Strain-dependent strength profiles Implication of ... · Strain-dependent strength profiles...

24
Strain-dependent strength profiles Implication of planetary tectonics Laurent G.J. Montési 1 Frederic Gueydan 2 , Jacques Précigout 3 1 University of Maryland 2 Université de Montpellier 2, 3 Université d’Orléans 11/21/2014 College de France 2014

Transcript of Strain-dependent strength profiles Implication of ... · Strain-dependent strength profiles...

Strain-dependent strength profiles

Implication of planetary tectonics

Laurent G.J. Montési1

Frederic Gueydan2, Jacques Précigout3 1University of Maryland

2Université de Montpellier 2, 3Université d’Orléans 11/21/2014 College de France 2014

Plate Tectonics: Only on Earth!

• Grand challenge problem in Solid Earth Sciences (NAS report, 2008)

• Affects planetary evolution, atmosphere, life?

Earth

Venus

11/21/2014 College de France 2014

Extension on Earth and Venus

Devana Chasma Main Ethiopian Rift

11/21/2014 College de France 2014

Shortening on Earth and Venus

Yalyane Dorsa Sierra Pampaneas

11/21/2014 College de France 2014

Strength envelopes (classical)

11/21/2014 College de France 2014

Brittle failure

Depends on pressure

Ductile creep

Depends on Temperature

Depends on Strain rate

Arbitrary strength limit

Melosh, 2011

A plate tectonic recipe

• Vigorous

convection

• Weak

deformation

zones

Weakened

arbitrarily

• What mechanism weakens

plate boundaries?

• Which mechanisms are active

only on Earth

• Is the “strength” all that is

needed?

11/21/2014 College de France 2014 O’Neill et al., 2007

Weakness of

brittle faults

• Fault rocks contain

weak minerals

(smectite, talc and

minor chlorite).

• Low friction results

from slip on a network

of weak phyllosilicate-

rich surfaces that

define the rock fabric

11/21/2014 College de France 2014

Complex I 2 m

Complex V

aF

ero

c tluL2

L3

0.6

0.8

0.4

0.2

0 20 40 60 80 100 120 140

L2 powder

L3 powder

L2 fault rock

L3 fault rock

L2 fault rock, wet

Normal stress (MPa)

Co

ef

cie

nt

of

fric

tio

n

Collettini et al., 2009

Which level is weak?

• Low yield strength of the lithosphere

• Solomatov (2004): <~3MPa

• Low brittle strength

• Friction coefficient of 0.15 (O’Neill et al.

2007)

• Serpentine? (Moore et al., 2007)

• High pore fluid pressure

• Low ductile strength

• Necessary to reconcile low coefficient of

friction and depth to brittle-ductile

transition

• Ductile shear zones

11/21/2014 College de France 2014

The San Andreas Fault at depth?

Fabric transition

High strength

Brittle: earthquakes

Grain size reduction: silent?

11/21/2014 College de France 2014 Gueydan et al., 2014

Brittle failure Need fluids and/or serpentine

Ductile failure In the mantle when dis-GBS is possible (T<700°C) In the crust in presence of phillosilicates (T<500°C)

Protolith

Ductile shear zone structure

• Requires change in state or environment • Temperature

• Grain size

• Interconnection of weak phase

• Abundance of weak phase

• Composition (metamorphism, melt)

11/21/2014 College de France 2014 L-S tectonites, South Armorican Shear Zone

F. Gueydan, personal communication, 2006

Fabric and rheology

Protolith (uniform strain) Shear zone (uniform stress)

Strength controlled by strong phase Strength controlled by weak phase 11/21/2014 College de France 2014

Grain Size Reduction

• Mylonite in oceanic peridotite, Shaka Fracture zone Shear direction

11/21/2014 College de France 2014 Warren and Hirth, 2006

Shear zone development

Strain1 10 100

2.5 1021 2.5 1022 2.5 1023

T=500°CT=400°CT=300°C

Viscosity

Strain

CRUSTAL SHEAR ZONES (g=2.3)

