.0089 0.0089 0.0156 0.0156 0.0156 0.0245 0.0223 0.0290 0.0290 0.0379 0.0379 0.0357 0.0446 0.0513

mid-span-2 0 0.0000 0.0033 0.0044 0.0066 0.0111 0.0144 0.0177 0.0199 0.0221 0.0266 0.0299 0.0321 0.0354 0.0388 0.0443

mid-span-4 0 0.0022 0.0067 0.0078 0.0100 0.0133 0.0156 0.0189 0.0222 0.0256 0.0278 0.0311 0.0334 0.0367 0.0400 0.0456

mid-span-5 0 0.0022 0.0022 0.0022 0.0022 0.0065 0.0065 0.0130 0.0108 0.0173 0.0195 0.0260 0.0260 0.0260 0.0325 0.0303

bqp-1 0 0.0000 0.0000 0.0000 0.0022 0.0055 0.0088 0.0111 0.0133 0.0155 0.0177 0.0199 0.0221 0.0254 0.0276 0.0309

BQP-2 0 0.0000 0.0000 0.0000 0.0000 0.0091 0.0091 0.0091 0.0137 0.0182 0.0137 0.0182 0.0228 0.0182 0.0274 0.0274

BQP-3 0 0.0000 0.0046 0.0046 0.0046 0.0046 0.0138 0.0092 0.0092 0.0183 0.0183 0.0183 0.0229 0.0229 0.0229 0.0321

BQP-4 0 0.0046 0.0046 0.0046 0.0046 0.0046 0.0091 0.0091 0.0137 0.0137 0.0137 0.0228 0.0228 0.0182 0.0273 0.0273

BQP-5 0 0.0022 0.0065 0.0065 0.0065 0.0065 0.0108 0.0151 0.0151 0.0173 0.0238 0.0216 0.0281 0.0281 0.0281 0.0346

Page 198: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

186

Concentrated Load at Mid-Span Continued. Load in lbs.

Strain Gage 8111.6 8702.7 8973.7 9466.3 10008 10533 11001 11477 11929 12438 12873 13267 13013

QPT-1 51.5 56.3 58.2 63.1 67.0 71.8 76.7 82.5 88.3 94.2 101.9 108.7 110.7

QPT-2 64.0 68.9 70.8 75.7 80.5 85.4 88.3 92.2 97.0 102.9 107.7 112.6 160.1

QPT-3 70.0 76.8 79.7 85.5 91.3 97.2 101.0 102.0 102.0 104.0 114.6 121.4 206.0

QPT-4 53.5 56.4 57.3 60.3 63.2 65.1 68.0 69.0 71.9 73.9 76.8 78.7 227.5

QPT-5 65.0 70.8 72.7 77.6 82.4 87.3 91.1 96.0 100.8 104.7 109.6 114.4 107.6

QPT-6 51.5 56.3 59.2 63.1 67.0 71.9 76.7 81.6 86.4 92.2 98.1 101.0 93.2

MS-1 75.7 83.5 86.4 92.2 100.0 107.8 115.5 138.8 168.9 192.2 234.0 289.4 403.0

MS-2 120.4 135.0 140.8 156.4 172.9 192.3 210.8 261.3 327.4 374.1 457.7 491.7 564.6

MS-3 -66.5 -75.0 -78.6 -79.7 -86.2 -91.6 -92.2 -91.3 -101.3 -108.4 -123.5 -138.8 -168.6

MS-4 211.0 221.7 238.2 250.9 250.9 272.3 288.8 290.7 306.3 330.6 365.6 418.2 507.7

MS-5 115.5 128.1 132.9 144.6 164.0 182.4 201.8 243.6 280.5 317.4 381.4 433.9 499.9

MS-6 91.4 100.1 104.0 112.8 123.4 136.1 152.6 177.9 217.8 245.0 288.7 357.8 513.4

QPB-1 60.2 65.1 68.0 72.8 77.7 83.5 88.4 93.2 98.1 103.9 108.8 114.6 118.5

QPB-2 97.0 105.7 109.6 117.4 125.1 131.9 137.8 143.6 148.4 154.3 157.2 160.1 162.0

QPB-3 84.4 91.2 93.1 99.9 105.7 110.6 115.5 124.2 131.0 137.8 150.4 171.7 187.3

QPB-4 91.3 98.1 101.0 107.8 113.6 119.4 124.3 132.1 136.9 144.7 159.3 177.7 194.2

QPB-5 72.9 79.7 82.6 88.5 94.3 100.1 105.0 110.8 115.7 120.5 126.4 135.1 224.6

QPB-6 72.8 79.6 81.6 88.4 94.2 101.0 106.8 113.6 119.4 126.2 134.0 138.9 200.0

Displacement

TQP-0 0.0302 0.0302 0.0366 0.0366 0.0366 0.0431 0.0453 0.0496 0.0517 0.0582 0.0582 0.0647 0.0776

tqp-1 0.0304 0.0347 0.0326 0.0391 0.0413 0.0413 0.0478 0.0478 0.0543 0.0543 0.0608 0.0673 0.0825

tqp-2 0.0387 0.0420 0.0431 0.0464 0.0508 0.0542 0.0575 0.0608 0.0641 0.0685 0.0741 0.0796 0.0928

tqp-3 0.0280 0.0301 0.0301 0.0387 0.0366 0.0430 0.0430 0.0495 0.0495 0.0559 0.0645 0.0710 0.0839

tqp-4 0.0323 0.0355 0.0377 0.0409 0.0441 0.0484 0.0495 0.0538 0.0581 0.0603 0.0668 0.0732 0.0861

tqp-5 0.0367 0.0367 0.0413 0.0413 0.0413 0.0459 0.0459 0.0550 0.0550 0.0596 0.0688 0.0734 0.0872

Mid-span-0 0.0343 0.0343 0.0408 0.0408 0.0472 0.0472 0.0536 0.0536 0.0601 0.0687 0.0730 0.0815 0.1009

mid-span-1 0.0513 0.0491 0.0580 0.0557 0.0647 0.0624 0.0713 0.0780 0.0825 0.0847 0.0981 0.1048 0.1249

mid-span-2 0.0465 0.0520 0.0543 0.0576 0.0631 0.0675 0.0709 0.0775 0.0853 0.0908 0.1008 0.1118 0.1351

mid-span-4 0.0478 0.0512 0.0534 0.0567 0.0601 0.0645 0.0678 0.0734 0.0790 0.0834 0.0923 0.1023 0.1301

mid-span-5 0.0390 0.0390 0.0455 0.0455 0.0541 0.0541 0.0584 0.0584 0.0671 0.0736 0.0779 0.0866 0.1147

bqp-1 0.0332 0.0354 0.0365 0.0387 0.0409 0.0442 0.0464 0.0508 0.0553 0.0586 0.0630 0.0685 0.0785

BQP-2 0.0319 0.0319 0.0319 0.0411 0.0456 0.0502 0.0456 0.0547 0.0547 0.0639 0.0684 0.0730 0.0821

BQP-3 0.0275 0.0367 0.0413 0.0367 0.0459 0.0459 0.0505 0.0505 0.0596 0.0596 0.0642 0.0734 0.0780

BQP-4 0.0319 0.0319 0.0364 0.0410 0.0410 0.0455 0.0501 0.0501 0.0546 0.0592 0.0592 0.0683 0.0819

BQP-5 0.0346 0.0411 0.0432 0.0432 0.0497 0.0497 0.0475 0.0540 0.0540 0.0627 0.0692 0.0713 0.0843

Page 199: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

187

Slab: Microfiber-MD Test: Concentrated Load at Bottom Third Point (Figure 5.3-E) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 755.33 1297.2 1600.9 2101.8 2619 2931 3653.5 4064 4507.3 4991.7 5344.8 6149.4 6617.4 7060.7

QPT-1 0 18.5 47.6 67.0 95.2 115.6 124.4 142.8 152.5 165.2 181.7 193.4 220.6 234.2 248.8

QPT-2 0 18.5 43.7 61.2 84.6 101.1 109.8 127.3 138.0 152.6 173.0 186.6 217.8 235.3 250.8

QPT-3 0 17.5 38.0 51.6 75.9 95.4 105.1 125.6 137.2 151.9 171.3 185.0 219.0 236.6 253.1

QPT-4 0 15.6 35.0 46.7 62.3 75.9 83.7 100.3 111.0 125.6 145.1 159.7 193.7 212.2 229.8

QPT-5 0 18.5 42.7 57.3 79.7 101.0 111.7 132.1 143.8 159.3 177.8 191.4 219.6 235.1 247.8

QPT-6 0 19.4 43.7 60.3 80.7 101.1 113.7 136.1 149.7 164.3 183.7 197.3 228.5 243.0 256.6

MS-1 0 21.4 39.8 53.5 81.6 115.7 137.0 183.7 209.0 236.2 267.3 290.6 346.1 380.1 416.1

MS-2 0 19.5 40.9 55.5 85.6 121.6 145.0 195.6 223.8 258.9 296.8 325.1 394.2 438.0 483.8

MS-3 0 -4.4 -9.2 -12.4 -19.8 -28.7 -34.3 -46.7 -53.8 -61.8 -71.2 -77.7 -93.7 -103.5 -113.5

MS-4 0 23.3 41.8 55.5 81.7 115.8 136.2 180.0 205.3 232.6 262.7 288.0 348.4 386.4 427.3

MS-5 0 24.3 46.6 61.2 90.3 130.2 153.5 207.9 238.0 271.1 309.0 337.2 399.4 438.3 480.1

MS-6 0 4.9 11.7 16.5 31.1 55.5 74.0 111.9 130.4 150.9 171.3 184.9 221.0 245.3 269.6

QPB-1 0 4.9 8.7 11.7 15.5 19.4 22.3 28.2 31.1 35.9 40.8 43.7 52.4 58.3 64.1

QPB-2 0 12.6 24.3 31.0 42.7 55.3 63.1 82.5 90.2 101.9 116.4 124.2 143.6 154.3 166.9

QPB-3 0 12.6 24.3 31.0 42.7 54.3 62.1 77.6 84.4 95.1 105.7 111.6 126.1 134.9 143.6

QPB-4 0 13.6 26.2 33.0 44.7 56.3 64.1 80.6 88.4 99.0 111.7 118.5 134.0 144.7 155.4

QPB-5 0 8.7 16.5 20.4 27.2 35.0 40.8 52.5 56.4 65.1 72.9 77.8 88.4 97.2 104.0

QPB-6 0 5.8 10.7 12.6 16.5 20.4 24.3 31.1 32.0 37.9 42.7 43.7 51.5 58.3 64.1

Displacement

TQP-0 0 0.0065 0.0129 0.0259 0.0409 0.0539 0.0603 0.0797 0.0862 0.1013 0.1142 0.1272 0.1552 0.1681 0.1810

tqp-1 0 0.0000 0.0109 0.0217 0.0347 0.0478 0.0565 0.0760 0.0912 0.0977 0.1173 0.1260 0.1542 0.1694 0.1911

tqp-2 0 0.0055 0.0177 0.0276 0.0431 0.0575 0.0663 0.0884 0.1006 0.1150 0.1304 0.1448 0.1746 0.1912 0.2078

tqp-3 0 0.0022 0.0108 0.0194 0.0387 0.0495 0.0581 0.0774 0.0903 0.1032 0.1183 0.1312 0.1634 0.1763 0.1978

tqp-4 0 0.0043 0.0161 0.0280 0.0452 0.0592 0.0678 0.0883 0.1001 0.1130 0.1303 0.1443 0.1766 0.1916 0.2089

TQP-5 0 0.0046 0.0183 0.0321 0.0459 0.0642 0.0688 0.0917 0.1055 0.1193 0.1330 0.1422 0.1697 0.1881 0.2018

Mid-span-0 0 0.0021 0.0043 0.0129 0.0322 0.0472 0.0601 0.0815 0.0987 0.1137 0.1352 0.1481 0.1803 0.2017 0.2232

mid-span-1 0 0.0111 0.0268 0.0334 0.0535 0.0736 0.0892 0.1093 0.1315 0.1449 0.1672 0.1828 0.2230 0.2430 0.2653

mid-span-2 0 0.0033 0.0155 0.0266 0.0443 0.0675 0.0808 0.1085 0.1262 0.1439 0.1661 0.1827 0.2248 0.2502 0.2746

mid-span-4 0 0.0067 0.0200 0.0300 0.0478 0.0678 0.0801 0.1068 0.1246 0.1412 0.1646 0.1824 0.2213 0.2435 0.2680

mid-span-5 0 0.0022 0.0108 0.0238 0.0368 0.0584 0.0736 0.0974 0.1104 0.1342 0.1515 0.1645 0.2056 0.2294 0.2467

bqp-1 0 0.0000 0.0077 0.0133 0.0232 0.0343 0.0398 0.0542 0.0608 0.0707 0.0818 0.0906 0.1127 0.1227 0.1371

BQP-2 0 0.0000 0.0091 0.0137 0.0274 0.0411 0.0502 0.0639 0.0730 0.0821 0.0958 0.1049 0.1232 0.1414 0.1505

BQP-3 0 0.0000 0.0092 0.0138 0.0275 0.0367 0.0413 0.0596 0.0688 0.0826 0.0872 0.1009 0.1239 0.1376 0.1514

BQP-4 0 0.0000 0.0091 0.0137 0.0228 0.0364 0.0410 0.0546 0.0637 0.0774 0.0910 0.0956 0.1138 0.1275 0.1411

BQP-5 0 0.0022 0.0086 0.0108 0.0238 0.0389 0.0475 0.0584 0.0713 0.0800 0.0929 0.1059 0.1254 0.1426 0.1513

Page 200: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

188

Concentrated Load at Bottom Third Point Continued. Load in lbs.

