Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2....

27
[1] Introduction [2] Multi-hadrons on the lattice -- the reason why it is so hard -- [3] BB Forces from LQCD [4] Summary Strangeness Nuclear Physics from Lattice QCD T. Hatsuda (Nishina Center, RIKEN) Univ. Tsukuba S. Aoki, N. Ishii, H. Nemura, M. Yamada, K. Sasaki RIKEN K. Murano, T. Doi, T. Hatsuda Nihon Univ. T. Inoue Tokyo Inst. Tech. Y. Ikeda Univ. Tokyo B. Charron

Transcript of Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2....

Page 1: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

[1] Introduction

[2] Multi-hadrons on the lattice -- the reason why it is so hard --

[3] BB Forces from LQCD

[4] Summary

Strangeness Nuclear Physics from Lattice QCD

T Hatsuda (Nishina Center RIKEN)

Univ Tsukuba S Aoki N Ishii H Nemura M Yamada K Sasaki RIKEN K Murano T Doi T Hatsuda Nihon Univ T Inoue Tokyo Inst Tech Y Ikeda Univ Tokyo B Charron

[1] Introduction

[2] Multi-hadrons on the lattice -- the reason why it is so hard --

[3] BB Forces from LQCD

[4] Summary

Strangeness Nuclear Physics from Lattice QCD

T Hatsuda (Nishina Center RIKEN)

Univ Tsukuba S Aoki N Ishii H Nemura M Yamada K Sasaki RIKEN K Murano T Doi T Hatsuda Nihon Univ T Inoue Tokyo Inst Tech Y Ikeda Univ Tokyo B Charron

Introduction

nuclei

neutron star

hadron

1 fm

10 fm

10 km

HAL QCD Strategy From QCD to Compact stars

KEI Computer AICS (RIKEN) (10PFlops)

BGL -gt PACS-CS -gt T2K -gt BGQ -gt KEI (10TF -gt 100TF -gt 1PF -gt 10PF)

Neutron star max mass cooling etc

Supernova explosion Neutron star merger

NN

Nuclei NNN

Hypernuclei

YNYY

YNN YYN YYY

J-PARC (KEKJAEA)

Advanced Institute for Computational Science (AICS) RIKEN 10 PFlops supercomputer KEI ldquo京rdquo (full operation started on Sep28 2012)

httpwwwaicsrikenjpen

Five ldquostrategicrdquo programs (FY 2010-2015)

1 Life and Medicine 2 New Materials 3 Environment 4 Engineering 5 Particle Nuclear and Astrophysics

Project 1 Baryon-Baryon interaction from lattice QCD simulations at physical point

Project 2 Large scale quantum many-body calculation of nuclei and its applications

Project 3 Realistic simulation of supernova explosion and black-hole formation

Project 4 Large scale simulation of first generation of stars and galaxies

Physical point simulation started 964 lattice a=01fm L=96fm mπ=135MeV

FLAG working group arXiv10114408 [hep-lat]

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 219(15)

md 467(20)

ms 94(3)

Quantum Chromo Dynamics

Running coupling αs(Q)=g24π

Shintani PoSLAT2011

Physical point simulation in (2+1)-flavor QCD (by PACS-CS Coll)

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV Phys Rev D 81 074503 (2010)

3 accuracy

Baryon force From phenomenology to 1st principle

ldquohigh precisionrdquo NN interactions of parameters

CD Bonn (p space) 38

AV18 (r space) 40

EFT in N3LO (nπ+contact) 24

NN int about 4500 np and pp scatt data

NNN YN YY data very limited YNN YYN YYY none

R Machleidt arXiv07040807 [nucl-th]

QCD has only four parameters mu md ms ΛQCD

Multi-hadrons on the Lattice

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 2: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

[1] Introduction

[2] Multi-hadrons on the lattice -- the reason why it is so hard --

[3] BB Forces from LQCD

[4] Summary

Strangeness Nuclear Physics from Lattice QCD

T Hatsuda (Nishina Center RIKEN)

Univ Tsukuba S Aoki N Ishii H Nemura M Yamada K Sasaki RIKEN K Murano T Doi T Hatsuda Nihon Univ T Inoue Tokyo Inst Tech Y Ikeda Univ Tokyo B Charron

Introduction

nuclei

neutron star

hadron

1 fm

10 fm

10 km

HAL QCD Strategy From QCD to Compact stars

KEI Computer AICS (RIKEN) (10PFlops)

BGL -gt PACS-CS -gt T2K -gt BGQ -gt KEI (10TF -gt 100TF -gt 1PF -gt 10PF)

