Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion...

43
Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang Strategy of Fusion Materials Strategy of Fusion Materials Development and the Development and the Intense Neutron Source IFMIF Intense Neutron Source IFMIF A. Möslang Institute for Materials Research I Metals Department Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Transcript of Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion...

Page 1: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Strategy of Fusion Materials Strategy of Fusion Materials Development and the Development and the

Intense Neutron Source IFMIFIntense Neutron Source IFMIF

A. Möslang

Institute for Materials Research IMetals Department

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

Page 2: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

OverviewGlobal Fusion Strategy- Performance goals for fusion reactor materials- Material development strategies- Why a dedicated fusion neutron source?

Intense fusion neutron source- Mission & requirements- Small scale specimens

IIFFMMIIFF – The worlds most powerful neutron source- Anatomy- Neutronics & irradiation conditions- Design overview- Schedule and costs Conclusions

Page 3: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Global Fusion Strategy- Performance goals for fusion reactor

materials- Material development strategies- Why a dedicated fusion neutron source?

Page 4: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Disposal ofradioactive waste

Separation and nuclear transmutation

FR cycle system

Accelerator

Nuclear fusion

Energyutilization

Utilization inMedical treatment

Utilization in industryand agriculture

“ Centuries ”Development in science & technology

to practical application

Three time spansto be considered for

nuclear energy utilization

“ Decades ”Interest in politics and economics

“ Millennia ”Continuation of civilization &

existence of radiation

Modern societycivilization

Atomic Energy Commission of JapanY. Fujii Chairman; 2004

Page 5: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Q~0.5-1 ~10sec Q ≥10 300~500secQ ~ 5 STEADY STATE

Q =30~50 STEADY STATE

PublicUse

JT-60JETBreak-even

Demonstration Reactor (DEMO)

Experimental Reactor (ITER)

Electric Power Generation~1000 MWe

Long-burn Integration ofFusion Technology

Government of Japan - Cabinet Office H. Imura; 12- 2003

Irradiat. Damage: ≤3dpa / lifetime ≤30pda / year

dpa: displacements per atom; e.g, 3 dpa means: each atom is displaced in average 3 times during irradiation

Page 6: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Issues for the CFC divertor:Erosion lifetime (chemical sputtering),T-co-deposition (450g T limit inside the vessel) & C dust production (~200kg limit)

Issues for the Be First Wall:Be dust production (100kg limit) in particular on hot surfaces (6kg limit) -> Hydrogen production in off normal events

Issues for W clad divertor:• W dust production (100 - 300kg limit)can cause a radiological hazard

• Disruption erosion - melt-layer loss• Plasma compatibility

BerylliumTungstenCarbon-Fibre Composites

Present preference: 3 different materials

Main technological Problem for ITER:Plasma facing materials Lackner, former EU-EFDA head

Page 7: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Divertor: ≤10 dpa/a, 10-15 MW/m2

Refractory alloys- e.g. W & W-alloys Dispersion strengthened steels- e.g. nano-composed RA-steels

Fusion Power Reactor (PPCS-12)- Materials challenges -

Blanket:≤30 dpa/a, 2.5MW/m2

Structural materials, e.g.- Reduced Activation Steels- V-alloys- SiCf/SiCFunctional materials- Be: neutron multiplier- Li ceramics: T breeders

8 upper ports: ~0.1 dpawindows (e.g. PVD-diamond)diagnostic materials- fiber optic cables- ceramic insulators

Page 8: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

International Key Data for Materials Development

~30 full power year (fpy)

Plant lifetime

≥ 35 %Net Plant Efficiency

QuasicontinuousPulsed (>400 s) < 5⋅104 Cycles

Operational Mode

10-15 MW/m2

≤50 dpa10-15 MW/m2

≤ 27 dpa~10 MW/m2

≤2 dpa

Divertor:- Heat load - Integral Irrad. damage

2 – 3 MW/m2

10 - 15 MWy/m2

100-150 dpa

2 - 3 MW/m2

3 - 8 MWy/m2

30 - 80 dpa

0.5 – 0.7 MW/m2

0.2 – 0.4MWy/m2

2 - 4 dpa

Blanket (First Wall):- Neutronic Load - Integral Load - Integral Irradiation

damage

3-4 GW2 - 4 GW0.5 – 0.7 GWFusionpower

REACTORDEMOITER

Page 9: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Materials issues and major areas for R&D