Strain Gage 7512.3 7955.6 8382.5 9310.3 9737.2 9819.3 9729

QPT-1 260.4 273.0 284.7 321.7 313.9 303.2 297.3

QPT-2 264.4 280.0 293.6 322.8 314.0 296.5 295.6

QPT-3 269.7 285.2 300.8 322.3 333.9 308.6 285.2

QPT-4 245.4 261.9 275.6 297.0 300.9 313.5 290.2

QPT-5 260.4 273.0 282.8 295.4 290.5 285.7 275.0

QPT-6 267.3 277.1 286.8 297.5 287.8 228.5 202.2

MS-1 452.1 493.9 541.6 663.2 770.3 986.4 1091.5

MS-2 529.5 577.3 626.9 680.5 704.9 727.3 723.4

MS-3 -123.6 -133.9 -144.3 -171.4 -167.0 -162.6 -158.4

MS-4 469.1 512.0 558.7 757.5 894.9 938.7 933.9

MS-5 522.9 567.6 616.2 785.5 894.5 811.7 860.4

MS-6 296.9 326.1 360.2 501.4 570.6 466.4 457.6

QPB-1 70.9 76.7 83.5 115.6 133.1 144.7 137.9

QPB-2 179.5 192.1 205.7 242.6 257.1 262.9 257.1

QPB-3 152.3 162.0 171.7 197.0 230.0 236.8 233.8

QPB-4 166.1 177.7 188.4 208.8 219.5 235.0 245.7

QPB-5 112.8 120.5 128.3 146.8 155.5 177.9 176.9

QPB-6 70.9 77.7 84.5 100.0 115.5 126.2 126.2

Displacement

TQP-0 0.1940 0.2069 0.2263 0.2586 0.2866 0.3190 0.3534

tqp-1 0.2041 0.2193 0.2345 0.2758 0.2975 0.3323 0.3757

tqp-2 0.2233 0.2388 0.2598 0.3007 0.3239 0.3614 0.4079

tqp-3 0.2107 0.2236 0.2430 0.2838 0.3096 0.3569 0.3956

tqp-4 0.2229 0.2401 0.2584 0.2972 0.3219 0.3531 0.3984

TQP-5 0.2202 0.2339 0.2477 0.2844 0.3119 0.3440 0.3899

Mid-span-0 0.2425 0.2640 0.2854 0.3519 0.3992 0.4764 0.5751

mid-span-1 0.2921 0.3121 0.3411 0.4036 0.4526 0.5284 0.6154

mid-span-2 0.3000 0.3244 0.3554 0.4252 0.4728 0.5492 0.6300

mid-span-4 0.2925 0.3169 0.3425 0.4137 0.4604 0.5349 0.6194

mid-span-5 0.2749 0.2965 0.3182 0.3831 0.4307 0.5064 0.5952

bqp-1 0.1503 0.1614 0.1758 0.2122 0.2421 0.2797 0.3272

BQP-2 0.1688 0.1825 0.1962 0.2281 0.2600 0.3011 0.3422

BQP-3 0.1560 0.1697 0.1835 0.2202 0.2477 0.2798 0.3211

BQP-4 0.1502 0.1593 0.1775 0.2094 0.2322 0.2731 0.3141

BQP-5 0.1664 0.1880 0.1967 0.2334 0.2637 0.2853 0.3112

Page 201: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

189

Slab: Microfiber-MD Test: Concentrated Load at Top Third Point (Figure 5.3-D) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs. Strain Gage 0 574.71 1354.6 1962.2 2471.2 3234.8 3489.3 4137.9 4482.7 5114.9

QPT-1 0 9.7 33.0 61.2 88.4 132.1 144.7 178.7 195.2 229.2

QPT-2 0 16.5 49.5 87.4 123.3 180.6 198.1 244.7 268.0 312.7

QPT-3 0 17.5 54.4 93.3 131.2 188.6 206.1 248.9 270.3 313.1

QPT-4 0 17.5 52.5 92.4 129.4 185.8 203.3 251.0 275.3 322.0

QPT-5 0 15.5 48.5 86.3 122.2 176.6 192.1 233.9 255.2 296.9

QPT-6 0 15.5 39.8 65.1 90.3 137.0 151.6 189.4 207.9 246.8

MS-1 0 14.6 39.8 60.2 76.7 102.0 109.8 131.1 141.8 163.2

MS-2 0 12.6 37.9 63.2 86.5 123.4 135.1 167.2 182.7 212.9

MS-3 0 -3.5 -10.3 -16.3 -21.3 -29.9 -32.5 -39.9 -43.7 -50.8

MS-4 0 12.6 35.0 56.4 73.9 104.1 115.8 143.0 157.6 182.9

MS-5 0 17.5 42.7 65.1 85.4 117.5 127.2 154.4 167.0 192.3

MS-6 0 7.8 21.4 34.0 45.7 65.2 72.0 88.5 96.3 110.9

QPB-1 0 3.9 8.7 14.6 19.4 26.2 29.1 35.0 37.9 43.7

QPB-2 0 4.8 11.6 20.4 29.1 44.6 50.4 66.0 73.7 89.2

QPB-3 0 3.9 11.6 21.3 30.1 46.6 51.4 65.0 71.8 85.4

QPB-4 0 4.9 11.7 20.4 28.2 43.7 48.5 62.1 68.0 81.6

QPB-5 0 3.9 9.7 15.5 23.3 36.0 40.8 52.5 58.3 69.0

QPB-6 0 2.9 8.7 13.6 18.4 26.2 28.2 33.0 35.9 40.8

Displacement

TQP-0 0.0000 0.0022 0.0108 0.0194 0.0323 0.0453 0.0517 0.0647 0.0754 0.0905

tqp-1 0.0065 0.0000 0.0087 0.0152 0.0304 0.0521 0.0586 0.0782 0.0847 0.1042

tqp-2 0.0011 0.0022 0.0133 0.0265 0.0420 0.0663 0.0730 0.0928 0.1050 0.1238

tqp-3 0.0022 0.0022 0.0043 0.0172 0.0387 0.0645 0.0710 0.0903 0.1054 0.1247

tqp-4 0.0011 0.0011 0.0097 0.0269 0.0398 0.0614 0.0700 0.0872 0.0991 0.1184

TQP-5 0.0000 0.0000 0.0092 0.0229 0.0413 0.0596 0.0688 0.0872 0.0917 0.1101

Mid-span-0 0.0064 0.0000 0.0000 0.0129 0.0193 0.0408 0.0451 0.0579 0.0665 0.0815

mid-span-1 0.0022 0.0000 0.0089 0.0223 0.0357 0.0491 0.0557 0.0758 0.0825 0.0959

mid-span-2 0.0022 0.0022 0.0122 0.0244 0.0354 0.0565 0.0642 0.0819 0.0908 0.1096

mid-span-4 0.0022 0.0033 0.0145 0.0267 0.0389 0.0601 0.0656 0.0845 0.0934 0.1112

mid-span-5 0.0065 0.0022 0.0108 0.0195 0.0346 0.0541 0.0606 0.0801 0.0866 0.1061

bqp-1 0.0000 0.0000 0.0033 0.0099 0.0166 0.0276 0.0298 0.0387 0.0431 0.0508

BQP-2 0.0000 0.0000 0.0046 0.0091 0.0137 0.0274 0.0365 0.0456 0.0502 0.0547

BQP-3 0.0046 0.0000 0.0000 0.0092 0.0138 0.0275 0.0321 0.0459 0.0459 0.0596

BQP-4 0.0046 0.0046 0.0046 0.0091 0.0182 0.0273 0.0364 0.0410 0.0501 0.0592

BQP-5 0.0000 0.0022 0.0065 0.0130 0.0216 0.0346 0.0324 0.0497 0.0497 0.0605

Page 202: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

190

Concentrated Load at Top Third Point Continued. Load in lbs.

Strain Gage 5574.7 5919.5 6461.4 7159.2 7471.2 7840.7 8144.4 8333.3 8809.5 9269.2 9154.3

QPT-1 254.5 273.9 304.0 341.9 360.4 388.5 416.7 436.2 507.1 591.7 619.9

QPT-2 346.7 373.9 416.6 473.0 499.2 536.2 574.1 601.3 722.8 882.3 935.8

QPT-3 344.2 368.5 408.4 459.9 484.3 518.3 555.3 579.6 682.8 822.9 874.5

QPT-4 357.0 384.3 428.1 484.6 509.9 545.9 580.9 610.1 723.1 878.0 937.4

QPT-5 327.0 350.3 385.3 433.8 456.2 489.2 523.2 548.4 656.2 802.9 858.3

QPT-6 275.0 297.3 331.3 377.0 399.4 432.4 465.5 487.9 572.5 679.4 718.4

MS-1 177.8 190.4 211.8 245.8 266.2 296.3 328.4 352.7 431.4 518.9 551.0

MS-2 235.3 253.7 281.9 326.7 352.9 390.9 434.6 469.6 577.6 694.4 735.3

MS-3 -55.9 -60.3 -66.5 -76.2 -81.3 -88.1 -94.9 -99.6 -112.0 -123.8 -125.9

MS-4 202.4 222.8 248.1 286.0 307.5 335.7 373.6 387.3 438.9 494.4 505.1

MS-5 210.7 225.3 247.6 288.4 313.7 351.6 390.4 415.7 488.6 570.2 589.7

MS-6 122.6 132.3 147.9 178.0 196.5 223.8 253.0 272.5 327.9 383.4 400.0

QPB-1 48.6 51.5 58.3 64.1 68.9 74.8 81.6 85.5 100.0 112.7 115.6

QPB-2 100.9 109.6 123.2 132.9 135.8 140.7 143.6 146.5 153.3 158.1 151.3

QPB-3 95.1 101.9 113.5 124.2 127.1 131.9 135.8 139.7 150.4 163.0 164.0

QPB-4 91.3 98.1 109.7 121.4 124.3 128.2 130.1 133.0 139.8 148.6 149.5

QPB-5 76.8 81.6 89.4 98.2 102.1 107.9 110.8 113.7 122.5 131.2 131.2

QPB-6 44.7 46.6 50.5 57.3 60.2 65.0 68.9 71.8 80.6 88.3 89.3

Displacement

TQP-0 0.0970 0.1121 0.1250 0.1444 0.1595 0.1724 0.1918 0.2047 0.2522 0.3103 0.3319

tqp-1 0.1151 0.1281 0.1433 0.1694 0.1824 0.1998 0.2280 0.2432 0.2975 0.3627 0.3844

tqp-2 0.1393 0.1525 0.1724 0.2001 0.2178 0.2421 0.2686 0.2863 0.3504 0.4289 0.4576

tqp-3 0.1376 0.1505 0.1699 0.2043 0.2172 0.2430 0.2688 0.2903 0.3634 0.4494 0.4838

tqp-4 0.1335 0.1443 0.1647 0.1895 0.2078 0.2272 0.2519 0.2713 0.3338 0.4113 0.4393

TQP-5 0.1239 0.1376 0.1560 0.1835 0.1972 0.2202 0.2431 0.2615 0.3211 0.3899 0.4174

Mid-span-0 0.0880 0.0987 0.1159 0.1352 0.1502 0.1695 0.1953 0.2103 0.2661 0.3262 0.3477

mid-span-1 0.1115 0.1249 0.1382 0.1672 0.1806 0.2074 0.2341 0.2519 0.3166 0.3857 0.4147

mid-span-2 0.1240 0.1362 0.1528 0.1794 0.1982 0.2259 0.2580 0.2801 0.3499 0.4340 0.4628

mid-span-4 0.1268 0.1368 0.1557 0.1846 0.2024 0.2280 0.2569 0.2769 0.3470 0.4226 0.4504

mid-span-5 0.1212 0.1277 0.1472 0.1753 0.1883 0.2143 0.2424 0.2640 0.3333 0.4069 0.4350

bqp-1 0.0575 0.0630 0.0718 0.0851 0.0940 0.1072 0.1205 0.1326 0.1669 0.2034 0.2144