100 km

11/21/2014 College de France 2014 Gueydan et al., 2014

Strain1 10 100

2.5 1021 2.5 1022 2.5 1023

100 km

Viscosity (Pa.s)

MANTLE SHEAR ZONES (g=2.3)

T=800°CT=700°CT=600°C

Viscosity

Strain

In the crust: Weak phase interconnection if phyllosilicates

In the mantle: grain size reduction if dis-GBS

Final weakening

11/21/2014 College de France 2014 Gueydan et al., 2014

Strain-dependent strength envelopes

11/21/2014 College de France 2014 Gueydan et al., 2014

Oceanic lithosphere • Crust: mostly brittle

• Hydrated minerals and high pore fluid pressure

• In the mantle • Dis-GBS starts essentially at zero

age • Older lithosphere has a thicker

localizing mantle

• Melt embrittlement?

11/21/2014 College de France 2014

Strain Weakening

1

Moho

800

800

Layering

development

Grain size reduction &

superplasticity

crust

Oceanic

mantle

1000

600

400

0.50

Te

mp

era

ture

(°C

)

No weakening

Strain Weakening

1

Moho

800

400

Layering

development

Grain size reduction &

superplasticity

crust

Oceanic

mantle

1000

600

200

0.50

Te

mp

era

ture

(°C

)

No weakening

Strain Weakening

1

Moho

800

400

Layering

development

Grain size reduction &

superplasticity

deep crust

mid crust

upper crust

subcontinental

mantle

No weakening

1000

600

200

0.50

Te

mp

era

ture

(°C

)

No weakening

Thermal structure from McKenzie et al., EPSL 2005

Venus

• Mantle • Dis-GBS possible if low

enough geotherm / thin crust • 15 K/km: 22km

• 10 K/km: 34 km thick

• Crust • High surface temperature, no

water: no phyllosilicates

• Shallow brittle failure

• More important in extension

11/21/2014 College de France 2014

Crustal thickness

from James et al.,

2013

Localization easier in extension

• Deeper brittle layer =>

larger fault offsets

• Possibility of melting =>

melt weakening and melt

embrittlement

• Geometrical effects

(stress focusing)

11/21/2014 College de France 2014

Mars

• Mantle:

• Dis-GBS if low enough

heat flux/ thin crust

• 30km crust (lowlands):

100 mW/m2

• 60km crust (highlands):

50 mW/m2

• Crust:

• Water likely: brittle

weakening

• Mafic composition does

not favor phyllosilicates at

depth: no layering effect

11/21/2014 College de France 2014

Montési and Zuber, 2003

Localization in planetary lithospheres

11/21/2014 College de France 2014

Earth

continents

Earth

Oceans

Mars Venus

~30 k

m

Convection and tectonics

11/21/2014 College de France 2014

Bottom-driven tectonics

Edge-driven tectonics

Phillips and Hansen, 1998

Schmerr, 2012

Bottom-driven tectonics

• Need high basal stress: convection

reaches the brittle-ductile transition

• Need ductile layer for

accommodation of shear zones

11/21/2014 College de France 2014 Montési, LPSC 2013

Buoyancy-driven tectonics

• Continent spreading (Earth’s Archean)

• Upwellings (Beta Regio, East African Rift?)

11/21/2014 College de France 2014 Montési, LPSC 2013

Rey et al., 2014

Less efficient on Mars

Summary • The strength of the

lithosphere changes with

strain

• Layering in brittle regime

or in presence of micas

• Grain size reduction in

presence of dis-GBS

creep

• Strength profile

compared to the Earth

• Mars is similar to Earth’s

continents

• Venus is dominated by

brittle localization unless

low heat flux

• Issue of driving forces

• Bottom stresses are

inefficient to drive

tectonics

• Continents dominated by

buoyancy-driven flows?

• Buoyancy less efficient

on Mars

11/21/2014 College de France 2014 Understanding Earth textbook