• Fabrication & joining technologies• Radiological properties – low activation / waste disposal• Radiation embrittlement & compatibility

Tungsten alloys

• Design of composite structures for improved performance• Fundamental property response to irradiation• Development of a technology base for fabrication & joining

SiCf/SiC composites

• Structural integrity during irradiation• Uncertainties in production and release of T and He• Fabrication technology

Functional Materials:Be (n-multiplier)Li-ceramics (breeders)

• Development of insulation coatings (MHD-Effekte)• Impurity (O, C, N) pick-up from environment →embrittlement• Fracture toughness degradation by irradiation embrittement

Vanadium alloys

• Database development of Primary candidate alloys• Fracture toughness degradation by irradiation embrittement• ODS-nanocomposite ferritics for high temp. (650 - 750°C)

RA-F/M Steels(incl. oxide dispersion strengthened variants)

Red lines: Requires intense neutron source with fusion specific spectra

Page 10: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

The Aggressive Strategies of the EU, J & US Identify ITER and IFMIF As Essential Facilities for a Demo Power Reactor Operating 2035—2040

(2000: Ehrlich, Kondo, Bloom, 2003: Zinkle)

Approximate year 2015 2020 2030 2040

IIFFMMIIFF

ITERITER

1st 1st PowerplantPowerplant

DEMODEMO

Advanced Advanced PowerplantPowerplant

Page 11: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

There is presently no neutron source that combinesfusion similar spectrumhigh fluence for accelerated testingsufficiently large test volume

ITER testing is limited: restricted fluence accumulation (≤ 3 dpa)mode of operation is very different from DEMO

However, ITER is a valuable test bed for integral testing (e.g. TBMs)

High ranking advisory boards demanded several timesan Intense Fusion Neutron Source

Why a Dedicated Fusion Neutron Source? (1/2)

Page 12: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Irradiation damage: 2 elementary reactions

MD simulation of a displacement cascade produced by a 10 keV primary knock-on atom in an fcc lattice (Ghaly and Averback)

Defect arrangement in a displacement cascade (schematic)He effects: no adequate simulation in

existing irradiation facilities

He

Atomic displacements („dpa“) Nuclear reactions (e.g. He)

Why a Dedicated Fusion Neutron Source? (2/2)

Page 13: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Why is He/dpa ratio an important parameter for fusion materials R&D?

HeBubbles

He/dpa ratio (appm He/dpa)

Sw

ellin

g ∆V

/V0

(%)

He bubblescan cause severe grain boundary embrittlement at high temp. (fcc alloys)can severely enhance fracture toughness degradation at low temp. (bcc alloys)

Page 14: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Intense fusion neutron source- Mission & requirements- Small scale specimens

Page 15: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Intense Fusion Neutron Source

Mission: Qualification of candidate materials up to about full lifetimeof anticipated use in a fusion DEMO reactorAdvanced material development for commercial reactorsCalibration and validation of datagenerated from fission reactors and particle accelerators

Requirements (IEA workshop in San Diego 1989):Neutron flux/volume relation:

2 MW/m2 in a volume sufficient for some hundred samplesNeutron spectrum: Meet FW spectrum as near as possible;

Criteria include PKA spectrum, H, He, He/dpaNeutron fluence accumulation: DEMO fluence ~150 dpa in few yrsNeutron flux gradient: ≤10%/gauge volume

Machine availability: 70%Time structure: Quasi continuous operationGood accessibility of irradiation volume

Page 16: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF Small Scale Specimens

Significant volume reduction

(20-125 times) compared to conventional

standards

Specimen type

Present geometry

Comments

Tensile developed

Fatigue developed

Bend/CharpyDFT

Standard achieved;R&D ongoing

Creep Miniaturization needs verification

Crack growth International R&D

ongoing

Fracture toughness

International R&D

ongoing

Good progress is being made in developing further miniaturized specimens with proven scaling laws