BQP-2 0.0639 0.0684 0.0730 0.0958 0.1004 0.1141 0.1277 0.1414 0.1779 0.2190 0.2327

BQP-3 0.0642 0.0734 0.0780 0.0917 0.1009 0.1147 0.1284 0.1422 0.1743 0.2202 0.2339

BQP-4 0.0683 0.0683 0.0819 0.0956 0.1002 0.1138 0.1320 0.1411 0.1730 0.2185 0.2322

BQP-5 0.0670 0.0735 0.0821 0.1016 0.1102 0.1232 0.1426 0.1491 0.1902 0.2334 0.2464

Page 203: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

191

Slab: Microfiber-MD Test: Longitudinal Linear Load along Middle Strip (Figure 5.3-F) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1174 2110 3136.2 4252.8 5254.5 5853.8 7192.1 8054.1 8891.6 9868.6 10221 10385

QPT-1 0 47.6 85.5 118.5 147.7 172.0 185.6 230.3 278.9 344.1 420.9 463.7 492.8

QPT-2 0 87.5 143.9 182.8 218.7 249.8 269.3 332.5 399.6 486.2 579.6 624.4 656.5

QPT-3 0 62.3 102.2 132.4 158.7 189.8 212.2 291.1 369.0 466.4 582.3 643.7 681.7

QPT-4 0 66.2 109.0 140.2 169.4 197.6 217.1 280.4 347.6 431.4 523.0 565.9 588.3

QPT-5 0 82.6 136.0 175.8 212.8 247.8 270.1 333.3 391.6 460.6 536.5 573.4 604.6

QPT-6 0 60.3 104.0 137.0 167.2 198.3 216.8 273.1 328.6 399.6 489.1 533.8 558.1

MS-1 0 37.0 68.1 104.1 141.1 174.2 194.7 242.4 278.4 319.3 394.3 525.8 786.0

MS-2 0 37.0 70.1 109.0 150.9 192.7 217.1 279.4 325.2 378.8 458.6 494.7 513.2

MS-3 0 -6.5 -13.3 -22.2 -32.5 -42.6 -48.8 -63.3 -73.3 -85.4 -103.8 -112.1 -113.2

MS-4 0 32.1 60.4 93.5 129.5 165.5 189.9 249.3 290.2 337.0 412.0 451.0 472.4

MS-5 0 34.0 64.2 100.1 141.0 179.9 203.2 258.7 300.5 351.1 430.8 468.8 501.9

MS-6 0 17.5 36.0 63.3 98.3 134.3 155.8 198.6 222.9 249.2 281.4 280.4 252.2

QPB-1 0 7.8 14.6 23.3 33.0 42.7 46.6 57.3 64.1 69.0 72.8 72.8 72.8

QPB-2 0 13.6 26.2 41.7 62.1 84.4 98.0 133.9 158.1 185.3 209.6 213.5 217.3

QPB-3 0 14.6 29.1 45.6 64.0 84.4 95.1 123.2 141.7 160.1 180.5 184.4 189.2

QPB-4 0 14.6 28.2 43.7 62.1 82.5 95.2 124.3 144.7 166.1 186.5 187.4 187.4

QPB-5 0 13.6 25.3 36.0 50.5 68.0 77.8 100.1 113.7 124.4 135.1 140.0 145.8

QPB-6 0 8.7 15.5 23.3 34.9 46.6 51.5 65.0 72.8 78.6 85.4 91.3 96.1

Displacement

TQP-0 0 0.0172 0.0323 0.0453 0.0517 0.0668 0.0733 0.0991 0.1336 0.1789 0.2392 0.2802 0.3319

tqp-1 0 0.0174 0.0391 0.0456 0.0608 0.0738 0.0804 0.1173 0.1455 0.1933 0.2584 0.3084 0.3648

tqp-2 0 0.0287 0.0497 0.0630 0.0785 0.0940 0.1050 0.1404 0.1758 0.2255 0.2940 0.3504 0.4123

tqp-3 0 0.0151 0.0366 0.0559 0.0710 0.0839 0.0968 0.1290 0.1656 0.2150 0.2881 0.3419 0.4086

tqp-4 0 0.0248 0.0452 0.0603 0.0711 0.0851 0.0926 0.1238 0.1647 0.2207 0.2875 0.3467 0.4081

TQP-5 0 0.0275 0.0459 0.0550 0.0688 0.0780 0.0872 0.1147 0.1514 0.2018 0.2661 0.3165 0.3761

Mid-span-0 0 0.0064 0.0193 0.0300 0.0386 0.0536 0.0601 0.0880 0.1159 0.1545 0.2232 0.2854 0.3820

mid-span-1 0 0.0201 0.0334 0.0491 0.0602 0.0803 0.0892 0.1226 0.1516 0.1940 0.2631 0.3255 0.4125

mid-span-2 0 0.0199 0.0388 0.0554 0.0731 0.0919 0.1030 0.1362 0.1716 0.2192 0.3012 0.3731 0.4661

mid-span-4 0 0.0222 0.0400 0.0545 0.0701 0.0845 0.0945 0.1268 0.1590 0.2080 0.2780 0.3447 0.4382

mid-span-5 0 0.0152 0.0303 0.0476 0.0606 0.0801 0.0844 0.1190 0.1472 0.1948 0.2684 0.3420 0.4394

bqp-1 0 0.0088 0.0221 0.0276 0.0365 0.0464 0.0508 0.0696 0.0873 0.1083 0.1437 0.1758 0.2178

BQP-2 0 0.0137 0.0182 0.0319 0.0456 0.0547 0.0593 0.0821 0.1004 0.1277 0.1642 0.2007 0.2464

BQP-3 0 0.0138 0.0183 0.0321 0.0413 0.0550 0.0642 0.0780 0.0963 0.1239 0.1606 0.1972 0.2385

BQP-4 0 0.0000 0.0091 0.0182 0.0273 0.0410 0.0410 0.0592 0.0819 0.1002 0.1411 0.1730 0.2140

BQP-5 0 0.0086 0.0195 0.0281 0.0346 0.0411 0.0475 0.0692 0.0843 0.1081 0.1426 0.1772 0.2183

Page 204: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

192

Slab: Microfiber-MD Test: Longitudinal Linear Load along Left Third Point Strip (Figure 5.3-G) Strain Gage readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1091.9 2183.9 3045.9 3981.9 5361.2 6239.7 7118.2 7963.8 8776.6 9302.1

QPT-1 0 41.8 109.8 159.4 201.2 247.9 274.1 299.4 327.6 377.2 406.3

QPT-2 0 66.1 166.2 225.6 273.2 324.8 349.1 371.5 393.8 435.7 469.7

QPT-3 0 56.5 142.1 198.6 245.4 304.8 337.9 369.1 400.2 446.0 473.3

QPT-4 0 52.6 131.4 180.1 219.1 269.7 300.9 330.1 361.3 392.5 412.9

QPT-5 0 60.2 150.6 201.1 241.9 294.4 327.5 356.7 377.1 396.5 413.0

QPT-6 0 41.8 110.8 147.7 175.9 217.7 245.9 270.3 289.7 296.5 295.5

MS-1 0 36.0 75.0 111.0 151.0 207.5 243.5 281.6 326.4 479.4 909.5

MS-2 0 36.0 80.8 119.7 161.6 221.0 260.9 303.8 348.6 423.6 482.0

MS-3 0 -7.4 -16.3 -24.5 -34.3 -50.0 -60.9 -73.0 -86.0 -105.5 -117.7

MS-4 0 27.3 62.3 90.5 118.8 169.4 206.4 250.3 302.9 369.1 425.6

MS-5 0 34.0 75.8 107.9 141.9 200.3 244.0 292.7 348.1 407.5 447.3

MS-6 0 24.3 47.7 62.3 77.8 115.8 147.9 184.9 226.7 267.6 279.3

QPB-1 0 9.7 21.4 32.0 42.7 62.2 72.8 83.5 94.2 107.8 116.5

QPB-2 0 15.5 34.9 53.4 71.8 101.9 120.3 139.7 158.1 175.6 187.3

QPB-3 0 11.6 27.2 40.7 57.2 82.5 99.9 117.4 135.8 152.3 163.0

QPB-4 0 9.7 23.3 35.9 49.5 71.9 87.4 105.8 125.3 142.8 152.5

QPB-5 0 5.8 14.6 22.4 30.1 47.6 62.2 80.7 100.1 111.8 118.6

QPB-6 0 5.8 12.6 16.5 21.4 28.2 33.0 33.0 29.1 23.3 23.3

Displacement

TQP-0 0.0022 0.0172 0.0517 0.0776 0.1056 0.1379 0.1659 0.1918 0.2198 0.2651 0.3190

tqp-1 0.0022 0.0109 0.0521 0.0738 0.0956 0.1303 0.1520 0.1737 0.1954 0.2454 0.3019

tqp-2 0.0011 0.0177 0.0564 0.0818 0.1017 0.1326 0.1547 0.1758 0.1979 0.2443 0.2984

tqp-3 0.0022 0.0043 0.0387 0.0645 0.0860 0.1118 0.1247 0.1441 0.1634 0.2043 0.2580

tqp-4 0.0011 0.0151 0.0484 0.0711 0.0894 0.1077 0.1206 0.1335 0.1475 0.1841 0.2347

TQP-5 0.0000 0.0046 0.0367 0.0596 0.0780 0.0963 0.1101 0.1147 0.1284 0.1606 0.2064

Mid-span-0 0.0021 0.0064 0.0386 0.0665 0.0880 0.1266 0.1481 0.1803 0.2232 0.2919 0.3863

mid-span-1 0.0000 0.0134 0.0491 0.0691 0.0914 0.1249 0.1516 0.1784 0.2074 0.2765 0.3590

mid-span-2 0.0011 0.0188 0.0509 0.0742 0.0963 0.1295 0.1528 0.1783 0.2104 0.2713 0.3620

mid-span-4 0.0000 0.0122 0.0378 0.0556 0.0712 0.0934 0.1101 0.1268 0.1490 0.2046 0.2825

mid-span-5 0.0043 0.0108 0.0325 0.0519 0.0649 0.0844 0.1017 0.1125 0.1342 0.1796 0.2640

bqp-1 0.0000 0.0099 0.0287 0.0420 0.0553 0.0763 0.0895 0.1061 0.1260 0.1625 0.2100

BQP-2 0.0000 0.0091 0.0182 0.0319 0.0456 0.0639 0.0776 0.0912 0.1141 0.1460 0.1825

BQP-3 0.0000 0.0000 0.0229 0.0275 0.0413 0.0550 0.0642 0.0780 0.0917 0.1193 0.1560

BQP-4 0.0046 0.0046 0.0046 0.0182 0.0228 0.0319 0.0455 0.0501 0.0592 0.0865 0.1184

BQP-5 0.0022 0.0043 0.0130 0.0195 0.0346 0.0389 0.0454 0.0519 0.0627 0.0865 0.1297

Page 205: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

193

Slab: Microfiber-MD Test: Longitudinal Linear Load along Right Third Point Strip (Figure 5.3-H) Strain Gage Readings are in µin/in. Displacement Readings are in inches.

Load in lbs.

Strain Gage 0 1174 2019.7 3316.9 4269.2 5123.1 5968.8 6863.7 7832.5 7684.7

QPT-1 0 45.7 89.4 141.9 169.1 190.5 210.9 221.6 230.3 226.5

QPT-2 0 89.4 161.4 235.3 272.2 303.3 336.4 378.2 431.7 424.0

QPT-3 0 80.8 146.0 216.1 254.1 288.2 329.1 385.6 441.1 433.3

QPT-4 0 80.8 140.2 207.4 246.3 284.3 329.1 380.8 410.0 400.3

QPT-5 0 101.0 176.8 255.5 300.2 342.0 382.9 426.6 488.8 480.1

QPT-6 0 73.9 135.1 203.1 241.1 276.1 318.8 386.0 454.0 446.3

MS-1 0 33.2 57.5 103.4 137.5 168.7 203.9 266.3 409.7 419.5

MS-2 0 40.9 74.9 129.5 168.4 204.4 242.4 309.6 431.3 425.5

MS-3 0 -9.2 -16.9 -30.2 -40.5 -50.5 -61.2 -78.0 -103.5 -101.4

MS-4 0 37.0 68.1 117.8 157.7 195.7 237.6 301.9 407.1 400.3

MS-5 0 52.5 95.3 161.4 211.0 257.6 305.3 379.2 488.2 480.4

MS-6 0 35.0 63.2 108.0 142.0 174.1 207.2 261.7 341.5 333.7

QPB-1 0 7.8 13.6 24.3 30.1 33.0 32.0 28.2 25.2 24.3

QPB-2 0 10.7 19.4 37.8 53.4 68.9 86.3 106.7 131.9 131.0

QPB-3 0 13.6 26.2 49.5 66.9 84.4 101.9 120.3 139.7 137.8

QPB-4 0 14.6 29.1 52.4 71.9 89.3 107.8 123.3 136.9 135.0

QPB-5 0 13.6 25.3 44.7 60.3 75.8 92.3 107.9 130.3 128.3

QPB-6 0 11.6 24.3 46.6 63.1 77.7 93.2 108.7 128.2 127.2

Displacement

TQP-0 0 0.0194 0.0345 0.0560 0.0647 0.0733 0.0819 0.1078 0.1746 0.1746

tqp-1 0 0.0152 0.0369 0.0565 0.0717 0.0782 0.0934 0.1281 0.2063 0.2063

tqp-2 0 0.0276 0.0564 0.0851 0.1017 0.1161 0.1349 0.1769 0.2664 0.2686

tqp-3 0 0.0194 0.0538 0.0860 0.1054 0.1269 0.1527 0.1935 0.2924 0.2989

tqp-4 0 0.0345 0.0668 0.1044 0.1260 0.1507 0.1809 0.2283 0.3327 0.3338

TQP-5 0 0.0367 0.0688 0.1147 0.1330 0.1606 0.1927 0.2431 0.3532 0.3532

Mid-span-0 0 0.0064 0.0172 0.0386 0.0451 0.0536 0.0665 0.1009 0.2296 0.2361

mid-span-1 0.00223 0.0201 0.0379 0.0624 0.0758 0.0914 0.1048 0.1472 0.2698 0.2765