Neutron star max mass cooling etc

Supernova explosion Neutron star merger

NN

Nuclei NNN

Hypernuclei

YNYY

YNN YYN YYY

J-PARC (KEKJAEA)

Advanced Institute for Computational Science (AICS) RIKEN 10 PFlops supercomputer KEI ldquo京rdquo (full operation started on Sep28 2012)

httpwwwaicsrikenjpen

Five ldquostrategicrdquo programs (FY 2010-2015)

1 Life and Medicine 2 New Materials 3 Environment 4 Engineering 5 Particle Nuclear and Astrophysics

Project 1 Baryon-Baryon interaction from lattice QCD simulations at physical point

Project 2 Large scale quantum many-body calculation of nuclei and its applications

Project 3 Realistic simulation of supernova explosion and black-hole formation

Project 4 Large scale simulation of first generation of stars and galaxies

Physical point simulation started 964 lattice a=01fm L=96fm mπ=135MeV

FLAG working group arXiv10114408 [hep-lat]

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 219(15)

md 467(20)

ms 94(3)

Quantum Chromo Dynamics

Running coupling αs(Q)=g24π

Shintani PoSLAT2011

Physical point simulation in (2+1)-flavor QCD (by PACS-CS Coll)

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV Phys Rev D 81 074503 (2010)

3 accuracy

Baryon force From phenomenology to 1st principle

ldquohigh precisionrdquo NN interactions of parameters

CD Bonn (p space) 38

AV18 (r space) 40

EFT in N3LO (nπ+contact) 24

NN int about 4500 np and pp scatt data

NNN YN YY data very limited YNN YYN YYY none

R Machleidt arXiv07040807 [nucl-th]

QCD has only four parameters mu md ms ΛQCD

Multi-hadrons on the Lattice

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 3: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

Introduction

nuclei

neutron star

hadron

1 fm

10 fm

10 km

HAL QCD Strategy From QCD to Compact stars

KEI Computer AICS (RIKEN) (10PFlops)

BGL -gt PACS-CS -gt T2K -gt BGQ -gt KEI (10TF -gt 100TF -gt 1PF -gt 10PF)

Neutron star max mass cooling etc

Supernova explosion Neutron star merger

NN

Nuclei NNN

Hypernuclei

YNYY

YNN YYN YYY

J-PARC (KEKJAEA)

Advanced Institute for Computational Science (AICS) RIKEN 10 PFlops supercomputer KEI ldquo京rdquo (full operation started on Sep28 2012)

httpwwwaicsrikenjpen

Five ldquostrategicrdquo programs (FY 2010-2015)

1 Life and Medicine 2 New Materials 3 Environment 4 Engineering 5 Particle Nuclear and Astrophysics

Project 1 Baryon-Baryon interaction from lattice QCD simulations at physical point

Project 2 Large scale quantum many-body calculation of nuclei and its applications

Project 3 Realistic simulation of supernova explosion and black-hole formation

Project 4 Large scale simulation of first generation of stars and galaxies

Physical point simulation started 964 lattice a=01fm L=96fm mπ=135MeV

FLAG working group arXiv10114408 [hep-lat]

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 219(15)

md 467(20)

ms 94(3)

Quantum Chromo Dynamics

Running coupling αs(Q)=g24π

Shintani PoSLAT2011

Physical point simulation in (2+1)-flavor QCD (by PACS-CS Coll)

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV Phys Rev D 81 074503 (2010)

3 accuracy

Baryon force From phenomenology to 1st principle

ldquohigh precisionrdquo NN interactions of parameters

CD Bonn (p space) 38

AV18 (r space) 40

EFT in N3LO (nπ+contact) 24

NN int about 4500 np and pp scatt data

NNN YN YY data very limited YNN YYN YYY none

R Machleidt arXiv07040807 [nucl-th]

QCD has only four parameters mu md ms ΛQCD

Multi-hadrons on the Lattice

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 4: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

HAL QCD Strategy From QCD to Compact stars

KEI Computer AICS (RIKEN) (10PFlops)

BGL -gt PACS-CS -gt T2K -gt BGQ -gt KEI (10TF -gt 100TF -gt 1PF -gt 10PF)

Neutron star max mass cooling etc

Supernova explosion Neutron star merger

NN

Nuclei NNN

Hypernuclei

YNYY

YNN YYN YYY

J-PARC (KEKJAEA)

Advanced Institute for Computational Science (AICS) RIKEN 10 PFlops supercomputer KEI ldquo京rdquo (full operation started on Sep28 2012)

httpwwwaicsrikenjpen

Five ldquostrategicrdquo programs (FY 2010-2015)

1 Life and Medicine 2 New Materials 3 Environment 4 Engineering 5 Particle Nuclear and Astrophysics

Project 1 Baryon-Baryon interaction from lattice QCD simulations at physical point