1 cm

Page 17: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF : The worlds most powerfulneutron source

- Anatomy- Neutronics & irradiation conditions- Design overview- Schedule and costs

Page 18: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

EUAndreani R, Ausset P., Cambi G., Frisoni M. ,Bernaudin P-E., Blandin C., Duperrier R., Ferdinand R., France A., Gobin R., Hudelot J.P.,Lagniel J-M., Olivier M., Simoens F., Uriot D., Viola-Teres J.R. Bonade R., Spätig P., Tran M., Victoria M. ,Cozzani F., Paidassi S., Chen J., Andreani R., Gasparotto M., Lässer R.,Angelone M., Bailey A., Benamati G., Bianchi F., Burgazzi L., Cepraga D.G., Cevolani S., Cevolani S., Ciattaglia S., Esposito B., Fazio C., Filotto F., Giusti D., Martone M., Miccichè G., Monti S., Dell’Orco G., Di Pace L.,Pensa A., Pinna T., Riccardi B., Scaddozzo G., Tinti R.,Natalizio A., Antonucci C., Daum E., Ehrlich K., Fischer U., Gordeev S., Heinzel V., von Möllendorff U., Möslang A., Roehrig H.D.,Simakov S.P., Vladimirov P., Wilson P.P.H., Bechthold A., Beller P., Deitinghoff H., Hollinger R., Jakob A., Klein H., Liebermann H., Maaser A., Meusel O., Podlech H., Pozimski J., Ratzinger U., Sauer, A., Schempp A., Tiede R., Volk K., Weber M., Tiseanu I., Bém P., Burjan V., Götz M., Kroha V., Novák J., Simecková E., Stursa J., Vesely F., Vincour J., Margoto E.

JABaba M., Hagiwara M., Kurishita H., Matsui H., Narui M., Yamamoto T., Hojo Y., Suzuki S., Saigusa M., Sazawa S.Kakui H., Miyauchi Y., Ogoshi M., Yamamura T., Ezato K., Fujii T., Ida M., Iga T., Imai T., Jitsukawa S., Katsuta H.,Kato Y., Kinsho M., Kondo T., Konishi S., Maebara S., Maekawa H., Morishita T., Moriyama S., Nakamura Hideo,Nakamura Hiroo., Noda K., Oyama Y., Seki. M., Shiba K., Sugimoto M., Takatsu H., Takeda M., Takeuchi H., Watanabe K., Yutani T., Ara K., Hirabayashi M., Ohira H., Miyahara N., Nakamura Hiroshi, Ise H., Ebara S., Shimizu A., Watanabe Y.,Yokomine, Yonemoto Y.,Kasada R., Kato Y., Kimura A., Kubo H., Morishita K., Shimizu K., Kohno Y., Muroga T., Nagasaka T.,Nishimura A., Suzuki A., Horiike H., Iida T., Inoue S., Kurosaki K., Miyamoto S., Miyazaki K., Serizawa H., Uda N., Yamaoka N., Matsushita I.,Miyahara A., Kita Y., Nakayama K., Tanabe Y., Tanaka S., Terai T., Yoneoka T.

RFAksyonov J., Arnol'dov M., Berensky L., Chernov V.M., Chernov V. Fedotovsky V., Loginov N., Mikheyev A., Morozov V., Shishulin V. Chernogubovsky M.A.,Teplyakov V.A.Konobeyev A.Yu., Korovin Yu. A., Pereslavtsev P. E.Kalashnikov A., Zavialski L., Durkin A.P., Bondarev B.I., Vinogradov S.V., Votinov S.

USABlindB., Jameson R.A, Myers T., Piaszczyk C., Rathke J., Schultheiss T., Sredniawski J., Todd A.,Gomes I.C.,Hassanein A., Hua T., Smith D.L., Thomson S.L.,Wiffen F.W., Berwald D., Bruhwiler D., Peacock M.Haines J.R., Piechowiak E., Rennich M.J., Shannon T.E., Zinkle S.J.