mid-span-2 0.001107 0.0199 0.0432 0.0698 0.0864 0.1041 0.1262 0.1771 0.3155 0.3233

mid-span-4 0 0.0300 0.0578 0.0923 0.1157 0.1401 0.1701 0.2257 0.3737 0.3803

mid-span-5 0.002164 0.0325 0.0671 0.1104 0.1364 0.1623 0.1970 0.2576 0.4134 0.4177

bqp-1 0.001105 0.0066 0.0166 0.0276 0.0354 0.0420 0.0486 0.0685 0.1360 0.1393

BQP-2 0 0.0091 0.0228 0.0411 0.0502 0.0639 0.0684 0.0958 0.1597 0.1688

BQP-3 0 0.0138 0.0275 0.0505 0.0642 0.0780 0.0917 0.1193 0.1881 0.1881

BQP-4 0 0.0091 0.0273 0.0546 0.0683 0.0819 0.1002 0.1275 0.2049 0.2049

BQP-5 0 0.0195 0.0411 0.0692 0.0821 0.1037 0.1232 0.1578 0.2399 0.2377

Page 206: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

194

APPENDIX G

PUSH-OUT TESTS SUMMARY OF RESULTS The results from the push-out tests are presented in this Appendix. There is a set of

results for every specimen tested, which includes a data table, test parameters, figure of

the failure mode and graphs of the applied shear load vs. slip for both sides of the

specimen.

Page 207: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

195

PUSHOUT TEST SUMMARY SHEET

Test: WWF-Screw-1 Test Date: 16-Jul-01Test Designation:

SPECIMEN DESCRIPTIONScrew: Height: 3.0 in. No. Per Specimen: 10

Deck: Type: 1.5VL, 22 ga Width: 36 in. Length: 36 in.Fy: 54 ksi Fu: 63 ksi

Base Member: Section: 2L 2.00x2.00x0.187Fy: 69 ksi Fu: 88.5 ksi

Slab: Thickness: 3.50 in. f'c: 3400 psiRebar: Size: No. 4 No. Per Specimen: 8

Height Above Deck: 0.75 in.Mesh: Type: WWF 6x6-W2.9xW2.9

TEST RESULTSPeak Shear Load: 50.53 kips

Peak Shear Load Per Screw: 5.05 kipsSlip at Peak Shear Load: SC1: 0.8126 in. SC5: 0.6855 in.

SC2: 0.9266 in. SC6: 0.4607 in.SC3: 0.8844 in. SC7: 0.7721 in.SC4: 0.8827 in. SC8: 0.7476 in.

DAMAGE

COMMENTS

exterior, Slab B interior, Slab A

Failure Mode: Screw Shear Screw Rotation ≈ 30° - 40° X = Screw sheared off

Page 208: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

196

Table G-1 WWF-Screw-1 Test Data TEST WWF-Screw-1

DATA

Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

0.00 0.00 0.000 0.000 0.000 0.000 0.000 -0.001 -0.001 0.0003.79 0.91 0.000 0.004 0.000 0.001 0.000 0.000 0.000 0.0009.81 0.92 0.000 0.004 0.000 0.001 -0.001 0.000 0.000 0.000

14.21 1.14 0.001 0.023 0.004 0.007 0.000 0.000 0.003 0.00118.57 1.89 0.000 0.027 0.004 0.007 0.000 0.000 0.004 0.00023.29 1.86 0.000 0.044 0.015 0.017 0.000 0.000 0.013 0.00427.36 3.07 0.013 0.075 0.042 0.038 0.000 0.001 0.030 0.02230.09 3.53 0.038 0.106 0.070 0.063 0.000 0.000 0.042 0.03332.61 4.11 0.114 0.194 0.152 0.144 0.009 0.001 0.076 0.06934.69 4.01 0.183 0.272 0.229 0.227 0.078 0.001 0.150 0.14437.42 4.50 0.276 0.377 0.329 0.334 0.161 0.001 0.242 0.24339.66 4.66 0.364 0.470 0.421 0.428 0.243 0.031 0.322 0.33141.49 4.96 0.431 0.539 0.487 0.497 0.307 0.095 0.381 0.39642.92 4.83 0.463 0.572 0.525 0.532 0.340 0.123 0.413 0.42744.71 5.19 0.519 0.628 0.582 0.588 0.400 0.174 0.479 0.48046.54 5.30 0.597 0.708 0.663 0.666 0.480 0.258 0.564 0.55748.09 5.71 0.667 0.778 0.733 0.735 0.548 0.322 0.635 0.62049.76 5.90 0.753 0.867 0.823 0.820 0.631 0.410 0.718 0.69749.67 5.90 0.753 0.866 0.824 0.821 0.631 0.410 0.719 0.69850.53 6.17 0.8126 0.9266 0.8844 0.8827 0.6855 0.4607 0.7721 0.7476

Page 209: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

197

Test WWF-Screw-1: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test WWF-Screw-1: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-1 WWF-Screw-1 Applied Shear Load vs. Slip

Page 210: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

198

PUSHOUT TEST SUMMARY SHEET

Test: WWF-Screw-2 Test Date: 16-Jul-01Test Designation:

SPECIMEN DESCRIPTIONScrew: Height: 3.0 in. No. Per Specimen: 10

Deck: Type: 1.5VL, 22 ga Width: 36 in. Length: 36 in.Fy: 54 ksi Fu: 63 ksi

Base Member: Section: 2L 2.00x2.00x0.187Fy: 69 ksi Fu: 88.5 ksi

Slab: Thickness: 3.50 in. f'c: 3400 psiRebar: Size: No. 4 No. Per Specimen: 8

Height Above Deck: 0.75 in.Mesh: Type: WWF 6x6-W2.9xW2.9

TEST RESULTSPeak Shear Load: 51.43 kips

Peak Shear Load Per Screw: 5.14 kipsSlip at Peak Shear Load: SC1: 0.890 in. SC5: 0.564 in.

SC2: 0.910 in. SC6: 0.306 in.SC3: 0.8640 in. SC7: 0.460 in.SC4: 0.895 in. SC8: 0.727 in.

DAMAGE

COMMENTS

exterior, Slab B interior, Slab A

Failure Mode: Screw Shear Screw Rotation ≈ 30° - 40° X = Screw sheared off

X

Page 211: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

199

Table G-2 WWF-Screw-2 Test Data TEST WWF-Screw-2

DATA

Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8 -0.04 0.01 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000-0.04 0.00 -0.001 0.000 0.000 0.000 0.000 -0.001 0.001 0.0006.51 1.38 -0.001 0.003 0.000 0.005 0.000 0.003 0.000 0.000

11.48 1.24 0.000 0.007 0.000 0.010 0.000 0.006 0.003 0.00115.15 1.45 0.001 0.010 0.000 0.015 0.000 0.014 0.005 0.00219.06 2.07 0.003 0.019 0.001 0.025 0.000 0.021 0.009 0.00827.16 2.81 0.051 0.080 0.029 0.091 0.000 0.063 0.038 0.04829.28 3.14 0.081 0.115 0.055 0.127 0.000 0.089 0.059 0.07632.94 3.69 0.258 0.301 0.232 0.314 0.100 0.260 0.199 0.24434.98 4.01 0.319 0.364 0.289 0.377 0.147 0.321 0.247 0.30437.09 4.08 0.422 0.466 0.392 0.476 0.219 0.312 0.317 0.39340.23 4.36 0.585 0.623 0.558 0.626 0.331 0.310 0.387 0.53540.27 4.36 0.586 0.622 0.559 0.627 0.331 0.311 0.387 0.53545.07 4.80 0.733 0.763 0.706 0.754 0.438 0.308 0.391 0.66651.43 4.27 0.890 0.910 0.864 0.895 0.564 0.306 0.460 0.72747.72 4.95 0.954 0.967 0.921 0.952 0.657 0.306 0.766

Page 212: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

200

Test WWF-Screw-2: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-5

SC-6

SC-7

SC-8

Figure G-2 WWF-Screw-2 Applied Shear Load vs. Slip

Test WWF-Screw-2: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Page 213: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

201

Table G-3 XOREX25-Screw-1 Test Data

PUSHOUT TEST SUMMARY SHEET

Test: XOREX-25-Screw-1 Test Date: 16-Jul-01

SPECIMEN DESCRIPTIONScrew: Height: 3.0 in. No. Per Specimen: 10Deck: Type: 1.5VL, 22 ga Width: 36 in. Length: 36 in.

Fy: 54 ksi Fu: 63 ksiBase Member: Section: 2L 2.00x2.00x0.187

Fy: 69 ksi Fu: 88.5 ksiSlab: Thickness: 3.50 in. f'c: 3600 psi

Rebar: Size: No. 4 No. Per Specimen: 8Height Above Deck: 0.75 in.

Mesh: Type: WWF 6x6-W2.9xW2.9

TEST RESULTSPeak Shear Load: 57.25 kips

Peak Shear Load Per Screw: 5.725 kipsSlip at Peak Shear Load: SC1: 0.636 in. SC5: 0.617 in.

SC2: 0.676 in. SC6: 0.754 in.SC3: 0.667 in. SC7: 0.642 in.SC4: 0.770 in. SC8: 0.712 in.

DAMAGE

COMMENTS

exterior, Slab B interior, Slab A

Failure Mode: Screw Shear Screw Rotation ≈ 30° - 40° X = Screw sheared off

Page 214: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

202

TEST XOREX-25-Screw-1 DATA

Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

0.69 0.02 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000 -0.0015.70 0.51 0.000 -0.001 -0.001 0.011 0.000 -0.001 -0.001 0.001

10.67 0.95 0.000 0.000 0.000 0.020 0.000 -0.001 -0.001 0.00114.13 1.49 0.000 -0.001 0.000 0.020 -0.003 -0.001 0.001 0.00222.15 1.90 0.000 0.000 0.012 0.042 -0.010 0.020 0.011 0.02125.90 2.75 0.000 0.000 0.019 0.053 -0.014 0.032 0.018 0.02929.72 3.30 0.009 0.001 0.030 0.070 -0.014 0.048 0.030 0.04531.80 3.56 0.015 0.005 0.040 0.088 -0.010 0.064 0.040 0.06034.20 3.83 0.056 0.053 0.079 0.139 0.026 0.111 0.073 0.10437.34 4.26 0.165 0.175 0.184 0.261 0.122 0.226 0.152 0.21340.19 4.84 0.227 0.246 0.250 0.337 0.188 0.297 0.211 0.27943.04 5.05 0.283 0.306 0.306 0.399 0.246 0.360 0.269 0.33946.58 5.30 0.364 0.392 0.389 0.483 0.332 0.451 0.356 0.42648.86 5.52 0.415 0.445 0.441 0.540 0.392 0.514 0.416 0.48651.34 5.94 0.469 0.503 0.499 0.595 0.452 0.577 0.477 0.54655.13 6.49 0.564 0.603 0.595 0.697 0.547 0.681 0.573 0.64257.25 6.72 0.636 0.676 0.667 0.770 0.617 0.754 0.642 0.71246.70 6.55 1.031 1.056 1.044 1.150 1.034 1.158 1.058 1.105

Page 215: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

203

Test XOREX25-Screw-1: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test XOREX25-Screw-1: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-3 XOREX25-Screw-1 Applied Shear Load vs. Slip

Page 216: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

204

PUSHOUT TEST SUMMARY SHEET

Test: XOREX-25-Screw-2 Test Date: 16-Jul-01

SPECIMEN DESCRIPTIONScrew: Height: 3.0 in. No. Per Specimen: 10Deck: Type: 1.5VL, 22 ga Width: 36 in. Length: 36 in.

Fy: 54 ksi Fu: 63 ksiBase Member: Section: 2L 2.00x2.00x0.187

Fy: 69 ksi Fu: 88.5 ksiSlab: Thickness: 3.50 in. f'c: 3600 psi

Rebar: Size: No. 4 No. Per Specimen: 8Height Above Deck: 0.75 in.