Project 2 Large scale quantum many-body calculation of nuclei and its applications

Project 3 Realistic simulation of supernova explosion and black-hole formation

Project 4 Large scale simulation of first generation of stars and galaxies

Physical point simulation started 964 lattice a=01fm L=96fm mπ=135MeV

FLAG working group arXiv10114408 [hep-lat]

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 219(15)

md 467(20)

ms 94(3)

Quantum Chromo Dynamics

Running coupling αs(Q)=g24π

Shintani PoSLAT2011

Physical point simulation in (2+1)-flavor QCD (by PACS-CS Coll)

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV Phys Rev D 81 074503 (2010)

3 accuracy

Baryon force From phenomenology to 1st principle

ldquohigh precisionrdquo NN interactions of parameters

CD Bonn (p space) 38

AV18 (r space) 40

EFT in N3LO (nπ+contact) 24

NN int about 4500 np and pp scatt data

NNN YN YY data very limited YNN YYN YYY none

R Machleidt arXiv07040807 [nucl-th]

QCD has only four parameters mu md ms ΛQCD

Multi-hadrons on the Lattice

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 5: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

Advanced Institute for Computational Science (AICS) RIKEN 10 PFlops supercomputer KEI ldquo京rdquo (full operation started on Sep28 2012)

httpwwwaicsrikenjpen

Five ldquostrategicrdquo programs (FY 2010-2015)

1 Life and Medicine 2 New Materials 3 Environment 4 Engineering 5 Particle Nuclear and Astrophysics

Project 1 Baryon-Baryon interaction from lattice QCD simulations at physical point

Project 2 Large scale quantum many-body calculation of nuclei and its applications

Project 3 Realistic simulation of supernova explosion and black-hole formation

Project 4 Large scale simulation of first generation of stars and galaxies

Physical point simulation started 964 lattice a=01fm L=96fm mπ=135MeV

FLAG working group arXiv10114408 [hep-lat]

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 219(15)

md 467(20)

ms 94(3)

Quantum Chromo Dynamics

Running coupling αs(Q)=g24π

Shintani PoSLAT2011

Physical point simulation in (2+1)-flavor QCD (by PACS-CS Coll)

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV Phys Rev D 81 074503 (2010)

3 accuracy

Baryon force From phenomenology to 1st principle

ldquohigh precisionrdquo NN interactions of parameters

CD Bonn (p space) 38

AV18 (r space) 40

EFT in N3LO (nπ+contact) 24

NN int about 4500 np and pp scatt data

NNN YN YY data very limited YNN YYN YYY none

R Machleidt arXiv07040807 [nucl-th]

QCD has only four parameters mu md ms ΛQCD

Multi-hadrons on the Lattice

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 6: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

FLAG working group arXiv10114408 [hep-lat]

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 219(15)

md 467(20)

ms 94(3)

Quantum Chromo Dynamics

Running coupling αs(Q)=g24π

Shintani PoSLAT2011

Physical point simulation in (2+1)-flavor QCD (by PACS-CS Coll)

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV Phys Rev D 81 074503 (2010)

3 accuracy

Baryon force From phenomenology to 1st principle

ldquohigh precisionrdquo NN interactions of parameters

CD Bonn (p space) 38

AV18 (r space) 40

EFT in N3LO (nπ+contact) 24

NN int about 4500 np and pp scatt data

NNN YN YY data very limited YNN YYN YYY none

R Machleidt arXiv07040807 [nucl-th]

QCD has only four parameters mu md ms ΛQCD

Multi-hadrons on the Lattice

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 7: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

Physical point simulation in (2+1)-flavor QCD (by PACS-CS Coll)

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV Phys Rev D 81 074503 (2010)

3 accuracy

Baryon force From phenomenology to 1st principle

ldquohigh precisionrdquo NN interactions of parameters

CD Bonn (p space) 38

AV18 (r space) 40

EFT in N3LO (nπ+contact) 24

NN int about 4500 np and pp scatt data

NNN YN YY data very limited YNN YYN YYY none

R Machleidt arXiv07040807 [nucl-th]

QCD has only four parameters mu md ms ΛQCD

Multi-hadrons on the Lattice

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 8: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

Baryon force From phenomenology to 1st principle

ldquohigh precisionrdquo NN interactions of parameters

CD Bonn (p space) 38

AV18 (r space) 40

EFT in N3LO (nπ+contact) 24

NN int about 4500 np and pp scatt data

NNN YN YY data very limited YNN YYN YYY none

R Machleidt arXiv07040807 [nucl-th]

QCD has only four parameters mu md ms ΛQCD

Multi-hadrons on the Lattice

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 9: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