Contributors to IIFFMMIIFF (1995 - 2004)

Page 19: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Anatomy of IIFFMMIIFF

Typical Reactions: 7Li(d,2n)7Be 6Li(d,n)7Be 6Li(n,T)4HeDeuterons: 40 MeV 2x 125 mA Beam footprint 5x20 cm2

High flux Medium flux Low fluxLiquid Li Jet (>20 dpa, 0.5 L) (20-1 dpa, 6 L) (<1 dpa, >8 L)

IonSource RFQ Drift Tube Linac

Test CellDeuteron Accelerator Region

Page 20: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF Qualification Neutron spectra

10-3 10-2 10-1 100 101100

101

102

103

104

105

106

107

CDA-Design (1996) KEP-Design (2001) DEMO fusion reactor

Medium Flux Volume

n-flu

x de

nsity

[1010

s-1 c

m-2 M

eV-1]

Neutron energy [MeV]

Neutron moderator & reflector:Substantial improvements in neutron spectrum shapeIncrease of irradiation volume by ~20%

10-3 10-2 10-1 100 101100

101

102

103

104

105

106

107

CDA Design (1996) Present Design (2003) DEMO fusion reactor

High Flux Volume

n-flu

x de

nsity

[1010

s-1 c

m-2M

eV-1]

Neutron energy [MeV]

Page 21: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF Qualification Neutron source termProf. Baba, Tohoku Univ. Japan

D-Beam (0-40 MeV) on Li-target: Double differential crosssection measurements bysophisticated time-of-flight experiments

Page 22: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF Qualification Neutron source termProf. Baba, Tohoku Univ. Japan

0 10 20 30 40 50106

107

108

109

1010

1011

Neutron Energy [MeV]

Neu

tron

flux

[#・

MeV

-1・

sr-1・µC

-1]

0-deg 10-deg 15-deg 20-deg 30-deg 45-deg 60-deg 90-deg 110-deg

0 10 20 30 40 50105

106

107

108

109

1010

Neutron Energy [MeV]

Neu

tron

flux

[#・

MeV

-1・

sr-1・µC

-1]

0-deg 10-deg 15-deg 20-deg 30-deg 45-deg 60-deg 90-deg 110-deg

thick natLi(d,xn) for Ed = 40 MeV thin natLi(d,xn) for Ed = 40 MeV

Page 23: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Irradiation Parameter

DEMO ITER IFMIF HFTM

IFMIF MFTM

Total n-flux, (n/(cm2 s) 1.3⋅1015 4⋅1014 (4÷10)⋅1014 (2÷6)⋅1014

H production, (appm/fpy) 1200 500 1000÷1500 300÷500

He production, (appm/fpy) 300 120 250÷600 70÷120

Displacement damage production, (dpa/fpy) 30 <2 20÷55 7÷10

H per dpa, (appm/dpa) 40 45 40÷50 30÷50

He per dpa, (appm/dpa) 10 11 10÷12 8÷14

MCNPX calculations in Fe-alloys based on extended nuclear data libraries & detailed geometry modelsHFTM: High flux test module MFTM: Medium flux test module

Correct scaling of He, H and dpa productionAccelerated irradiation in limited volume

IIFFMMIIF F Qualification Irradiation Damage (1/4)

Page 24: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

45 000 eV

24 000 eV

500 eV

25 eV

Typical recoil energy T

Neutron

Cascades & sub-cascades

Fe-ion

Proton

Frenkelpairs(FP: Vacancy-Insterstitial pair)

Electron

Dominant defect type

Typical recoil (or PKA)feature

Particle type(Ekin = 1 MeV)

Sensitivity of energetic particles to recoil energy distribution

IIFFMMIIFF Qualification Irradiation damage (2/4)

PKA

Typical impact on materials properties:FPS as “freely migrating defects”: Alloy dissolution, segregation, irradiation creepCascades & sub-cascades: Irradiation hardening, ductility reduction

Page 25: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF Qualification Irradiation damage (3/4)