Mesh: Type: WWF 6x6-W2.9xW2.9

TEST RESULTSPeak Shear Load: 55.46 kips

Peak Shear Load Per Screw: 5.546 kipsSlip at Peak Shear Load : SC1: 0.810 in. SC5: 0.744 in.

SC2: N/A SC6: 0.896 in.SC3: 0.772 in. SC7: N/A.SC4: 0.801 in. SC8: 0.867 in.

DAMAGE

COMMENTS

exterior, Slab A interior, Slab B

Failure Mode: Screw Shear Screw Rotation ≈ 30° - 40° X = Screw sheared off

X

Page 217: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

205

Table G-4 XOREX25-Screw-2 Test Data TEST XOREX25-Screw-2 DATA Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

0.20 0.00 0.000 -0.001 0.000 0.000 -0.001 0.000 N/A 0.0006.19 1.11 0.001 0.001 0.001 -0.001 0.000 0.000 N/A 0.000

10.30 1.45 0.002 0.000 0.001 -0.002 0.001 0.000 N/A 0.00415.51 1.60 0.002 0.006 0.001 -0.002 0.001 0.005 N/A 0.01218.93 1.97 0.001 0.008 0.001 -0.002 0.001 0.011 N/A 0.01922.88 2.42 0.001 0.015 0.002 -0.003 0.001 0.020 N/A 0.02724.71 2.66 0.002 0.016 0.003 -0.002 0.001 0.024 N/A 0.03226.30 2.81 0.002 0.019 0.002 -0.003 0.001 0.028 N/A 0.03629.07 3.26 0.003 0.028 0.002 -0.003 0.004 0.043 N/A 0.04932.00 3.56 0.017 0.047 0.003 -0.003 0.019 0.066 N/A 0.07234.20 3.76 0.066 0.106 0.028 0.034 0.066 0.129 N/A 0.13237.42 4.12 0.159 0.208 0.116 0.133 0.151 0.236 N/A 0.23540.23 4.59 0.237 0.285 0.186 0.214 0.215 0.316 N/A 0.31243.32 4.89 0.324 0.376 0.271 0.310 0.299 0.411 N/A 0.40246.34 5.09 0.399 0.468 0.345 0.386 0.367 0.483 N/A 0.47349.35 5.45 0.476 0.538 0.422 0.466 0.433 0.552 N/A 0.53951.18 5.89 0.533 0.591 0.483 0.526 0.486 0.609 N/A 0.59454.36 6.20 0.642 0.711 0.601 0.640 0.589 0.725 N/A 0.70255.46 6.42 0.810 N/A 0.772 0.801 0.744 0.896 N/A 0.867

41.49 6.47 1.2815 N/A 1.2668 1.2529 1.1134 1.2700 N/A 1.2221

Page 218: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

206

Test XOREX25-Screw-2: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-5

SC-6

SC-8

Test XOREX25-Screw-2: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Figure G-4 XOREX25-Screw-2 Applied Shear Load vs. Slip

Page 219: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

207

PUSHOUT TEST SUMMARY SHEET

Test: Test Date: 30-Aug-01

SPECIMEN DESCRIPTIONStud: No. Per Specimen: 4Deck: Type: 2.0VL, 20 ga Width: 36 in. Length: 36 in.

Fy: 48 ksi Fu: 51 ksiBase Member: Section: 2L-4.00x0.500

Fy: 54 ksi Fu: 79 ksiSlab: Thickness: 6.00 in. f'c: 3600 psi

Rebar: Size: No. 4 No. Per Specimen: 6Height Above Deck: 1.00 in.

Mesh: Type: 25 lb/cyd -1.5" XOREX Steel Fibers

TEST RESULTSPeak Shear Load: 48.94 kips

Peak Shear Load Per Stud: 12.24 kipsSlip at Peak Shear Load: SC1: 0.1410 in. SC5: 0.6520 in.

SC2: 0.1230 in. SC6: 0.5690 in.SC3: 0.1820 in. SC7: 0.6560 in.SC4: 0.1120 in. SC8: 0.6050 in.

DAMAGE

COMMENTS

3/4" dia x 4 3/8" Long

XOREX25-WSTUDS-1

exterior, Slab A interior, Slab B

Failure Mode: Studs Rib Failure Debonding X = Stud sheared off

X

X

Page 220: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

208

Table G-5 XOREX25-Weak Stud-1 Test Data TEST XOREX25-Weak Stud-1

DATA

Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

0.00 0.00 0.000 0.000 -0.001 -0.001 -0.001 0.000 0.000 -0.0015.09 0.64 0.000 -0.001 0.000 -0.002 -0.001 -0.001 -0.002 -0.002

11.28 1.26 0.000 -0.001 0.000 -0.003 -0.001 -0.001 -0.001 -0.00114.05 1.46 0.000 -0.002 0.001 -0.002 0.001 0.000 0.004 -0.00119.22 1.93 -0.001 -0.001 0.005 -0.003 0.007 -0.001 0.008 -0.00124.55 2.39 -0.001 0.001 0.008 -0.002 0.015 -0.001 0.017 0.00127.97 2.72 -0.001 0.003 0.013 -0.002 0.021 -0.001 0.024 0.00431.31 2.92 0.000 0.005 0.018 0.002 0.025 -0.001 0.027 0.00633.06 3.36 0.000 0.007 0.021 0.002 0.028 -0.001 0.031 0.00836.44 3.97 0.000 0.011 0.028 0.005 0.040 -0.001 0.044 0.01640.31 4.39 0.005 0.020 0.042 0.014 0.059 -0.001 0.065 0.03242.79 4.72 0.014 0.027 0.053 0.020 0.075 0.009 0.079 0.04545.03 4.77 0.027 0.037 0.070 0.029 0.098 0.025 0.101 0.06447.39 5.28 0.087 0.081 0.129 0.071 0.200 0.110 0.205 0.15548.94 4.91 0.141 0.123 0.182 0.112 0.652 0.569 0.656 0.60526.18 6.36 1.0423 0.9105 1.0858 0.8945 1.6370 1.6575 1.6100 1.6791

Page 221: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

209

Test XOREX25-Weak Stud-1: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)SC-1SC-2SC-3SC-4

Test XOREX25-Weak Stud-1: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-5: XOREX25-Weak Stud-1 Applied Shear Load vs. Slip

Page 222: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

210

PUSHOUT TEST SUMMARY SHEET

Test: Test Date: 31-Aug-01

SPECIMEN DESCRIPTIONStud: No. Per Specimen: 4Deck: Type: 2.0VL, 20 ga Width: 36 in. Length: 36 in.

Fy: 48 ksi Fu: 51 ksiBase Member: Section: 2L-4.00x0.500

Fy: 54 ksi Fu: 79 ksiSlab: Thickness: 6.00 in. f'c: 3600 psi

Rebar: Size: No. 4 No. Per Specimen: 6Height Above Deck: 1.00 in.

Mesh: Type: 25 lb/cyd -1.5" XOREX Steel Fibers

TEST RESULTSPeak Shear Load: 53.46 kips

Peak Shear Load Per Stud: 13.37 kipsSlip at Peak Shear Load: SC1: 0.1140 in. SC5: 0.3350 in.

SC2: 0.0770 in. SC6: 0.3190 in.SC3: N/A SC7: 0.3340 in.SC4: 0.0400 in. SC8: 0.2940 in.

DAMAGE

COMMENTS

XOREX25-WSTUDS-2

3/4" dia x 4 3/8" Long

exterior, Slab A interior, Slab B

Failure Mode: Studs Rib Failure Debonding X = Screw sheared off

X

X

Page 223: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

211

Table G-6: XOREX25-Weak Stud-2 Test Data

Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

0.00 0.00 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.0005.82 0.98 -0.001 0.000 -0.001 0.000 0.000 0.002 0.001 0.000

10.30 1.08 0.000 0.000 -0.001 0.000 0.003 0.002 0.001 0.00017.18 1.51 -0.001 0.001 0.000 0.000 0.009 0.010 0.007 0.00020.36 2.01 0.000 0.001 0.000 0.000 0.013 0.014 0.008 0.00024.76 2.42 0.000 0.001 0.003 0.000 0.018 0.019 0.015 0.00427.61 2.80 0.000 0.002 0.002 0.000 0.020 0.021 0.018 0.00730.90 3.25 0.003 0.001 0.001 0.001 0.025 0.026 0.022 0.00833.63 3.40 0.005 0.001 0.001 0.001 0.030 0.029 0.027 0.01435.99 3.67 0.008 0.001 0.001 0.001 0.035 0.034 0.033 0.01935.99 3.67 0.007 0.001 0.001 0.000 0.035 0.034 0.033 0.01838.31 4.00 0.012 0.001 0.001 0.001 0.042 0.040 0.040 0.02544.30 4.44 0.025 0.001 0.001 0.001 0.065 0.063 0.065 0.04445.93 4.86 0.032 0.001 0.002 0.001 0.077 0.074 0.077 0.05650.45 5.32 0.053 0.015 -0.001 0.001 0.115 0.108 0.116 0.08651.55 5.59 0.075 0.038 -0.005 0.008 0.222 0.209 0.220 0.18653.46 5.99 0.114 0.077 -0.007 0.040 0.335 0.319 0.334 0.294

50.29 6.03 0.9471 0.9786 0.8049 0.9490 1.3594 1.2598 1.3632 1.2434

Page 224: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

212

Test XOREX25-Weak Stud-2: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test XOREX25-Weak Stud-2: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-6: XOREX25-Weak Stud-2 Applied Shear Load vs. Slip

Page 225: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

213

PUSHOUT TEST SUMMARY SHEET

Test: XOREX50-Screw-1 Test Date: 13-Aug-01

SPECIMEN DESCRIPTIONScrew: Height: 3.0 in. No. Per Specimen: 10

Deck: Type: 1.5VL, 22 ga Width: 36 in. Length: 36 in.Fy: 54 ksi Fu: 63 ksi

Base Member: Section: 2L 2.00x2.00x0.187Fy: 69 ksi Fu: 88.5 ksi

Slab: Thickness: 3.50 in. f'c: 3600 psiRebar: Size: No. 4 No. Per Specimen: 8

Height Above Deck: 0.75 in.Mesh: Type: 50 lb/cyd -1.5" XOREX Steel Fibers

TEST RESULTSPeak Shear Load: 49.43 kips

Peak Shear Load Per Screw: 4.943 kipsSlip at Peak Shear Load: SC1: 0.920 in. SC5: 0.619 in.

SC2: 0.963 in. SC6: 0.669 in.SC3: 0.925 in. SC7: 0.606 in.SC4: 0.965 in. SC8: 0.647 in.

DAMAGE

COMMENTS

exterior, Slab B interior, Slab A

Failure Mode: Screw Shear Screw Rotation ≈ 30° - 40° X = Screw sheared off

X

X

X

X

X

Page 226: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

214

Table G-7: XOREX50-Screw-1 Test Data TEST XOREX50-Screw-1

DATA

Shear Normal

Slip

Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

-0.08 0.00 0.000 0.000 -0.001 0.000 -0.001 -0.001 0.000 0.000 5.86 1.39 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

11.40 1.34 0.000 0.000 0.001 0.003 0.000 0.002 0.000 0.000 15.47 1.49 0.000 0.001 0.001 0.005 0.002 0.005 0.001 0.000 19.26 1.92 0.000 0.007 0.005 0.012 0.007 0.010 0.005 0.001 23.17 2.66 0.007 0.021 0.019 0.029 0.018 0.021 0.017 0.007 26.34 3.17 0.016 0.035 0.030 0.043 0.026 0.029 0.024 0.016 28.83 3.13 0.041 0.062 0.055 0.071 0.044 0.051 0.042 0.040 29.97 3.41 0.084 0.106 0.096 0.119 0.065 0.075 0.061 0.064 32.78 3.74 0.207 0.237 0.219 0.247 0.180 0.198 0.173 0.185 35.42 4.00 0.322 0.355 0.334 0.365 0.281 0.309 0.274 0.298 38.44 4.37 0.422 0.457 0.436 0.467 0.365 0.399 0.358 0.385 40.31 4.94 0.482 0.516 0.494 0.526 0.404 0.440 0.396 0.426 42.39 4.98 0.556 0.593 0.570 0.601 0.445 0.485 0.434 0.469 45.15 5.44 0.777 0.819 0.785 0.824 0.519 0.563 0.503 0.544 48.05 5.22 0.876 0.918 0.882 0.923 0.589 0.637 0.576 0.616 49.43 5.69 0.920 0.963 0.925 0.965 0.619 0.669 0.606 0.647 45.89 5.94 1.322 1.379 1.157 1.374 0.799 0.830 0.797 0.825 45.81 5.58 1.408 1.471 1.157 1.466 0.917 0.894 0.911 0.941

Page 227: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

215

Test XOREX50-Screw-1: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test XOREX50-Screw-1: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-7: XOREX50-Screw-1 Applied Shear Load vs. Slip

Page 228: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

216

PUSHOUT TEST SUMMARY SHEET

Test: XOREX50-Screw-2 Test Date: 27-Aug-01

SPECIMEN DESCRIPTIONScrew: Height: 3.0 in. No. Per Specimen: 10

Deck: Type: 1.5VL, 22 ga Width: 36 in. Length: 36 in.Fy: 54 ksi Fu: 63 ksi

Base Member: Section: 2L 2.00x2.00x0.187Fy: 69 ksi Fu: 88.5 ksi

Slab: Thickness: 3.50 in. f'c: 4200 psiRebar: Size: No. 4 No. Per Specimen: 8

Height Above Deck: 0.75 in.Mesh: Type: 50 lb/cyd -1.5" XOREX Steel Fibers

TEST RESULTSPeak Shear Load: 52.36 kips

Peak Shear Load Per Screw: 5.236 kipsSlip at Peak Shear Load: SC1: N/A SC5: 0.7270 in.