Multi-hadrons on the Lattice

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 10: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

NN

NNπ

E Resonance region

Scattering region

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 11: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 12: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

NN

NNπ

E

ΔE ~ 16 (32L)2 MeV

Eth ~ 135 MeV

Multi-hadron Dilemma

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 13: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 14: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

1Eth ~ 15 fm

Resonance region Scattering region

t 1(ΔE) ~ 12 (L32)2 fm

0

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 15: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

LO LO NLO NNLO

Solution of the Dilemma Interaction kernel (=non-local potential)

Ishii Aoki amp Hatsuda PRL 99 (2007) 022001 PTP 123 (2010) 89

ldquoPotentialrdquo is not an observable but is a nice tool to calculate observables ldquoPotentialrdquo is volume insensitive (ie Lattice Friendly)

Ishii et al [HAL QCD Coll] PhysLett B712 (2012) 437

2

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 16: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

Central potential in (2+1)-flavor QCD

PACS-CS gauge config (Clover + Iwasaki) a= 009 fm L=29 fm mπ= 700 MeV

rArr Physical point simulations (mπ=135MeV L=96 fm) at KEI computer

HAL QCD Coll Phys Lett B712 (2012)

1S0

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 17: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

x

BB forces from LQCD

Physical origin of the short distance NN repulsion

Fate of the H-dibaryon

Effect of the SU(3) breaking

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 18: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

Iwasaki + clover (CP-PACSJLQCD config) L=19 fm a=012 fm 163x32 mπ=835 MeV mB=1752 MeV

1

27

8s

Lattice BB wave functions (flavor SU(3) limit)

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Short range BB int hArr Quark Pauli principle

1 allowed 27 partially blocked 8s blocked

(Oka Yazaki )

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 19: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel Growing NN tensor force

1S0 channel

3S1 ndash 3D1 channel

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 20: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

NN phase shifts in the SU(3) symmetric world

NN

HAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Stronger attraction in the deuteron channel

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 21: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

BB potentials (flavor SU(3) limit) IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Growing NN tensor force

Repulsive core in NN channel

Attractive core in H channel

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 22: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

H-dibaryon (flavor SU(3) limit)

At physical point MΛΛ lt MH lt MΞN

IHAL QCD Coll Phys Rev Lett 106 (2011) 162002 Nucl Phys A881 (2012) 28

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 23: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 24: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

Just for fun Neutron star from NN potential in flavor SU(3) limit

N=ZS=0 N=0S=0

EOS with Lattice NN force by BHF calculation M-R relation by TOV equation

Inoue et al [HAL QCD Coll] (2012)

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 25: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

SU(3) breaking coupled channel LQCD Sasaki et al [HAL QCD Coll] (2012)

Parallel V (Oct4) by K Sasaki

Example S=-1 3S1 I=12 (mπmK=089 08)

ΛN-ΛN ΣN-ΣN ΛN-ΣN

PACS-CS (2+1)-flavor config L=29 fm

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 26: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

ldquoSummaryrdquo 1 LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions 2 LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD 3 Physical point simulations with a large volume (L=96 fm) is started at KEI computer (Kuramashi Ukita et al) 4 Necessary equipment to extract physics from LQCD data are ready (eg HAL QCD methodology)

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27
Page 27: Strangeness Nuclear Physics from Lattice QCDicc.ub.edu/.../Hatsuda_HYP2012_10.02.2012_web.pdf · 2. LQCD results together with nuclear many -body techniques would provide us with

ldquoLattice Quantum Chromodynamical Approach to Nuclear Physicsrdquo [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics (2012) 01A105 httpwwwoxfordjournalsorgour_journalsptepspecial_issue_ahtml basic concepts of the non-local potential central tensor LS forces from lattice QCD coupled-channel YN YY forces three-body force kaon-nucleon interaction going beyond the pion threshold )

Poster (Oct2) by K Murano Talks at Parallel V (Oct4) by K Sasaki and Y Ikeda

Latest Review

  • スライド番号 1
  • スライド番号 2
  • スライド番号 3
  • スライド番号 4
  • スライド番号 5
  • スライド番号 6
  • スライド番号 7
  • スライド番号 8
  • スライド番号 9
  • スライド番号 10
  • スライド番号 11
  • スライド番号 12
  • スライド番号 13
  • スライド番号 14
  • スライド番号 15
  • スライド番号 16
  • スライド番号 17
  • スライド番号 18
  • スライド番号 19
  • スライド番号 20
  • スライド番号 21
  • スライド番号 22
  • スライド番号 23
  • スライド番号 24
  • スライド番号 25
  • スライド番号 26
  • スライド番号 27