Number of defects σD(En,T) produced by PKAs with energies below T, initiated by a neutron with Energy En:

dTTdT

TEdTET

nPKA

n ⋅⋅= ∫ )(),(),(max

0D νσσ

Number of defectsProduced by PKAs withenergy T

Different. cross sectionfor PKA production byneutron with energy En

Fraction of damage W(T) produced by all PKA with energy less than T

∫⋅⋅

Φ

⋅⋅Φ

=nnD

n

nnDn

dETEdEd

dETEdEd

TW),(

),()(

maxσ

σNeutron energy spectrum

Page 26: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Sensitivity of neutron spectrum to recoil energy distribution

IFMIF (green area) meets perfectly the conditions of DEMO-reactor blankets

10-3 10-2 10-1 1000,0

0,2

0,4

0,6

0,8

1,0 Frenkel pairs ← 50 keV → Subcascades

XADS

HFR-F8

ESS, reflector

IFMIF

DEMO HCPB

BOR60 D23

Frac

tion

of d

amag

e en

ergy

pro

duce

d by

PK

AS

PKA Energy, MeV

IIFFMMIIFF Qualification Irradiation damage (4/4)

Page 27: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Fusion reactors and IIFFMMIIFF produce very similar nuclear inventory“Recycling limit” already after ~100 yearsNo waste disposal needed for highly activated materials

10-2 100 102 104 106 108 1010107

109

1011

1013

1015 - FW/Demo - HFTM/IFMIF

106y104y1m

53Mn

100y1y30d1d1h

55Fe

3H

14C

Total Activity

Act

ivity

, B

q/kg

Time after shutdown, hours

IIFFMMIIFF Qualification Activation analysis

10-2 100 102 104 106 108 101010-7

10-5

10-3

10-1

101

103

105

Hands-on Limit

Recycling Limit

54Mn56Mn

106y104y1m

- FW/Demo - HFTM/IFMIF

26Al

100y1y30d1d1h

94Nb

60Co

Total Dose Rate

Con

tact

γ−R

ay D

ose

Rat

e,

Sv/h

Time after shutdown, hours

Activation: RA steel EUROFER Dose rate: RA steel EUROFER

Page 28: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFFDesign Overview

0 20 40m

Ion Source

RFQ

High Energy BeamTransport

Li Loop

Test Cell: Target & Test Modules

PIE Facilities

Page 29: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF Accelerator System BaselineRF Power System12 Required, 1MW CW, 175 MHz

High Energy Beam Transport (HEBT)

Drift Tube Linac (DTL)CW 175 MHz, 28.9 m,40MeV

Matching Section (MS)2-single Cavities, 4 Quadrupoles, 0.66 m long

Radio Frequency Quadrupole (RFQ)CW 175 MHz, 12.5 m long, water cooled, 5 MeV

Ion InjectorCW ECR, Source, 140 mA D+, 95 keV, Magnetic LEBT to RFQ

Large Bore Quad & Dipoles, 55 meters long

Page 30: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF Accelerator Source

Ion InjectorOperation with D+: Both, ECR & volume source achieves IFMIF performance1000 hours reliability runs underway

SILHI Ion Injector (CEA/Sacley) 100 mA H+, 95 keV, (stable CW operat. 170 mA D+, 95 keV, (done pulsed)

LEDA Injector (LANL) 110 mA H+, 95 keV, (stable CW operation)

Page 31: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

RFQ (CEA Sacley) - RFQ beam dynamics is finished

- Beam emittance optimized for DTL, meets 125mA goal (LANL) - Long term experience at cw 100 mA H+, 6,7 MeV

RFQ cold model, (IPHI, CEA Sacley)

1mBeam Input, end

IIFFMMIIFF Accelerator Radio Frequency Quadrupole

Page 32: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Drift tube linac DTLComprehensive particle dynamics calculations from 5 to 40 MeV finished→ full transmissionBeam dynamics design releasedSame calculations done for SC alternative→ lower rf losses, shorter linac, larger aperture

IFMIF DTL Tank (CEA Sacley)EM Quadrupole Outer shellInstrumented

DTL Tank

IIFFMMIIFF Accelerator Drift Tube Linac

Page 33: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

LEDA Demonstrated from 1999-2001 successful operation of a6.7 MeV, 100 mA, cw Proton beamLEDA experience confirms the IFMIF design

Low Energy Demonstration Accelerator at LANL (Los Alamos)