SC2: 0.8146 in. SC6: 0.6110 in.SC3: N/A SC7: N/ASC4: 0.8359 in. SC8: 0.5842 in.

DAMAGE

COMMENTS

exterior, Slab B interior, Slab A

Failure Mode: Screw Shear Screw Rotation ≈ 30° - 40° X = Screw sheared off

X

X

X

X

Page 229: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

217

Table G-8: XOREX50-Screw-2 Test Data

Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

0.00 0.00 -0.001 0.000 0.000 0.000 -0.001 -0.001 0.000 0.0005.74 0.97 -0.001 0.000 0.000 0.003 0.000 0.000 0.001 0.000

10.63 1.23 -0.001 0.000 0.000 0.003 -0.001 0.000 0.001 0.00015.23 1.42 0.000 0.002 0.000 0.006 0.000 0.000 0.004 -0.00117.10 1.82 0.000 0.004 0.000 0.008 0.000 0.000 0.005 -0.00120.89 2.14 0.000 0.010 0.000 0.016 0.000 0.000 0.010 0.00423.62 2.64 -0.001 0.014 0.001 0.022 0.000 0.000 0.013 0.00726.06 2.94 0.000 0.021 0.000 0.031 0.000 0.001 0.017 0.01126.02 2.94 0.000 0.021 0.000 0.030 0.000 0.000 0.018 0.01128.38 3.12 0.000 0.029 0.001 0.040 0.003 0.000 0.023 0.01631.35 3.47 0.000 0.045 0.002 0.057 0.014 0.000 0.035 0.02933.14 3.90 0.000 0.059 0.002 0.073 0.024 0.001 0.047 0.04134.93 4.12 0.000 0.086 0.002 0.101 0.047 0.001 0.071 0.06637.74 4.36 0.000 0.246 0.017 0.267 0.199 0.094 0.209 0.22240.35 4.64 0.010 0.337 0.051 0.360 0.288 0.184 0.295 0.31542.96 4.86 0.057 0.392 0.077 0.416 0.341 0.238 0.339 0.36845.89 5.11 0.140 0.491 0.134 0.516 0.433 0.329 0.429 0.46548.78 5.79 0.208 0.577 0.186 0.602 0.513 0.406 0.495 0.52750.57 6.35 0.291 0.672 0.234 0.695 0.601 0.491 0.597 0.557

52.36 6.05 0.8146 0.8359 0.7270 0.6110 0.584226.14 7.13 1.6144 1.7273 1.0161 0.8628 0.5992

Page 230: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

218

Test XOREX50-Screw-2: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test XOREX50-Screw-2: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-8: XOREX50-Screw-2 Applied Shear Load vs. Slip

Page 231: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

219

PUSHOUT TEST SUMMARY SHEET

Test: XOREX50-WSTUDS-1 Test Date: 3-Sep-01

SPECIMEN DESCRIPTIONStud: No. Per Specimen: 4Deck: Type: 2.0VL, 20 ga Width: 36 in. Length: 36 in.

Fy: 48 ksi Fu: 51 ksiBase Member: Section: 2L-4.00x0.500

Fy: 54 ksi Fu: 79 ksiSlab: Thickness: 6.00 in. f'c: 4200 psi

Rebar: Size: No. 4 No. Per Specimen: 6Height Above Deck: 1.00 in.

Mesh: Type: 50 lb/cyd -1.5" XOREX Steel Fibers

TEST RESULTSPeak Shear Load: 51.06 kips

Peak Shear Load Per Stud: 12.77 kipsSlip at Peak Shear Load: SC1: 0.149 in. SC5: 0.085 in.

SC2: 0.152 in. SC6: N/ASC3: 0.160 in. SC7: 0.094 in.SC4: 0.140 in. SC8: 0.063 in.

DAMAGE

COMMENTS

3/4" dia x 4 3/8" Long

exterior, Slab B interior, Slab A

Failure Mode: Debonding X = Studs sheared off

Page 232: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

220

Table G-9: XOREX50-Weak Stud-1 Test Data

Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

-0.08 0.01 -0.001 0.000 0.000 0.000 0.000 0.000 -0.001 -0.0014.80 0.87 0.001 0.003 0.001 0.000 0.002 0.000 0.008 0.000

10.46 1.15 0.000 0.004 0.002 0.000 0.002 0.000 0.008 0.00015.11 1.43 0.001 0.007 0.006 0.001 0.004 0.000 0.008 0.00119.83 1.87 0.009 0.013 0.012 0.004 0.004 0.000 0.008 0.00123.86 2.43 0.015 0.019 0.019 0.007 0.007 0.000 0.012 0.00027.52 3.03 0.022 0.026 0.027 0.012 0.007 0.000 0.015 0.00130.21 3.04 0.031 0.037 0.034 0.019 0.010 0.000 0.015 0.00132.90 3.30 0.038 0.046 0.042 0.025 0.011 0.000 0.021 0.00136.48 3.67 0.050 0.060 0.058 0.039 0.018 0.000 0.029 0.00240.88 4.16 0.067 0.079 0.076 0.055 0.028 0.001 0.037 0.00743.65 4.68 0.079 0.089 0.087 0.066 0.035 0.000 0.045 0.01446.46 5.03 0.105 0.110 0.114 0.092 0.053 0.000 0.062 0.03351.06 5.37 0.149 0.152 0.160 0.140 0.085 0.000 0.094 0.06347.68 4.73 0.505 0.520 0.518 0.509 0.413 0.288 0.419 0.37246.38 4.56 0.860 0.871 0.880 0.889 0.757 0.670 0.774 0.735

Page 233: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

221

Test XOREX50-Weak Stud-1: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test XOREX50-Weak Stud-1: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-9: XOREX50-Weak Stud-1 Applied Shear Load vs. Slip

Page 234: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

222

PUSHOUT TEST SUMMARY SHEET

Test: XOREX50-Weak Stud-2 Test Date: 3-Sep-01

SPECIMEN DESCRIPTIONStud No. Per Specimen: 4

Deck: Type: 2VLI, 20 ga Width: 36 in. Length: 36 in.Fy: 48 ksi Fu: 51 ksi

Base Member: Section: 2L 4.00x0.500Fy: 54 ksi Fu: 79 ksi

Slab: Thickness: 6.00 in. f'c: 4200 psiRebar: Size: No. 4 No. Per Specimen: 6

Height Above Deck: 1.00 in.Mesh: Type: 50 lb/cyd -1.5" XOREX Steel Fibers

TEST RESULTSPeak Shear Load: 51.95 kips

Peak Shear Load Per Stud: 12.99 kipsSlip at Peak Shear Load: SC1: 0.1630 in. SC5: 0.1870 in.

SC2: 0.1230 in. SC6: 0.1010 in.SC3: 0.1770 in. SC7: 0.1910 in.SC4: 0.0880 in. SC8: 0.1030 in.

DAMAGE

COMMENTS

3/4" dia x 4 3/8" Long

exterior, Slab A interior, Slab B

Failure Mode: Screw Shear Screw Rotation ≈ 20° - 30° X = Screw sheared off

Page 235: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

223

Table G-10: XOREX50-Weak Stud-2 Test Data TEST XOREX50-Weak Stud-2

DATA

Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

-0.04 0.00 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 -0.0015.21 0.51 -0.001 0.000 0.001 0.000 0.000 0.000 0.000 -0.001

12.01 0.91 0.000 0.000 0.006 -0.001 0.003 0.000 0.004 0.00015.23 1.47 0.001 0.001 0.007 0.000 0.005 0.001 0.008 0.00019.67 1.91 0.004 0.001 0.012 -0.001 0.012 0.000 0.015 0.00022.88 2.33 0.007 0.001 0.017 -0.001 0.016 0.000 0.020 0.00025.86 2.74 0.011 0.001 0.020 -0.001 0.022 0.000 0.026 0.00028.62 3.09 0.015 0.001 0.024 0.000 0.029 0.000 0.033 0.00031.15 3.28 0.021 0.002 0.030 0.000 0.039 0.001 0.042 0.00134.08 3.57 0.028 0.003 0.038 0.000 0.048 0.005 0.052 0.00436.77 3.81 0.036 0.009 0.048 0.007 0.061 0.013 0.065 0.01140.27 4.22 0.050 0.019 0.061 0.007 0.078 0.024 0.082 0.02143.04 4.63 0.062 0.030 0.073 0.015 0.092 0.031 0.096 0.03146.46 5.00 0.085 0.051 0.096 0.027 0.113 0.045 0.118 0.04550.29 5.50 0.126 0.089 0.141 0.062 0.153 0.076 0.158 0.07751.95 5.50 0.163 0.123 0.177 0.088 0.187 0.101 0.191 0.10350.08 5.82 0.308 0.264 0.323 0.223 0.328 0.229 0.334 0.232

Page 236: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

224

Test XOREX50-Weak Stud-2: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test XOREX50-Weak Stud-2: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-10: XOREX50-Weak Stud-2 Applied Shear Load vs. Slip

Page 237: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

225

PUSHOUT TEST SUMMARY SHEET

Test: XOREX50-SSTUDS-1 Test Date: 3-Sep-01

SPECIMEN DESCRIPTIONStud: No. Per Specimen: 4Deck: Type: 2.0VL, 20 ga Width: 36 in. Length: 36 in.

Fy: 48 ksi Fu: 51 ksiBase Member: Section: 2L-4.00x0.500

Fy: 54 ksi Fu: 79 ksiSlab: Thickness: 6.00 in. f'c: 4200 psi

Rebar: Size: No. 4 No. Per Specimen: 6Height Above Deck: 1.00 in.

Mesh: Type: 50 lb/cyd -1.5" XOREX Steel Fibers

TEST RESULTSPeak Shear Load: 75.29 kips

Peak Shear Load Per Stud: 18.82 kipsSlip at Peak Shear Load: SC1: 0.2705 in. SC5: 0.2231 in.

SC2: 0.2230 in. SC6: 0.1314 in.SC3: 0.2528 in. SC7: 0.1206 in.SC4: 0.1783 in. SC8: N/A

DAMAGE

COMMENTS

3/4" dia x 4 3/8" Long

exterior, Slab B interior, Slab A

Failure Mode: Some Debonding X = Studs sheared off

x

x

Page 238: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

226

Table G-11: XOREX50-Strong Stud-1 Test Data Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

-0.04 0.02 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000N/A 6.43 0.67 0.000 -0.001 -0.001 0.001 0.000 0.000 0.003N/A

10.42 1.40 0.000 0.000 -0.001 0.001 0.000 0.000 0.005N/A 14.74 1.53 0.000 0.000 -0.001 0.001 0.002 -0.001 0.006N/A 19.50 1.97 -0.001 0.000 -0.001 0.001 0.004 0.000 0.009N/A 22.68 2.30 0.000 0.000 0.000 0.000 0.005 0.000 0.010N/A 25.08 2.54 0.000 0.000 -0.001 0.000 0.007 0.000 0.014N/A 28.30 2.81 0.000 0.000 0.000 0.000 0.007 0.000 0.015N/A 31.27 3.34 0.000 0.000 0.000 0.000 0.010 0.000 0.017N/A 34.28 3.51 0.000 0.000 0.000 0.000 0.012 0.000 0.020N/A 37.26 3.84 0.001 0.000 0.000 0.000 0.014 0.000 0.023N/A 42.02 4.54 0.001 0.002 0.001 0.000 0.019 0.000 0.029N/A 47.39 4.94 0.007 0.004 0.001 0.001 0.026 0.000 0.036N/A 51.10 5.40 0.011 0.007 0.001 0.000 0.029 0.000 0.041N/A 54.07 5.77 0.021 0.012 0.007 0.001 0.035 0.000 0.046N/A 58.88 6.30 0.040 0.023 0.023 0.001 0.046 0.000 0.055N/A 63.88 6.87 0.057 0.034 0.039 0.004 0.055 0.000 0.064N/A 65.47 6.82 0.071 0.041 0.051 0.007 0.064 0.000 0.072N/A 69.14 7.47 0.097 0.063 0.080 0.028 0.085 0.009 0.091N/A

71.50 7.68 0.1291 0.0879 0.1095 0.0542 0.1119 0.0291 0.1031 N/A 72.96 8.19 0.1771 0.1351 0.1568 0.1006 0.1504 0.0611 0.1144 N/A 75.29 9.22 0.2705 0.2230 0.2528 0.1783 0.2231 0.1314 0.1206 N/A

Page 239: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

227

Test XOREX50-Strong Stud-1: Load vs. Slip (A)

0

10

20

30

40

50

60

70

80

0.0 0.1 0.1 0.2 0.2 0.3

Slip (in)

Shea

r Loa

d (K

) SC-1SC-2SC-3SC-4

Test XOREX50-Strong Stud-1: Load vs. Slip (B)

0

10

20

30

40

50

60

70

80

0.0 0.1 0.1 0.2 0.2 0.3

Slip (in)

Shea

r Loa

d (K

)

SC-5

SC-6

SC-7

Figure G-11: XOREX50- Strong Stud-1 Applied Shear Load vs. Slip

Page 240: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

228

PUSHOUT TEST SUMMARY SHEET

Test: XOREX50-SSTUDS-2 Test Date: 3-Sep-01Test Designation:

SPECIMEN DESCRIPTIONScrew: Height: 3.0 in. No. Per Specimen: 4

Deck: Type: 2VL, 20 ga Width: 36 in. Length: 36 in.Fy: 48 ksi Fu: 51 ksi

Base Member: Section: 2L 4.00x0.500Fy: 54 ksi Fu: 79 ksi

Slab: Thickness: 6.00 in. f'c: 4200 psiRebar: Size: No. 4 No. Per Specimen: 6

Height Above Deck: 1.00 in.Mesh: Type: 50 lb/cyd -1.5" XOREX Steel Fibers

TEST RESULTSPeak Shear Load: 72.56 kips

Peak Shear Load Per Stud: 18.14 kipsSlip at Peak Shear Load: SC1: 0.1487 in. SC5: 0.1668 in.