IIFFMMIIFF Accelerator LEDA Experience

Page 34: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Mission:Obtain stable and high speed Li flow during 10 MW D+ beam loading

D+ Accelerator

Liquid Li Target

Neutrons(~1017n/s)Li Free

Surface

EMP

D+ Beam (10MW)

Specimens

IIFFMMIIF F Target Schematic view

Page 35: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

2.2 m/s 13 m/s

IIFFMMIIF F Target System Li loop experiments

Impurity control & purification

IPPE, Obninsk, Russia Osaka University, Japan

Page 36: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF Test Cell Design

2 m

D+

Medium fluxtest modules

High fluxtest module

Low fluxirradiationtubes

Li Target

Li tank

Shield plug

Page 37: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

IIFFMMIIFF High flux test module (20-50 dpa/fpy)

The IFMIF design meets all user requirements

100 mm

He gas

700-1150 samples

356-366 °C

capsulespecimenvolume

4x3 Rigs

Ohmic heating

Capsule

Thermo couples

Page 38: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Medium flux volumeIn situ creep-fatiguetest module

3 independentcreep-fatiguetests withinbeam footprint

FZK design200 mm

IIFFMMIIFF Test Cell Medium flux test modules

Page 39: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Why are In-situ experiments really needed? Fatigue under Irradiation

In-situ irradiation less damaging than traditional postirradiation testsHe-bubbles & ∆σirr don’t change the principle mechanism of crack initiation

100 nm

10 µm

Tirr=420 °C

100 101 102 103 104 1050

200

400

600

800

1000irradiation induced hardening

12% Cr-Steel MANET IT = 420°C

unirradiated in-beam; 400 appm He; 2 dpa postirradiation; 400 appm He; 2 dpa

Tota

l Stre

ss A

mpl

itude

[MPa

]

Cycles

Page 40: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Medium flux volumeIn situ 3H releasetest module

He gas

purgegas

4x2rigs

Beamfootprint

IIFFMMIIFF Test Cell Test Module Achievements

Page 41: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

Decom-missioning

250 mAOperation

125 mAOperation

Construction,Installation,Start-up &Commissioning

EVEDA

Transition

40-44

20-30

19

18

17

16

15

14

13

12

11

10

09

08

07

06

05

04

03CY

C O

D A

Preparation1st Acceler, Target, TF

2nd Accelerator

Phase

EVEDA AgreementCODA Agreement

IIFFMMIIFF Main Schedule

Page 42: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

50.01,57078.5141.2115.4116.7539.288.4Cost

TotalAnnual

250 mA Operation125 mAOperation

Decom-mission-ing

OperationStartup &

Commis-sioning

Installation &

Checkout

Con-struction

CODA

EVEDAPhase

2005

-2009

2010

-2019

2011

-2019

Sched

ule

2012

-2019

2016

-2018

20 ye

ars

2019

-2039

2040

-2044

Unit: MICF

Detailed Cost Estimates exist for- Engineering Validation & Engineering Design Activity (EVEDA), and- Construction, Operation and Decommissioning Activities (CODA)

IIFFMMIIF F Summary of Total Project Cost

Page 43: Strategy of Fusion Materials Development and the Intense … · 2005-02-22 · Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF ... embrittlement •

Forschungszentrum Karlsruhe Institute for Materials Research I A. Möslang

1. The availability of a dedicated neutron source is indispensable for the qualification of materials for design and safe operation of fusion power reactors.

2. Why the accelerator based D-Li neutron source IIFFMMIIFF? Suitability: IIFFMMIIFF meets all relevant user requirements

Feasibility: – IIFFMMIIFF is well developed, and ready to proceed to component testing and engineering design

– The developed reference design is conceived for long-term operation with an annual availability of at least 70%

3. Future plans: IIFFMMIIFF Implementing Agreement preparations are being made to start EVEDA January 2005 In this case, IIFFMMIIFF operation could start during 2016, and full performance (250 mA beam current) could be reached ~3 years later

The IIFFMMIIFF design is at a level of maturity that would readily justify a positive decision towards an engineering phase “EVEDA”.

Summary