SC2: 0.1190 in. SC6: N/ASC3: 0.1660 in. SC7: 0.1163 in.SC4: 0.1190 in. SC8: N/A

DAMAGE

COMMENTS

exterior, Slab A interior, Slab B

Failure Mode: Screw Shear Screw Rotation ≈ 20° - 30° X = Screw sheared off

x

x

Page 241: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

229

Table G-12: XOREX50-Strong Stud-2 Test Data Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

-0.04 0.00 -0.001 0.000 -0.001 -0.001 0.000 -0.001 0.000 0.0003.22 0.77 0.000 0.001 0.001 0.000 -0.001 -0.001 0.003 0.000

10.91 1.34 0.000 0.001 0.001 0.000 0.000 0.000 0.003 0.00014.33 1.54 0.000 0.001 0.000 0.000 0.000 -0.001 0.003 0.00019.18 1.99 0.000 0.001 0.001 0.000 -0.001 -0.001 0.005 0.00021.99 2.26 0.000 0.001 0.001 0.000 0.000 0.000 0.007 0.00024.71 2.58 0.000 0.001 0.001 0.000 0.000 0.000 0.010 0.00027.24 3.08 0.000 0.001 0.003 0.000 0.000 0.000 0.012 0.00031.80 3.22 0.000 0.001 0.004 0.000 0.001 0.000 0.016 0.00034.73 3.74 0.000 0.001 0.006 0.000 0.004 -0.001 0.019 0.00038.84 4.10 0.000 0.001 0.008 0.000 0.007 -0.001 0.021 0.00044.75 4.54 0.001 0.001 0.013 0.000 0.012 0.000 0.025 0.00048.09 4.95 0.000 0.003 0.015 0.001 0.016 -0.001 0.026 0.00051.67 5.68 0.003 0.005 0.019 0.007 0.021 0.000 0.031 0.00054.68 5.60 0.006 0.007 0.022 0.007 0.026 0.000 0.034 0.00060.14 6.13 0.016 0.013 0.032 0.013 0.040 0.000 0.042 0.00063.44 6.65 0.026 0.019 0.042 0.020 0.051 0.000 0.046 0.00068.20 7.24 0.055 0.039 0.069 0.039 0.080 0.001 0.060 0.00071.17 7.67 0.079 0.056 0.092 0.057 0.104 0.011 0.069 0.008

72.56 7.99 0.1487 0.1190 0.1660 0.1190 0.1668 0.0611 0.1163 0.0572

Page 242: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

230

Test XOREX50-Strong Stud-2: Load vs. Slip (A)

0

10

20

30

40

50

60

70

80

0.0 0.1 0.1 0.2 0.2

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test XOREX50-Strong Stud-2: Load vs. Slip (B)

0

10

20

30

40

50

60

70

80

0.0 0.1 0.1 0.2 0.2

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-12: XOREX50-Strong Stud-2 Applied Shear Load vs. Slip

Page 243: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

231

PUSHOUT TEST SUMMARY SHEET

Test: Microfiber-MD-Screw-1 Test Date: 28-Aug-01

SPECIMEN DESCRIPTIONScrew: Height: 3.0 in. No. Per Specimen: 10

Deck: Type: 1.5VL, 22 ga Width: 36 in. Length: 36 in.Fy: 54 ksi Fu: 63 ksi

Base Member: Section: 2L 2.00x2.00x0.187Fy: 69 ksi Fu: 88.5 ksi

Slab: Thickness: 3.50 in. f'c: 3600 psiRebar: Size: No. 4 No. Per Specimen: 8

Height Above Deck: 0.75 in.Mesh: Type: 1.5 lb/cyd Microfiber-MD

TEST RESULTSPeak Shear Load: 49.92 kips

Peak Shear Load Per Screw: 4.492 kipsSlip at Peak Shear Load: SC1: 0.750 in. SC5: 0.761 in.

SC2: 0.797 in. SC6: 0.709 in.SC3: 0.728 in. SC7: N/ASC4: 0.788 in. SC8: 0.697 in.

DAMAGE

COMMENTS

exterior, Slab B interior, Slab A

Failure Mode: Screw Shear Screw Rotation ≈ 30° - 40° X = Screw sheared off

X

Page 244: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

232

Table G-13:Microfiber-MD-Screw-1 Test Data Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

0.04 0.00 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.0006.15 0.44 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.0008.22 1.13 -0.001 0.002 0.000 -0.001 0.000 0.000 -0.001 0.000

13.93 1.40 0.000 0.004 0.001 0.000 0.001 0.000 0.000 0.00019.26 2.02 -0.001 0.012 0.010 0.008 0.010 0.000 0.000 0.00922.07 2.44 0.000 0.017 0.014 0.012 0.014 -0.001 0.000 0.01423.94 2.61 0.003 0.028 0.022 0.019 0.019 0.000 -0.001 0.01826.75 2.87 0.008 0.038 0.030 0.028 0.028 0.000 -0.001 0.02929.48 3.41 0.017 0.050 0.044 0.040 0.040 0.000 0.000 0.04330.50 3.43 0.031 0.064 0.058 0.055 0.055 0.004 0.000 0.05934.49 3.88 0.175 0.212 0.204 0.203 0.185 0.135 0.043 0.20437.99 4.45 0.244 0.290 0.270 0.283 0.252 0.210 0.084 0.28640.47 4.90 0.289 0.341 0.308 0.333 0.304 0.259 0.107 0.33945.93 5.22 0.434 0.499 0.427 0.491 0.462 0.410 0.199 0.49948.49 5.48 0.494 0.563 0.480 0.557 0.521 0.470 0.254 0.56449.92 6.05 0.750 0.797 0.728 0.788 0.761 0.709 0.441 0.697

Page 245: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

233

Test Microfiber-MD Screw-1: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test Microfiber-MD-Screw-1: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-13: Microfiber-MD Screw-1 Applied Shear Load vs. Slip

Page 246: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

234

PUSHOUT TEST SUMMARY SHEET

Test: Microfiber-MD Screw-2 Test Date: 28-Aug-01

SPECIMEN DESCRIPTIONScrew: Height: 3.0 in. No. Per Specimen: 10

Deck: Type: 1.5VL, 22 ga Width: 36 in. Length: 36 in.Fy: 69 ksi Fu: 88.5 ksi

Base Member: Section: 2L 2.00x2.00x0.187Fy: 54 ksi Fu: 63 ksi

Slab: Thickness: 3.50 in. f'c: 3600 psiRebar: Size: No. 4 No. Per Specimen: 8

Height Above Deck: 0.75 in.Mesh: Type: 1.5 lb/cyd Microfiber-MD

TEST RESULTSPeak Shear Load: 52.97 kips

Peak Shear Load Per Screw: 5.297 kipsSlip at Peak Shear Load: SC1: 0.682 in. SC5: 0.585 in.

SC2: 0.707 in. SC6: 0.738 in.SC3: 0.662 in. SC7: 0.568 in.SC4: 0.715 in. SC8: 0.735 in.

DAMAGE

COMMENTS

exterior, Slab A interior, Slab B

Failure Mode: Screw Shear Screw Rotation ≈ 30° - 40° X = Screw sheared off

Page 247: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

235

Table G-14: Microfiber-MD Screw-2 Test Data Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

-0.04 0.00 0.000 -0.001 0.000 0.000 -0.001 -0.001 -0.001 0.0005.37 0.82 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003

10.22 1.19 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.00415.19 1.51 0.000 0.000 0.000 0.004 -0.001 0.003 0.001 0.00918.97 1.99 0.000 0.002 0.002 0.008 0.000 0.010 0.003 0.01523.33 2.43 0.000 0.010 0.009 0.014 0.000 0.020 0.007 0.02526.87 3.00 0.007 0.020 0.017 0.024 0.005 0.031 0.014 0.03629.60 3.31 0.016 0.031 0.026 0.035 0.013 0.044 0.021 0.04932.29 3.67 0.037 0.053 0.044 0.060 0.032 0.071 0.035 0.07634.73 4.03 0.132 0.159 0.131 0.168 0.117 0.177 0.106 0.18037.91 4.24 0.257 0.286 0.245 0.295 0.230 0.309 0.220 0.31141.41 4.57 0.373 0.405 0.359 0.418 0.309 0.421 0.329 0.42243.81 5.04 0.422 0.454 0.407 0.466 0.346 0.468 0.368 0.46946.46 5.42 0.490 0.516 0.473 0.532 0.405 0.530 0.417 0.53050.65 5.62 0.618 0.641 0.599 0.654 0.524 0.668 0.535 0.66450.61 5.62 0.618 0.640 0.599 0.654 0.525 0.668 0.535 0.66352.97 6.06 0.682 0.707 0.662 0.715 0.585 0.738 0.568 0.735

Page 248: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

236

Test Microfiber-MD Screw-2: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test Microfiber-MD Screw-2: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-14 Microfiber-MD Screw-2 Applied Shear Load vs. Slip

Page 249: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

237

PUSHOUT TEST SUMMARY SHEET

Test: MicrofiberMD-Wstuds-1 Test Date: 29-Aug-01

SPECIMEN DESCRIPTIONStud: No. Per Specimen: 4Deck: Type: 2.0VL, 20 ga Width: 36 in. Length: 36 in.

Fy: 48 ksi Fu: 51 ksiBase Member: Section: 2L-4.00x0.500

Fy: 54 ksi Fu: 79 ksiSlab: Thickness: 6.00 in. f'c: 3600 psi

Rebar: Size: No. 4 No. Per Specimen: 6Height Above Deck: 1.00 in.

Mesh: Type: 1.5 lb/cyd -Microfiber-MD

TEST RESULTSPeak Shear Load: 51.79 kips

Peak Shear Load Per Stud: 12.95 kipsSlip at Peak Shear Load: SC1: 0.1320 in. SC5: 0.1350 in.

SC2: 0.1000 in. SC6: 0.0970 in.SC3: 0.1320 in. SC7: 0.1470 in.SC4: 0.1080 in. SC8: 0.0910 in.

DAMAGE

COMMENTS

3/4" dia x 4 3/8" Long

exterior, Slab A interior, Slab B

Failure Mode: Stud X = Stud sheared off

X

X

Page 250: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

238

Table G-15: Microfiber-MD Weak Stud-1 Test Data Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

-0.04 0.00 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.0004.85 0.61 0.000 0.000 0.000 0.001 0.000 0.000 0.003 0.000

12.30 1.20 0.004 0.001 0.004 0.004 0.000 0.000 0.009 0.00015.19 1.53 0.006 0.000 0.006 0.006 0.003 0.000 0.012 0.00119.06 1.91 0.012 0.006 0.010 0.010 0.009 0.001 0.019 0.00324.84 2.48 0.020 0.013 0.020 0.017 0.019 0.007 0.027 0.00828.30 3.05 0.026 0.016 0.024 0.022 0.025 0.012 0.034 0.01232.82 3.48 0.038 0.026 0.037 0.030 0.038 0.021 0.047 0.02036.32 4.01 0.049 0.037 0.048 0.041 0.052 0.035 0.062 0.02938.48 4.23 0.055 0.041 0.053 0.047 0.059 0.036 0.069 0.03442.35 4.47 0.075 0.056 0.071 0.063 0.077 0.050 0.088 0.04745.40 4.76 0.090 0.067 0.088 0.075 0.093 0.064 0.103 0.05948.33 5.11 0.107 0.081 0.105 0.089 0.110 0.078 0.122 0.07251.79 5.50 0.132 0.100 0.132 0.108 0.135 0.097 0.147 0.091

Page 251: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

239

Test Microfiber-MD Weak Stud-1: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.1 0.1 0.2 0.2 0.3

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test Microfiber-MD Weak Stud-1: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.1 0.1 0.2 0.2 0.3

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-15: Microfiber-MD Weak Stud-1 Applied Shear Load vs. Slip

Page 252: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

240

PUSHOUT TEST SUMMARY SHEET

Test: MicrofiberMD-Wstuds-2 Test Date: 30-Aug-01

SPECIMEN DESCRIPTIONStud: No. Per Specimen: 4Deck: Type: 2.0VL, 20 ga Width: 36 in. Length: 36 in.

Fy: 48 ksi Fu: 51 ksiBase Member: Section: 2L-4.00x0.500

Fy: 54 ksi Fu: 79 ksiSlab: Thickness: 6.00 in. f'c: 3600 psi

Rebar: Size: No. 4 No. Per Specimen: 6Height Above Deck: 1.00 in.

Mesh: Type: 1.5 lb/cyd -Microfiber-MD

TEST RESULTSPeak Shear Load: 75.29 kips

Peak Shear Load Per Stud: 18.82 kipsSlip at Peak Shear Load: SC1: 0.2705 in. SC5: 0.2231 in.

SC2: 0.2230 in. SC6: 0.1314 in.SC3: 0.2528 in. SC7: 0.1206 in.SC4: 0.1783 in. SC8: N/A

DAMAGE

COMMENTS

3/4" dia x 4 3/8" Long

exterior, Slab B interior, Slab A

Failure Mode: Stud Debonding X = Stud sheared off

X

X

Page 253: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

241

Table G-16: Microfiber-MD Weak Stud-2 Test Data Shear Normal Slip Load Load (in) (kips) (kips) SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 SC-7 SC-8

0.00 0.00 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 -0.0014.85 0.78 0.000 0.001 -0.001 0.000 0.006 0.001 -0.001 0.003

10.38 1.34 0.000 0.001 -0.001 0.000 0.009 0.003 0.000 0.00615.47 1.45 -0.001 0.001 -0.001 0.000 0.015 0.010 0.000 0.01119.10 2.02 0.000 0.001 0.000 0.001 0.020 0.015 0.000 0.01522.64 2.34 0.000 0.003 0.000 0.001 0.025 0.021 0.000 0.02125.45 2.68 0.002 0.005 0.000 0.000 0.032 0.029 0.000 0.02728.50 3.15 0.004 0.008 0.000 0.001 0.040 0.039 0.001 0.03733.96 3.56 0.010 0.013 0.003 0.001 0.057 0.059 0.001 0.05537.74 3.94 0.018 0.019 0.009 0.000 0.075 0.084 0.001 0.07844.50 4.50 0.031 0.033 0.020 0.001 0.100 0.113 0.007 0.10847.19 4.79 0.041 0.042 0.030 0.001 0.120 0.137 0.012 0.13045.40 5.10 0.057 0.056 0.045 0.001 0.186 0.218 0.031 0.20848.66 5.04 0.162 0.164 0.141 0.001 0.660 0.157 0.64450.86 5.50 0.484 0.511 0.455 0.255 0.964 0.215 0.953

Page 254: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

242

Test Microfiber-MD Weak Stud-2: Load vs. Slip (A)

0

10

20

30

40

50

60

0.0 0.1 0.2 0.3 0.4 0.5

Slip (in)

Shea

r Loa

d (K

)

SC-1SC-2SC-3SC-4

Test Microfiber-MD Weak Stud-2: Load vs. Slip (B)

0

10

20

30

40

50

60

0.0 0.1 0.2 0.3 0.4 0.5

Slip (in)

Shea

r Loa

d (K

)

SC-5SC-6SC-7SC-8

Figure G-16: Microfiber-MD Weak Stud-2 Applied Shear Load vs. Slip

Page 255: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

243

APPENDIX H

FIBER PROPERTIES

Two types of fibers where used in this study: a ribbed steel fiber known as XOREX- steel

fiber, and a synthetic fiber know as Fibermesh of Microfiber-MD. Properties, advantages

and uses of these fibers are presented in this Appendix. NOVOCON STEEL FIBRE, a

division of Synthetic Industries, Inc, manufacturer of these products and sponsor of this

project, provided the information in this appendix.

Page 256: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

244

FIBER PROPERTIES XOREX-STEEL FIBER

XOREX-STEEL FIBER is a low carbon, cold drawn steel fiber used for concrete

reinforcement. These fibers improve mechanical bonding capacity exceeding most

performance specifications for enhancing concrete’s flexural and shear strength, fatigue

endurance, impact resistance and ductility. Some of its properties are:

Fiber Length: 1.5 in. (38 mm) also available in 1.0, 2.0, and 2.5 in.

Average Equivalent Diameter: 0.040 in. (1 mm)

Minimum Tensile Strength: 120,000 psi (828 Mpa)

Deformation: Continuously Deformed Circular Segment

Appearance: Bright and Clean Wire

The primary applications of XOREX steel fibers include commercial and industrial

slabs on grade, shotcrete, composite metal decks, overlays, equipment foundations and

highway pavements. Some of its benefits include the following:

- Complies with ASTM A820, Type I, cold drawn high tensile deformed

steel wire

- Meets toughness performance Level III

- Variable equivalent diameter and a continuous deformed shape provide

superior reinforcement resulting in tighter cracks and joints.

- High tensile strength fiber bridging joints or cracks to provide superior

aggregate interlock and increased load carrying capacity.

- Provides uniform, multi-directional concrete reinforcement

- Requires less labor to incorporate into concrete applications than rebar

and wire mesh.

- No special equipment is needed to mix, place or finish.

- Provides superior contraction joint stability and crack width control

* This information was provided by NOVOCON STEEL FIBRE, a division of Synthetic

Industries, Inc.

Page 257: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

245

FIBERMESH

Fibermesh is a micro-reinforcement of 100 percent virgin homopolymer

polypropylene fibrillated fibers. These fibers are used to control cracking due to drying

shrinkage and thermal expansion/contraction, lowered water migration, increased impact

capacity, shatter resistance, abrasion resistance and residual strength. Some of its

chemical and physical properties are:

Absorption: Nil

Specific Gravity: 0.91

Fiber Length: 1/8 – 2 ¼ in.

Electrical Conductivity: Low

Acid and Salt Resistance: High

Young’s Modulus: 0.5 (3.5 kN/mm2)

Melt Point: 324° F

Ignition Point: 1,100° F

Thermal Conductivity: Low

Alkali Resistance: Alkali Proof

This product is applicable to all types of concrete, which demonstrate a need for

toughness, resistance to intrinsic cracking and improved water tightness. Some of its

applications include slabs on grade, composite decks, shotcrete, walls, sidewalks,

driveways, slope paving, and maintenance jobs. Some of its advantages are:

- Acceptance by National Codes as an alternate method of secondary

reinforcing to traditional systems

- Non-magnetic, rustproof and alkali proof material.

- Requires no minimum amount of concrete cover and is always positioned

in compliance with codes.

- Safe and easy to use: reduces construction time and hassle on the jobsite.

* This information was provided by NOVOCON STEEL FIBRE, a division of Synthetic

Industries, Inc.

Page 258: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

246

APPENDIX I

SAMPLE CALCULATIONS This appendix includes an example for calculations of the following:

-Composite Slab Strength Capacity using First Yield Method and ASCE Appendix D

(Chapter 3)

- Effective width for concentrated loads using ASCE method

-Luttrell’s (1995) Method for Strength Capacity of Composite Slabs with Concentrated

Load (Chapter 5)

Page 259: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

247

Example I-1: First Yield Method for Composite Slabs (Example for WWF Slab, f’c= 4100 psi) As = cross-sectional area of steel deck = 0.519 in2/ft b = unit width of slab = 12 in bd = width of composite test slab = 6 ft. Bb = width of the bottom flange of the steel deck = 5 in. Bt = width of the top flange of the steel deck = 5 in. Cs = cell spacing = 12 in. d = distance from the top of the slab to the centroidal axis of the steel deck = 3.5 in. dd = overall depth of steel deck profile = 2 in. Dw = width of the web of the steel deck = 2.24 in. t = uncoated thickness of the steel deck = 0.0358 in. h = nominal out-to-out depth of composite slab = 4.5 in. Fy = yield strength of steel = 50 ksi (measured value) fyc = corrected steel yield stress = 49.98 ksi f’c = compressive strength of concrete = 4100 psi Ec = modulus of elasticity of the concrete = 57000(f’c)0.5 = 57000(4100)0.5= 3650 ksi Es = modulus of elasticity of the steel = 29,500,000 psi n = modular ratio = Es/Ec = 29,500/3650 = 8.1 ρ = As/bd = (0.519 in2/ft)/(12 in. * 3.5 in.) = 0.0124/ft. ρn = (0.0124/ft)*8.1 = 0.100 ycc = d{[2ρn+(ρn)2]0.5-ρn} = 3.5{[2*0.100 +(0.100)2]0.5-0.100}= 1.254 in. ex = exponential function w/x = 25(ph) e3 = h – (ycc/3) = 4.5-(1.254/3) = 4.08 in. e1 = e3 - dd = 4.08 – 2 = 2.08 in. e2 = e3 – (dd/2) = 4.08 – (2/2) = 3.08 in. T1 = fycBtt[(h-ycc-dd)/(h-ycc)]=(49.98)(5)(0.0358)[(4.5-1.254-2)/(4.5-1.254)]=3.43kips T2 = fyc2Dwt[(h-ycc-dd/2)/(h-ycc)]=(49.98)(2)(2.24)(0.0358)[(4.5-1.254-2/2)/(4.5- 1.254)]=5.54 kips T3 = fycBbt = (49.98)(5)(0.0358)=8.95 kips Met = (T1e1+T2e2+T3e3)= (3.43*2.08 + 5.54*3.08 + 8.95*4.08) = 60.73 kip-in./ft = 30.36 k-ft (for entire width) Example I-2: ASCE Appendix D Alternate Method Met = 60.73 in.-kip/ft = 5,061 ft-lbs/ft Mt = KMet12/Cs K = K3/(K1+K2) ≤ 1.0 (For the dimensions of this slab, K3/(K1+K2)>1.0∴K=1.0 Mt = 1.0(5061)(12/12) = 5,061 ft-lbs/ft

Page 260: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

248

Example I-3: ASCE Method with Concentrated Load (Example for WWF Slab)

d = 5.5 in.

f’c = 3.34 ksi

Ec = 3300 ksi

Be = b2 + tc

Where,

b2 = width of the load area in the transverse direction = 12 in.

tc = cover depth of concrete = 3.5 in.

Be = 12 + 3.5 = 15.5 in.

Mt = 6,557 ft-lbs/ft (using same procedure as example I-2)

Mth = BeMt= 6,557(15.5/12)=8,470 ft-lbs.

Example I-4: Luttrell’s Method (1995)

Bth = 22ft(hc/h)=22(3.5/5.5)= 14.0 ft. Use next lowest odd integer, Bth=13.0 ft.

ai = a0{cos[{πx)/Bth]}{1-[(2x)/Bth]}

a0 = 1.0

a1 = 0.8216

a2 = 0.6130

a3 = 0.4030

a4 = 0.2186

a5 = 0.0818

a6 = 0.0093

Be = ∑ai = [1 + 2(0.8216+0.6130+0.4030+0.2186+0.0818+0.0093)]=5.2944 ft.

Mth = BeMt = 5.2944*6557= 37,716 ft/lbs.

Page 261: STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS · 2020-01-21 · ii STRENGTH AND PERFORMANCE OF FIBER-REINFORCED CONCRETE COMPOSITE SLABS By: Marcela Guirola

249

VITA

Marcela was born in San Salvador, El Salvador on November 30, 1976 from

Salvadorian father: Mauricio Guirola, and Nicaraguan mother: Elizabeth Vivas. She has

one brother, Mauricio; and two sisters, Fermina and Ximena.

In 1980 the family moved to Nicaragua as a result of the civil war in El Salvador.

They lived in Nicaragua during the Sandinistas time and decided to move back to El

Salvador in 1985.

Marcela attended the British Academy in San Salvador and graduated in 1994. On

this same year, she went to Virginia Tech in Blacksburg, Virginia to study Engineering.

Her family moved back to Nicaragua in 1997. In 1999 she obtained her bachelors degree

in Civil and Environmental Engineering from the same school. She continued with her

graduate studies at the same university and obtained her masters degree in Civil

Engineering with a concentration in structures in 2001.

Marcela wishes to return to Nicaragua and hopefully some day work

independently.